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Abstract

We propose a general method to water-
mark and probabilistically identify the
structured outputs of machine learning al-
gorithms. Our method is robust to lo-
cal editing operations and provides well
defined trade-offs between the ability to
identify algorithm outputs and the qual-
ity of the watermarked output. Unlike
previous work in the field, our approach
does not rely on controlling the inputs to
the algorithm and provides probabilistic
guarantees on the ability to identify col-
lections of results from one’s own algo-
rithm. We present an application in statis-
tical machine translation, where machine
translated output is watermarked at mini-
mal loss in translation quality and detected
with high recall.

1 Motivation

Machine learning algorithms provide structured
results to input queries by simulating human be-
havior. Examples include automatic machine
translation (Brown et al., 1993) or automatic
text and rich media summarization (Goldstein
et al., 1999). These algorithms often estimate
some portion of their models from publicly avail-
able human generated data. As new services
that output structured results are made avail-
able to the public and the results disseminated
on the web, we face a daunting new challenge:
Machine generated structured results contam-
inate the pool of naturally generated human
data. For example, machine translated output

and human generated translations are currently
both found extensively on the web, with no auto-
matic way of distinguishing between them. Al-
gorithms that mine data from the web (Uszko-
reit et al., 2010), with the goal of learning to
simulate human behavior, will now learn mod-
els from this contaminated and potentially self-
generated data, reinforcing the errors commit-
ted by earlier versions of the algorithm.

It is beneficial to be able to identify a set of
encountered structured results as having been
generated by one’s own algorithm, with the pur-
pose of filtering such results when building new
models.
Problem Statement: We define a struc-

tured result of a query q as r = {z1 · · · zL} where
the order and identity of elements zi are impor-
tant to the quality of the result r. The structural
aspect of the result implies the existence of alter-
native results (across both the order of elements
and the elements themselves) that might vary in
their quality.

Given a collection of N results, CN =
r1 · · · rN , where each result ri has k ranked alter-
natives Dk(qi) of relatively similar quality and
queries q1 · · · qN are arbitrary and not controlled
by the watermarking algorithm, we define the
watermarking task as:
Task. Replace ri with r′i ∈ Dk(qi) for some sub-
set of results in CN to produce a watermarked
collection C′N

such that:

• C′N is probabilistically identifiable as having
been generated by one’s own algorithm.
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• the degradation in quality from CN to the
watermarked C′N should be analytically con-
trollable, trading quality for detection per-
formance.

• C′N should not be detectable as water-
marked content without access to the gen-
erating algorithms.

• the detection of C′N should be robust to sim-
ple edit operations performed on individual
results r ∈ C′N .

2 Impact on Statistical Machine
Translation

Recent work(Resnik and Smith, 2003; Munteanu
and Marcu, 2005; Uszkoreit et al., 2010) has
shown that multilingual parallel documents can
be efficiently identified on the web and used as
training data to improve the quality of statisti-
cal machine translation.

The availability of free translation services
(Google Translate, Bing Translate) and tools
(Moses, Joshua), increase the risk that the con-
tent found by parallel data mining is in fact gen-
erated by a machine, rather than by humans. In
this work, we focus on statistical machine trans-
lation as an application for watermarking, with
the goal of discarding documents from training
if they have been generated by one’s own algo-
rithms.

To estimate the magnitude of the problem,
we used parallel document mining (Uszkoreit et
al., 2010) to generate a collection of bilingual
document pairs across several languages. For
each document, we inspected the page content
for source code that indicates the use of trans-
lation modules/plug-ins that translate and pub-
lish the translated content.

We computed the proportion of the content
within our corpus that uses these modules. We
find that a significant proportion of the mined
parallel data for some language pairs is gener-
ated via one of these translation modules. The
top 3 languages pairs, each with parallel trans-
lations into English, are Tagalog (50.6%), Hindi
(44.5%) and Galician (41.9%). While these
proportions do not reflect impact on each lan-
guage’s monolingual web, they are certainly high

enough to affect machine translations systems
that train on mined parallel data. In this work,
we develop a general approach to watermark
structured outputs and apply it to the outputs
of a statistical machine translation system with
the goal of identifying these same outputs on the
web. In the context of the watermarking task
defined above, we output selecting alternative
translations for input source sentences. These
translations often undergo simple edit and for-
matting operations such as case changes, sen-
tence and word deletion or post editing, prior to
publishing on the web. We want to ensure that
we can still detect watermarked translations de-
spite these edit operations. Given the rapid pace
of development within machine translation, it
is also important that the watermark be robust
to improvements in underlying translation qual-
ity. Results from several iterations of the system
within a single collection of documents should be
identifiable under probabilistic bounds.

While we present evaluation results for sta-
tistical machine translation, our proposed ap-
proach and associated requirements are applica-
ble to any algorithm that produces structured
results with several plausible alternatives. The
alternative results can arise as a result of inher-
ent task ambiguity (for example, there are mul-
tiple correct translations for a given input source
sentence) or modeling uncertainty (for example,
a model assigning equal probability to two com-
peting results).

3 Watermark Structured Results

Selecting an alternative r′ from the space of al-
ternatives Dk(q) can be stated as:

r′ = arg max
r∈Dk(q)

w(r,Dk(q), h) (1)

where w ranks r ∈ Dk(q) based on r’s presen-
tation of a watermarking signal computed by a
hashing operation h. In this approach, w and
its component operation h are the only secrets
held by the watermarker. This selection crite-
rion is applied to all system outputs, ensuring
that watermarked and non-watermarked version
of a collection will never be available for compar-
ison.
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A specific implementation of w within our wa-
termarking approach can be evaluated by the
following metrics:

• False Positive Rate: how often non-
watermarked collections are falsely identi-
fied as watermarked.

• Recall Rate: how often watermarked col-
lections are correctly identified as water-
marked.

• Quality Degradation: how significantly
does C′N differ from CN when evaluated by
task specific quality metrics.

While identification is performed at the col-
lection level, we can scale these metrics based
on the size of each collection to provide more
task sensitive metrics. For example, in machine
translation, we count the number of words in
the collection towards the false positive and re-
call rates.

In Section 3.1, we define a random hashing
operation h and a task independent implemen-
tation of the selector function w. Section 3.2
describes how to classify a collection of water-
marked results. Section 3.3 and 3.4 describes re-
finements to the selection and classification cri-
teria that mitigate quality degradation. Follow-
ing a comparison to related work in Section 4,
we present experimental results for several lan-
guages in Section 5.

3.1 Watermarking: CN → C′N
We define a random hashing operation h that is
applied to result r. It consists of two compo-
nents:

• A hash function applied to a structured re-
sult r to generate a bit sequence of a fixed
length.

• An optional mapping that maps a single
candidate result r to a set of sub-results.
Each sub-result is then hashed to generate
a concatenated bit sequence for r.

A good hash function produces outputs whose
bits are independent. This implies that we can
treat the bits for any input structured results

as having been generated by a binomial distri-
bution with equal probability of generating 1s
vs 0s. This condition also holds when accu-
mulating the bit sequences over a collection of
results as long as its elements are selected uni-
formly from the space of possible results. There-
fore, the bits generated from a collection of un-
watermarked results will follow a binomial dis-
tribution with parameter p = 0.5. This result
provides a null hypothesis for a statistical test
on a given bit sequence, testing whether it is
likely to have been generated from a binomial
distribution binomial(n, p) where p = 0.5 and n
is the length of the bit sequence.

For a collection CN = r1 · · · rN , we can define
a watermark ranking function w to systemati-
cally select alternatives r′i ∈ Dk(q), such that
the resulting C′N is unlikely to produce bit se-
quences that follow the p = 0.5 binomial distri-
bution. A straightforward biasing criteria would
be to select the candidate whose bit sequence ex-
hibits the highest ratio of 1s. w can be defined
as:

w(r,Dk(q), h) =
#(1, h(r))

|h(r)| (2)

where h(r) returns the randomized bit sequence
for result r, and #(x, ~y) counts the number of
occurrences of x in sequence ~y. Selecting alter-
natives results to exhibit this bias will result in
watermarked collections that exhibit this same
bias.

3.2 Detecting the Watermark

To classify a collection CN as watermarked or
non-watermarked, we apply the hashing opera-
tion h on each element in CN and concatenate
the sequences. This sequence is tested against
the null hypothesis that it was generated by a
binomial distribution with parameter p = 0.5.
We can apply a Fisherian test of statistical sig-
nificance to determine whether the observed dis-
tribution of bits is unlikely to have occurred by
chance under the null hypothesis (binomial with
p = 0.5).

We consider a collection of results that rejects
the null hypothesis to be watermarked results
generated by our own algorithms. The p-value
under the null hypothesis is efficiently computed
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by:

p− value = Pn(X ≥ x) (3)

=
n∑

i=x

(
n

i

)
pi(1− p)n−i (4)

where x is the number of 1s observed in the col-
lection, and n is the total number of bits in the
sequence. Comparing this p-value against a de-
sired significance level α, we reject the null hy-
pothesis for collections that have Pn(X ≥ x) <
α, thus deciding that such collections were gen-
erated by our own system.

This classification criteria has a fixed false
positive rate. Setting α = 0.05, we know that
5% of non-watermarked bit sequences will be
falsely labeled as watermarked. This parameter
α can be controlled on an application specific ba-
sis. By biasing the selection of candidate results
to produce more 1s than 0s, we have defined
a watermarking approach that exhibits a fixed
false positive rate, a probabilistically bounded
detection rate and a task independent hashing
and selection criteria. In the next sections, we
will deal with the question of robustness to edit
operations and quality degradation.

3.3 Robustness and Inherent Bias

We would like the ability to identify water-
marked collections to be robust to simple edit
operations. Even slight modifications to the ele-
ments within an item r would yield (by construc-
tion of the hash function), completely different
bit sequences that no longer preserve the biases
introduced by the watermark selection function.

To ensure that the distributional biases intro-
duced by the watermark selector are preserved,
we can optionally map individual results into a
set of sub-results, each one representing some lo-
cal structure of r. h is then applied to each sub-
result and the results concatenated to represent
r. This mapping is defined as a component of
the h operation.

While a particular edit operation might af-
fect a small number of sub-results, the majority
of the bits in the concatenated bit sequence for
r would remain untouched, thereby limiting the
damage to the biases selected during watermark-

ing. This is of course no defense to edit opera-
tions that are applied globally across the result;
our expectation is that such edits would either
significantly degrade the quality of the result or
be straightforward to identify directly.

For example, a sequence of words r = z1 · · · zL
can be mapped into a set of consecutive n-gram
sequences. Operations to edit a word zi in r will
only affect events that consider the word zi. To
account for the fact that alternatives in Dk(q)
might now result in bit sequences of different
lengths, we can generalize the biasing criteria to
directly reflect the expected contribution to the
watermark by defining:

w(r,Dk(q), h) = Pn(X ≥ #(1, h(r))) (5)

where Pn gives probabilities from binomial(n =
|h(r)|, p = 0.5).

Inherent collection level biases: Our null
hypothesis is based on the assumption that col-
lections of results draw uniformly from the space
of possible results. This assumption might not
always hold and depends on the type of the re-
sults and collection. For example, considering
a text document as a collection of sentences,
we can expect that some sentences might repeat
more frequently than others.

This scenario is even more likely when ap-
plying a mapping into sub-results. n-gram se-
quences follow long-tailed or Zipfian distribu-
tions, with a small number of n-grams contribut-
ing heavily toward the total number of n-grams
in a document.

A random hash function guarantees that in-
puts are distributed uniformly at random over
the output range. However, the same input will
be assigned the same output deterministically.
Therefore, if the distribution of inputs is heav-
ily skewed to certain elements of the input space,
the output distribution will not be uniformly
distributed. The bit sequences resulting from
the high frequency sub-results have the potential
to generate inherently biased distributions when
accumulated at the collection level. We want to
choose a mapping that tends towards generating
uniformly from the space of sub-results. We can
empirically measure the quality of a sub-result
mapping for a specific task by computing the
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false positive rate on non-watermarked collec-
tions. For a given significance level α, an ideal
mapping would result in false positive rates close
to α as well.

Figure 1 shows false positive rates from 4 al-
ternative mappings, computed on a large corpus
of French documents (see Table 1 for statistics).
Classification decisions are made at the collec-
tion level (documents) but the contribution to
the false positive rate is based on the number
of words in the classified document. We con-
sider mappings from a result (sentence) into its
1-grams, 1 − 5-grams and 3 − 5 grams as well
as the non-mapping case, where the full result
is hashed.

Figure 1 shows that the 1-grams and 1 − 5-
gram generate sub-results that result in heav-
ily biased false positive rates. The 3 − 5 gram
mapping yields false positive rates close to their
theoretically expected values. 1 Small devia-
tions are expected since documents make differ-
ent contributions to the false positive rate as a
function of the number of words that they repre-
sent. For the remainder of this work, we use the
3-5 gram mapping and the full sentence map-
ping, since the alternatives generate inherently
distributions with very high false positive rates.

3.4 Considering Quality

The watermarking described in Equation 3
chooses alternative results on a per result basis,
with the goal of influencing collection level bit
sequences. The selection criteria as described
will choose the most biased candidates available
in Dk(q). The parameter k determines the ex-
tent to which lesser quality alternatives can be
chosen. If all the alternatives in each Dk(q) are
of relatively similar quality, we expect minimal
degradation due to watermarking.

Specific tasks however can be particularly sen-
sitive to choosing alternative results. Discrimi-
native approaches that optimize for arg max se-
lection like (Och, 2003; Liang et al., 2006; Chi-
ang et al., 2009) train model parameters such

1In the final version of this paper we will perform sam-
pling to create a more reliable estimate of the false posi-
tive rate that is not overly influenced by document length
distributions.

that the top-ranked result is well separated from
its competing alternatives. Different queries also
differ in the inherent ambiguity expected from
their results; sometimes there really is just one
correct result for a query, while for other queries,
several alternatives might be equally good.

By generalizing the definition of the w func-
tion to interpolate the estimated loss in quality
and the gain in the watermarking signal, we can
trade-off the ability to identify the watermarked
collections against quality degradation:

w(r,Dk(q), fw) = λ ∗ gain(r,Dk(q), fw)

−(1− λ) ∗ loss(r,Dk(q))
(6)

Loss: The loss(r,Dk(q)) function reflects the
quality degradation that results from selecting
alternative r as opposed to the best ranked can-
didate in Dk(q)). We will experiment with two
variants:

lossrank(r,Dk(q)) = (rank(r)− k)/k

losscost(r,Dk(q)) = (cost(r)−cost(r1))/ cost(r1)

where:

• rank(r): returns the rank of r within Dk(q).

• cost(r): a weighted sum of features (not
normalized over the search space) in a log-
linear model such as those mentioned in
(Och, 2003).

• r1: the highest ranked alternative in Dk(q).

lossrank provides a generally applicable criteria
to select alternatives, penalizing selection from
deep within Dk(q). This estimate of the qual-
ity degradation does not reflect the generating
model’s opinion on relative quality. losscost con-
siders the relative increase in the generating
model’s cost assigned to the alternative trans-
lation.
Gain: The gain(r,Dk(q), fw) function reflects

the gain in the watermarking signal by selecting
candidate r. We simply define the gain as the
Pn(X ≥ #(1, h(r))) from Equation 5.
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(a) 1-grams mapping
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(b) 1 − 5-grams mapping
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(c) 3 − 5-grams mapping
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(d) Full result hashing

Figure 1: Comparison of expected false positive rates against observed false positive rates for different
sub-result mappings.

4 Related Work

Using watermarks with the goal of transmitting
a hidden message within images, video, audio
and monolingual text media is common. For
structured text content, linguistic approaches
like (Chapman et al., 2001; Gupta et al., 2006)
use language specific linguistic and semantic
expansions to introduce hidden watermarks.
These expansions provide alternative candidates
within which messages can be encoded. Re-
cent publications have extended this idea to ma-
chine translation, using multiple systems and
expansions to generate alternative translations.
(Stutsman et al., 2006) uses a hashing function
to select alternatives that encode the hidden
message in the lower order bits of the transla-
tion. In each of these approaches, the water-
marker has control over the collection of results
into which the watermark is to be embedded.

These approaches seek to embed a hidden
message into a collection of results that is se-
lected by the watermarker. In contrast, we ad-
dress the condition where the input queries are
not in the watermarker’s control.

The goal is therefore to introduce the water-
mark into all generated results, with the goal of
probabilistically identifying such outputs. Our
approach is also task independent, avoiding the
need for templates to generate additional al-
ternatives. By addressing the problem directly
within the search space of a dynamic program-
ming algorithm, we have access to high quality
alternatives with well defined models of qual-
ity loss. Finally, our approach is robust to local
word editing. By using a sub-result mapping, we
increase the level of editing required to obscure
the watermark signal; at high levels of editing,
the quality of the results themselves would be
significantly degraded.

5 Experiments

We evaluate our watermarking approach applied
to the outputs of statistical machine translation
under the following experimental setup.

A repository of parallel (aligned source and
target language) web documents is sampled to
produce a large corpus on which to evaluate the
watermarking classification performance. The
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corpora represent translations into 4 diverse tar-
get languages, using English as the source lan-
guage. Each document in this corpus can be
considered a collection of un-watermarked struc-
tured results, where source sentences are queries
and each target sentence represents a structured
result.

Using a state-of-the-art phrase-based statisti-
cal machine translation system (Och and Ney,
2004) trained on parallel documents identified
by (Uszkoreit et al., 2010), we generate a set
of 100 alternative translations for each source
sentence. We apply the proposed watermarking
approach, along with the proposed refinements
that address task specific loss (Section 3.4) and
robustness to edit operations (Section 3.3) to
generate watermarked corpora.

Each method is controlled via a single param-
eter (like k or λ) which is varied to generate
alternative watermarked collections. For each
parameter value, we evaluate the Recall Rate
and Quality Degradation with the goal of find-
ing a setting that yields a high recall rate, min-
imal quality degradation. False positive rates
are evaluated based on a fixed classification sig-
nificance level of α = 0.05. The false posi-
tive and recall rates are evaluated on the word
level; a document that is misclassified or cor-
rectly identified contributes its length in words
towards the error calculation. In this work, we
use α = 0.05 during classification corresponding
to an expected 5% false positive rate. The false
positive rate is a function of h and the signifi-
cance level α and therefore constant across the
parameter values k and λ.

We evaluate quality degradation on human
translated test corpora that are more typical for
machine translation evaluation. Each test cor-
pus consists of 5000 source sentences randomly
selected from the web and translated into each
respective language.

We chose to evaluate quality on test corpora
to ensure that degradations are not hidden by
imperfectly matched web corpora and are con-
sistent with the kind of results often reported for
machine translation systems. As with the clas-
sification corpora, we create watermarked ver-
sions at each parameter value. For a given pa-
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Figure 2: BLEU loss against recall of watermarked
content for the baseline approach (max K-best),
rank and cost interpolation.

rameter value, we measure false positive and re-
call rates on the classification corpora and qual-
ity degradation on the evaluation corpora.

Table 1 shows corpus statistics for the classi-
fication and test corpora and non-watermarked
BLEU scores for each target language. All
source texts are in English.

5.1 Loss Interpolated Experiments

Our first set of experiments demonstrates base-
line performance using the watermarking crite-
ria in Equation 5 versus the refinements sug-
gested in Section 3.4 to mitigate quality degra-
dation. The h function is computed on the full
sentence result r with no sub-event mapping.
The following methods are evaluated in Figure 2.

• Baseline method (labeled “max K-best”):
selects r′ purely based on gain in water-
marking signal (Equation 5) and is param-
eterized by k: the number of alternatives
considered for each result.

• Rank interpolation: incorporates rank into
w, varying the interpolation parameter λ.

• Cost interpolation: incorporates cost into
w, varying the interpolation parameter λ.

The observed false positive rate on the French
classification corpora is 1.9%.
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Classification Quality

Target # words # sentences # documents # words # sentences BLEU %

Arabic 200107 15820 896 73592 5503 12.29
French 209540 18024 600 73592 5503 26.45
Hindi 183676 13244 1300 73409 5489 20.57

Turkish 171671 17155 1697 73347 5486 13.67

Table 1: Content statistics for classification and quality degradation corpora. Non-watermarked BLEU
scores are reported for the quality corpora.

We consider 0.2% BLEU loss as a thresh-
old for acceptable quality degradation. Each
method is judged by its ability to achieve high
recall below this quality degradation threshold.

Applying cost interpolation yields the best
results in Figure 2, achieving a recall of 85%
at 0.2% BLEU loss, while rank interpolation
achieves a recall of 76%. The baseline approach
of selecting the highest gain candidate within a
depth of k candidates does not provide sufficient
parameterization to yield low quality degrada-
tion. At k = 2, this method yields almost 90%
recall, but with approximately 0.4% BLEU loss.

5.2 Robustness Experiments

In Section 5.2, we proposed mapping results into
sub-events or features. We considered alterna-
tive feature mappings in Figure 1, finding that
mapping sentence results into a collection of 3-
5 grams yields acceptable false positive rates at
varied levels of α.

Figure 3 presents results that compare mov-
ing from the result level hashing to the 3-5 gram
sub-result mapping. We show the impact of the
mapping on the baseline max K-best method as
well as for cost interpolation. There are sub-
stantial reductions in recall rate at the 0.2%
BLEU loss level when applying sub-result map-
pings in cases. The cost interpolation method
recall drops from 85% to 77% when using the
3-5 grams event mapping. The observed false
positive rate of the 3-5 gram mapping is 4.7%.

By using the 3-5 gram mapping, we expect
to increase robustness against local word edit
operations, but we have sacrificed recall rate due
to the inherent distributional bias discussed in
Section 3.3.
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Figure 3: BLEU loss against recall of watermarked
content for the baseline and cost interpolation meth-
ods using both result level and 3-5 gram mapped
events.

5.3 Multilingual Experiments

The watermarking approach proposed here in-
troduces no language specific watermarking op-
erations and it is thus broadly applicable to
translating into all languages. In Figure 4, we
report results for the baseline and cost interpola-
tion methods, considering both the result level
and 3-5 gram mapping. We set α = 0.05 and
measure recall at 0.2% BLEU degradation for
translation from English into Arabic, French,
Hindi and Turkish. The observed false posi-
tive rates for full sentence hashing are: Arabic:
2.4%, French: 1.8%, Hindi: 5.6% and Turkish:
5.5%, while for the 3-5 gram mapping, they are:
Arabic: 5.8%, French: 7.5%, Hindi:3.5% and
Turkish: 6.2%. Underlying translation qual-
ity plays an important role in translation qual-
ity degradation when watermarking. Without
a sub-result mapping, French (BLEU: 26.45%)
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achieves recall of 85% at 0.2% BLEU loss, while
the other languages achieve over 90% recall at
the same BLEU loss threshold. Using a sub-
result mapping degrades quality for each lan-
guage pair, but changes the relative perfor-
mance. Turkish experiences the highest rela-
tive drop in recall, unlike French and Arabic,
where results are relatively more robust to using
sub-sentence mappings. This is likely a result of
differences in n-gram distributions across these
languages. The languages considered here all
use space separated words. For languages that
do not, like Chinese or Thai, our approach can
be applied at the character level.

6 Conclusions

In this work we proposed a general method
to watermark and probabilistically identify the
structured outputs of machine learning algo-
rithms. Our method provides probabilistic
bounds on detection ability, analytic control on
quality degradation and is robust to local edit-
ing operations. Our method is applicable to
any task where structured outputs are generated
with ambiguities or ties in the results. We ap-
plied this method to the outputs of statistical
machine translation, evaluating each refinement
to our approach with false positive and recall
rates against BLEU score quality degradation.

Our results show that it is possible, across sev-
eral language pairs, to achieve high recall rates
(over 80%) with low false positive rates (between
5 and 8%) at minimal quality degradation (0.2%

BLEU), while still allowing for local edit opera-
tions on the translated output. In future work
we will continue to investigate methods to mit-
igate quality loss.
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