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Abstract

Dependency structure, as a first step towards
semantics, is believed to be helpful to improve
translation quality. However, previous works
on dependency structure based models typi-
cally resort to insertion operations to complete
translations, which make it difficult to spec-
ify ordering information in translation rules.
In our model of this paper, we handle this
problem by directly specifying the ordering
information in head-dependents rules which
represent the source side as head-dependents
relations and the target side as strings. The
head-dependents rules require only substitu-
tion operation, thus our model requires no
heuristics or separate ordering models of the
previous works to control the word order of
translations. Large-scale experiments show
that our model performs well on long dis-
tance reordering, and outperforms the state-
of-the-art constituency-to-string model (+1.47
BLEU on average) and hierarchical phrase-
based model (+0.46 BLEU on average) on two
Chinese-English NIST test sets without resort
to phrases or parse forest. For the first time,
a source dependency structure based model
catches up with and surpasses the state-of-the-
art translation models.

1 Introduction

Dependency structure represents the grammatical
relations that hold between the words in a sentence.
It encodes semantic relations directly, and has the
best inter-lingual phrasal cohesion properties (Fox,
2002). Those attractive characteristics make it pos-

sible to improve translation quality by using depen-
dency structures.

Some researchers pay more attention to use de-
pendency structure on the target side. (Shen et al.,
2008) presents a string-to-dependency model, which
restricts the target side of each hierarchical rule to be
a well-formed dependency tree fragment, and em-
ploys a dependency language model to make the out-
put more grammatically. This model significantly
outperforms the state-of-the-art hierarchical phrase-
based model (Chiang, 2005). However, those string-
to-tree systems run slowly in cubic time (Huang et
al., 2006).

Using dependency structure on the source side
is also a promising way, as tree-based systems run
much faster (linear time vs. cubic time, see (Huang
et al., 2006)). Conventional dependency structure
based models (Lin, 2004; Quirk et al., 2005; Ding
and Palmer, 2005; Xiong et al., 2007) typically
employ both substitution and insertion operation to
complete translations, which make it difficult to
specify ordering information directly in the transla-
tion rules. As a result, they have to resort to either
heuristics (Lin, 2004; Xiong et al., 2007) or sepa-
rate ordering models (Quirk et al., 2005; Ding and
Palmer, 2005) to control the word order of transla-
tions.

In this paper, we handle this problem by di-
rectly specifying the ordering information in head-
dependents rules that represent the source side as
head-dependents relations and the target side as
string. The head-dependents rules have only one
substitution operation, thus we don’t face the prob-
lems appeared in previous work and get rid of the
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heuristics and ordering model. To alleviate data
sparseness problem, we generalize the lexicalized
words in head-dependents relations with their cor-
responding categories.

In the following parts, we first describe the moti-
vation of using head-dependents relations (Section
2). Then we formalize our grammar (Section 3),
present our rule acquisition algorithm (Section 4),
our model (Section 5) and decoding algorithm (Sec-
tion 6). Finally, large-scale experiments (Section 7)
show that our model exhibits good performance on
long distance reordering, and outperforms the state-
of-the-art tree-to-string model (+1.47 BLEU on av-
erage) and hierarchical phrase-based model (+0.46
BLEU on average) on two Chinese-English NIST
test sets. For the first time, a source dependency tree
based model catches up with and surpasses the state-
of-the-art translation models.

2 Dependency Structure and
Head-Dependents Relation

2.1 Dependency Sturcture
A dependency structure for a sentence is a directed
acyclic graph with words as nodes and modification
relations as edges. Each edge direct from a head to
a dependent. Figure 1 (a) shows an example depen-
dency structure of a Chinese sentence.

2010年 FIFA世界杯在南非成功举行

2010 FIFA [World Cup] in/at [South Africa]
successfully hold

Each node is annotated with the part-of-speech
(POS) of the related word.

For convenience, we use the lexicon dependency
grammar (Hellwig, 2006) which adopts a bracket
representation to express a projective dependency
structure. The dependency structure of Figure 1 (a)
can be expressed as:

((2010年) (FIFA)世界杯) (在(南非)) (成功)举行

where the lexicon in brackets represents the depen-
dents, while the lexicon out the brackets is the head.

To construct the dependency structure of a sen-
tence, the most important thing is to establish de-
pendency relations and distinguish the head from the
dependent. Here are some criteria (Zwicky, 1985;

x2:x2:x1:x1: x3:ADx3:AD

x1 was held x3 x2x1  was held x3 x2

/P/P/NR/NR

/NR/NR

/AD/AD

2010 /NT2010 /NT FIFA/NRFIFA/NR

/VV/VV

/P/P/NR/NR /AD/AD

/VV/VV

(a)

(b)

(c)

successfullysuccessfully(d)

Figure 1: Examples of dependency structure (a), head-
dependents relation (b), head-dependents rule (r1 of Fig-
ure 2) and head rule (d). Where “x1:世界杯” and
“x2:在” indicate substitution sites which can be replaced
by a subtree rooted at “世界杯” and “在” respectively.
“x3:AD”indicates a substitution site that can be replaced
by a subtree whose root has part-of-speech “AD”. The
underline denotes a leaf node.

Hudson, 1990) for identifying a syntactic relation
between a head and a dependent between a head-
dependent pair:

1. head determines the syntactic category of C,
and can often replace C;

2. head determines the semantic category of C;
dependent gives semantic specification.

2.2 Head-Dependents Relation

A head-dependents relation is composed of a head
and all its dependents as shown in Figure 1(b).

Since all the head-dependent pairs satisfy crite-
ria 1 and 2, we can deduce that a head-dependents
relation L holds the property that the head deter-
mines the syntactic and semantic categories of L,
and can often replace L. Therefore, we can recur-
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sively replace the bottom level head-dependent re-
lations of a dependency structure with their heads
until the root. This implies an representation of the
generation of a dependency structure on the basis of
head-dependents relation.

Inspired by this, we represent the translation rules
of our dependency-to-string model on the founda-
tion of head-dependents relations.

3 Dependency-to-String Grammar

Figure 1 (c) and (d) show two examples of the trans-
lation rules used in our dependency-to-string model.
The former is an example of head-dependent rules
that represent the source side as head-dependents re-
lations and act as both translation rules and reorder-
ing rules. The latter is an example of head rules
which are used for translating words.

Formally, a dependency-to-string grammar is de-
fined as a tuple ⟨Σ, N, ∆, R⟩, where Σ is a set of
source language terminals, N is a set of categories
for the terminals in Σ , ∆ is a set of target language
terminals, and R is a set of translation rules. A rule
r in R is a tuple ⟨t, s, ϕ⟩, where:

- t is a node labeled by terminal from Σ; or a
head-dependents relation of the source depen-
dency structures, with each node labeled by a
terminal from Σ or a variable from a set X =
{x1, x2, ...} constrained by a terminal from Σ
or a category from N ;

- s ∈ (X ∪∆)∗ is the target side string;

- ϕ is a one-to-one mapping from nonterminals
in t to variables in s.

For example, the head-dependents rule shown in
Figure 1 (c) can be formalized as:

t = ((x1:世界杯) (x2:在) (x3:AD)举行)
s = x1 was held x3 x2

ϕ = {x1:世界杯↔ x1, x2:在↔ x2, x3:AD↔ x3}

where the underline indicates a leaf node, and
xi:letters indicates a pair of variable and its con-
straint.

A derivation is informally defined as a sequence
of steps converting a source dependency structure
into a target language string, with each step apply-
ing one translation rule. As an example, Figure 2

/P/P/NR/NR

//NNRR/NR

/AADD/AD

2010 /NT2010 /NT FIFA//NNRRFIFA/NR

/VV/VV

20102010 FIFAFIFA

/P/P/NR/NR

/NR/NR

/AD/AD

2010 /NT2010 /NT FIFA/NRFIFA/NR

was heldwas held

/P/P/NR/NR

/NR/NR2010 /NT2010 /NT FIFA/NRRFIFA/NR

was held successfullywas held successfully

/P/P

/NR/NR

2010 FIFA [World Cup] was held successfully2010  FIFA  [World Cup]  was  held  successfully  

2010 FIFA World Cup was held successfully in2010  FIFA  World  Cup  was  held  successfully  in

2010 FIFA World Cup was held successfully in [South Africa]2010 FIFA World Cup was held successfully in [South Africa]

parser

(a)

(b)

(c)

(d)

(e)

(f)

(g)

NRRRRRR

DDD

RRRNNNNNNNN

RR

r3: (2010 ) (FIFA)  

 à2010 FIFA World Cup

r2: àsuccessfully

r1: (x1: )(x2 : )(x3:AD)

  àx1 was held x3 x2

r4:  (x2:NR)àin x2

r5: àSouth Africa

e

Figure 2: An example derivation of dependency-to-string
translation. The dash lines indicate the reordering when
employing a head-dependents rule.

shows the derivation for translating a Chinese (CH)
sentence into an English (EN) string.

CH 2010年 FIFA世界杯在南非成功举行

EN 2010 FIFA World Cup was held successfully in
South Africa
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The Chinese sentence (a) is first parsed into a de-
pendency structure (b), which is converted into an
English string in five steps. First, at the root node,
we apply head-dependents rule r1 shown in Figure
1(c) to translate the top level head-dependents rela-
tion and result in three unfinished substructures and
target string in (c). The rule is particular interesting
since it captures the fact: in Chinese prepositional
phrases and adverbs typically modify verbs on the
left, whereas in English prepositional phrases and
adverbs typically modify verbs on the right. Second,
we use head rule r2 translating “成功” into “success-
fully” and reach situation (d). Third, we apply head-
dependents rule r3 translating the head-dependents
relation rooted at “世界杯” and yield (e). Fourth,
head-dependents rules r5 partially translate the sub-
tree rooted at “在” and arrive situation in (f). Finally,
we apply head rule r5 translating the residual node
“南非” and obtain the final translation in (g).

4 Rule Acquisition

The rule acquisition begins with a word-aligned cor-
pus: a set of triples ⟨T, S, A⟩, where T is a source
dependency structure, S is a target side sentence,
and A is an alignment relation between T and S.
We extract from each triple ⟨T, S, A⟩ head rules that
are consistent with the word alignments and head-
dependents rules that satisfy the intuition that syn-
tactically close items tend to stay close across lan-
guages. We accomplish the rule acquisition through
three steps: tree annotation, head-dependents frag-
ments identification and rule induction.

4.1 Tree Annotation

Given a triple ⟨T, S, A⟩ as shown in Figure 3, we
first annotate each node n of T with two attributes:
head span and dependency span, which are defined
as follows.

Definition 1. Given a node n, its head span hsp(n)
is a set of index of the target words aligned to n.

For example, hsp(2010年)={1, 5}, which corre-
sponds to the target words “2010” and “was”.

Definition 2. A head span hsp(n) is consistent if it
satisfies the following property:

∀n′ ̸=nhsp(n′) ∩ hsp(n) = ∅.

/P

{5,8}{9,10}

/P

{5,8}{9,10}

/NR

{3,4}{2-4}

/NR

{9,10}{9,10}

/AD

{7}{7}

2010 /NT

{1,5}{}

2010 /NT
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Figure 3: An annotated dependency structure. Each node
is annotated with two spans, the former is head span and
the latter dependency span. The nodes in acceptable head
set are displayed in gray, and the nodes in acceptable de-
pendent set are denoted by boxes. The triangle denotes
the only acceptable head-dependents fragment.

For example, hsp(南非) is consistent, while
hsp(2010年) is not consistent since hsp(2010年) ∩
hsp(在) = 5.

Definition 3. Given a head span hsp(n), its closure
cloz(hsp(n)) is the smallest contiguous head span
that is a superset of hsp(n).

For example, cloz(hsp(2010年)) = {1, 2, 3, 4, 5},
which corresponds to the target side word sequence
“2010 FIFA World Cup was”. For simplicity, we use
{1-5} to denotes the contiguous span {1, 2, 3, 4, 5}.
Definition 4. Given a subtree T

′
rooted at n, the

dependency span dsp(n) of n is defined as:

dsp(n) = cloz(
∪

n′∈T
′

hsp(n′) is consistent

hsp(n′)).

If the head spans of all the nodes of T
′

is not consis-
tent, dsp(n) = ∅.

For example, since hsp(在) is not consistent,
dsp(在)=dsp(南非)={9, 10}, which corresponds to
the target words “South” and “Africa”.

The tree annotation can be accomplished by a sin-
gle postorder transversal of T . The extraction of
head rules from each node can be readily achieved
with the same criteria as (Och and Ney, 2004). In
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the following, we focus on head-dependents rules
acquisition.

4.2 Head-Dependents Fragments Identification
We then identify the head-dependents fragments that
are suitable for rule induction from the annotated de-
pendency structure.

To facilitate the identification process, we first de-
fine two sets of dependency structure related to head
spans and dependency spans.

Definition 5. A acceptable head set ahs(T) of a de-
pendency structure T is a set of nodes, each of which
has a consistent head span.

For example, the elements of the acceptable head
set of the dependency structure in Figure 3 are dis-
played in gray.

Definition 6. A acceptable dependent set adt(T) of
a dependency structure T is a set of nodes, each of
which satisfies: dep(n) ̸= ∅.

For example, the elements of the acceptable de-
pendent set of the dependency structure in Figure 3
are denoted by boxes.

Definition 7. We say a head-dependents fragments
is acceptable if it satisfies the following properties:

1. the root falls into acceptable head set;

2. all the sinks fall into acceptable dependent set.

An acceptable head-dependents fragment holds
the property that the head span of the root and the de-
pendency spans of the sinks do not overlap with each
other, which enables us to determine the reordering
in the target side.

The identification of acceptable head-dependents
fragments can be achieved by a single preorder
transversal of the annotated dependency structure.
For each accessed internal node n, we check
whether the head-dependents fragment f rooted at
n is acceptable. If f is acceptable, we output an
acceptable head-dependents fragment; otherwise we
access the next node.

Typically, each acceptable head-dependents frag-
ment has three types of nodes: internal nodes, inter-
nal nodes of the dependency structure; leaf nodes,
leaf nodes of the dependency structure; head node, a
special internal node acting as the head of the related
head-dependents relation.

/P

{5,8}{9,10}

/P

{5,8}{9,10}

/NR

{3,4}{2-4}

/AD

{7}{7}

/VV

{6}{2-10}

}

heldheld successfullysuccessfully[FIFA World Cup][FIFA World Cup] South Africa][South Africa]

Input:

Output:

x2:x2:x1:x1:

x1 held successfully x2x1  held successfully x2

(x1: )(x2: )( ) 

      à  x1  held successfully x2

(a)

(b)

Figure 4: A lexicalized head-dependents rule (b) induced
from the only acceptable head-dependents fragment (a)
of Figure 3.

4.3 Rule Induction
From each acceptable head-dependents fragment,
we induce a set of lexicalized and unlexicalized
head-dependents rules.

4.3.1 Lexicalized Rule
We induce a lexicalized head-dependents rule

from an acceptable head-dependents fragment by
the following procedure:

1. extract the head-dependents relation and mark
the internal nodes as substitution sites. This
forms the input of a head-dependents rule;

2. place the nodes in order according to the head
span of the root and the dependency spans of
the sinks, then replace the internal nodes with
variables and the other nodes with the target
words covered by their head spans. This forms
the output of a head-dependents rule.

Figure 4 shows an acceptable head-dependents
fragment and a lexicalized head-dependents rule in-
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duced from it.

4.3.2 Unlexicalized Rules
Since head-dependents relations with verbs as

heads typically consist of more than four nodes, em-
ploying only lexicalized head-dependents rules will
result in severe sparseness problem. To alleviate
this problem, we generalize the lexicalized head-
dependents rules and induce rules with unlexicalized
nodes.

As we know, the modification relation of a head-
dependents relation is determined by the edges.
Therefore, we can replace the lexical word of each
node with its categories (i.e. POS) and obtain new
head-dependents relations with unlexicalized nodes
holding the same modification relation. Here we call
the lexicalized and unlexicalized head-dependents
relations as instances of the modification relation.
For a head-dependents relation with m node, we can
produce 2m − 1 instances with unlexicalized nodes.
Each instance represents the modification relation
with a different specification.

Based on this observation, from each lexical-
ized head-dependent rule, we generate new head-
dependents rules with unlexicalized nodes according
to the following principles:

1. change the aligned part of the target string into
a new variable when turning a head node or a
leaf node into its category;

2. keep the target side unchanged when turning a
internal node into its category.

Restrictions: Since head-dependents relations
with verbs as heads typically consists of more than
four nodes, enumerating all the instances will re-
sult in a massive grammar with too many kinds of
rules and inflexibility in decoding. To alleviate these
problems, we filter the grammar with the following
principles:

1. nodes of the same type turn into their categories
simultaneously.

2. as for leaf nodes, only those with open class
words can be turned into their categories.
In our experiments of this paper, we only
turn those dependents with POS tag in the
set of {CD,DT,OD,JJ,NN,NR,NT,AD,FW,PN}
into their categories.

x2:x2:x1:x1:

helddheld successfullysuccessfullyx1x1 x2x2

(x1: )(x2: )( ) 
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x1x1 x2x2
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helddheld successfullysuccessfullyx1x1 x2x2

(x1:NR)(x2:P)( ) 

à x1  held successfully x2
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(x1:NR)(x2:P)(x3:AD) 

 à x1  held x3 x2
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x2:x2:x1:x1: x3::AAADDx3:AD

x4x4 x3x3

AAAAADDDDDD

x4:VVx4:VV

x1x1 x2x2

(x1: )(x2: )(x3:AD) x4:VV

 à   x1  x4  x3 x2

x2:Px2:Px1:NRx1:NR

x4x4 successfullysuccessfully
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x1x1 x2x2

(x1:NR)(x2:P)( ) x4:VV

 à x1 x4 successfully x2

x2:Px2:Px1:NRx1:NR x3::AAADDx3:AD

x4x4 x3x3

AADAADDDDDD

x4:VVx4:VV

x1x1 x2x2

(x1:NR)(x2:P)(x3:AD) x4:VV

 à x1  x4 x3 x2

generalize leaf generalize leaf

generalize internalgeneralize internal

generalize leaf generalize leaf

generalize

head

Figure 5: An illustration of rule generalization. Where
“x1:世界杯” and “x2:在” indicate substitution sites
which can be replaced by a subtree rooted at “世界杯”
and “在” respectively. “x3:AD”indicates a substitution
site that can be replaced by a subtree whose root has part-
of-speech “AD”. The underline denotes a leaf node. The
box indicates the starting lexicalized head-dependents
rule.

Figure 5 illustrates the rule generalization process
under these restrictions.

4.3.3 Unaligned Words
We handle the unaligned words of the target side

by extending the head spans of the lexicalized head
and leaf nodes on both left and right directions.
This procedure is similar with the method of (Och
and Ney, 2004) except that we might extend several
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Algorithm 1: Algorithm for Rule Acquisition
Input: Source dependency structure T , target string S, alignment A
Output: Translation rule set R

1 HSet← ACCEPTABLE HEAD(T ,S,A)
2 DSet← ACCEPTABLE DEPENDENT(T ,S,A)
3 for each node n ∈ HSet do
4 extract head rules
5 append the extracted rules to R
6 if ∀n′ ∈ child(n) n′ ∈ DSet
7 then
8 obtain a head-dependent fragment f
9 induce lexicalized and unlexicalized head-dependents rules from f

10 append the induced rules to R

11 end
12 end

spans simultaneously. In this process, we might ob-
tain m(m ≥ 1) head-dependents rules from a head-
dependent fragment in handling unaligned words.
Each of these rules is assigned with a fractional
count 1/m.

4.4 Algorithm for Rule Acquisition

The rule acquisition is a three-step process, which is
summarized in Algorithm 1.

We take the extracted rule set as observed data and
make use of relative frequency estimator to obtain
the translation probabilities P (t|s) and P (s|t).

5 The model

Following (Och and Ney, 2002), we adopt a general
log-linear model. Let d be a derivation that convert
a source dependency structure T into a target string
e. The probability of d is defined as:

P (d) ∝
∏

i

ϕi(d)λi (1)

where ϕi are features defined on derivations and λi

are feature weights. In our experiments of this paper,
we used seven features as follows:

- translation probabilities P (t|s) and P (s|t);
- lexical translation probabilities Plex(t|s) and

Plex(s|t);
- rule penalty exp(−1);

- language model Plm(e);

- word penalty exp(|e|).

6 Decoding

Our decoder is based on bottom up chart parsing.
It finds the best derivation d∗ that convert the input
dependency structure into a target string among all
possible derivations D:

d∗ = argmaxd∈DP (D) (2)

Given a source dependency structure T , the decoder
transverses T in post-order. For each accessed in-
ternal node n, it enumerates all instances of the re-
lated modification relation of the head-dependents
relation rooted at n, and checks the rule set for
matched translation rules. If there is no matched
rule, we construct a pseudo translation rule accord-
ing to the word order of the head-dependents rela-
tion. For example, suppose that we can not find
any translation rule about to “(2010年) (FIFA) 世
界杯”, we will construct a pseudo translation rule
“(x1:2010年) (x2:FIFA) x3:世界杯 → x1 x2 x3”.
A larger translation is generated by substituting the
variables in the target side of a translation rule with
the translations of the corresponding dependents.
We make use of cube pruning (Chiang, 2007; Huang
and Chiang, 2007) to find the k-best items with inte-
grated language model for each node.

To balance performance and speed, we prune the
search space in several ways. First, beam thresh-
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old β , items with a score worse than β times of the
best score in the same cell will be discarded; sec-
ond, beam size b, items with a score worse than the
bth best item in the same cell will be discarded. The
item consist of the necessary information used in de-
coding. Each cell contains all the items standing for
the subtree rooted at it. For our experiments, we set
β = 10−3 and b = 300. Additionally, we also prune
rules that have the same source side (b = 100).

7 Experiments

We evaluated the performance of our dependency-
to-string model by comparison with replications of
the hierarchical phrase-based model and the tree-to-
string models on Chinese-English translation.

7.1 Data preparation

Our training corpus consists of 1.5M sentence
pairs from LDC data, including LDC2002E18,
LDC2003E07, LDC2003E14, Hansards portion of
LDC2004T07, LDC2004T08 and LDC2005T06.

We parse the source sentences with Stanford
Parser (Klein and Manning, 2003) into projective
dependency structures, whose nodes are annotated
by POS tags and edges by typed dependencies. In
our implementation of this paper, we make use of
the POS tags only.

We obtain the word alignments by running
GIZA++ (Och and Ney, 2003) on the corpus in
both directions and applying “grow-diag-and” re-
finement(Koehn et al., 2003).

We apply SRI Language Modeling Toolkit (Stol-
cke, 2002) to train a 4-gram language model with
modified Kneser-Ney smoothing on the Xinhua por-
tion of the Gigaword corpus.

We use NIST MT Evaluation test set 2002 as our
development set, NIST MT Evaluation test set 2004
(MT04) and 2005 (MT05) as our test set. The qual-
ity of translations is evaluated by the case insensitive
NIST BLEU-4 metric (Papineni et al., 2002).1

We make use of the standard MERT (Och, 2003)
to tune the feature weights in order to maximize the
system’s BLEU score on the development set.

1ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v11b.pl

System Rule # MT04(%) MT05(%)
cons2str 30M 34.55 31.94
hiero-re 148M 35.29 33.22
dep2str 56M 35.82+ 33.62+

Table 1: Statistics of the extracted rules on training cor-
pus and the BLEU scores on the test sets. Where “+”
means dep2str significantly better than cons2str with p <
0.01.

7.2 The baseline models

We take a replication of Hiero (Chiang, 2007) as
the hierarchical phrase-based model baseline. In
our experiments of this paper, we set the beam size
b = 200 and the beam threshold β = 0. The maxi-
mum initial phrase length is 10.

We use constituency-to-string model (Liu et al.,
2006) as the syntax-based model baseline which
make use of composed rules (Galley et al., 2006)
without handling the unaligned words. In our exper-
iments of this paper, we set the tatTable-limit=20,
tatTable-threshold=10−1, stack-limit=100, stack-
threshold=10−1,hight-limit=3, and length-limit=7.

7.3 Results

We display the results of our experiments in Table
1. Our dependency-to-string model dep2str signif-
icantly outperforms its constituency structure-based
counterpart (cons2str) with +1.27 and +1.68 BLEU
on MT04 and MT05 respectively. Moreover, with-
out resort to phrases or parse forest, dep2str sur-
passes the hierarchical phrase-based model (hiero-
re) over +0.53 and +0.4 BLEU on MT04 and MT05
respectively on the basis of a 62% smaller rule set.

Furthermore, We compare some actual transla-
tions generated by cons2str, hiero-re and dep2str.
Figure 6 shows two translations of our test sets
MT04 and MT05, which are selected because each
holds a long distance dependency commonly used in
Chinese.

In the first example, the Chinese input holds
a complex long distance dependencies “巴 尼
耶 在... 与...后 表示”. This dependency cor-
responds to sentence pattern “noun+prepostional
phrase+prepositional phrase+verb”, where the for-
mer prepositional phrase specifies the position and
the latter specifies the time. Both cons2str and
hiero-re are confused by this sentence and mistak-
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AfterAfter briefbrief talkstalks withwith PowellPowell ,, thethe USUS State DepartmentState Department BarnierBarnier ,,saidsaid

MT05----Segment 163

Reference: After a brief talk with 

Powell at the US State 

Department, Barnier said:

Cons2str: Barnier after brief 

talks in US State Department 

and Powell  said:

Hiero-re: After a short meeting 

with Barnier on the US State 

Department, Powell said:

Dep2str: After brief talks with 

Powell, the US State 

Department Barnier said,

13731373 20012001

ChinaChina appreciatesappreciates efforts

 

efforts ofof Anti -Anti - TerrorismTerrorism Committee Committee toto promotepromote allall inincountriescountries

MT04----Segment 1096

Reference: China appreciates the 

efforts of the Counter-Terrorism 

Committee to promote the 

implementation of the resolution 

1373(2001) in all states and to 

help enhance the anti-terrorist 

capabilities of developing 

countries.

Cons2str: China appreciates 

Anti - Terrorist Committee for 

promoting implementation of 

the resolution No. 1373(2001) 

and help developing countries 

strength counter-terrorism  

capability building for the 

efforts,

Hiero-re: China appreciates 

Anti - Terrorism Committee to 

promote countries implement 

resolution No . 1373 ( 2001 ) 

and help developing countries 

strengthen anti-terrorism 

capacity building support for 

efforts

Dep2str: China appreciates 

efforts of Anti - Terrorism 

Committee to promote all 

countries in the implementation 

of resolution  1373 ( 2001 )  , to 

help strengthen the anti-

terrorism capability building of 

developing countries

nsubj             

prep
prep

thethe implementationimplementation ofof ......

nsubj dobj

Figure 6: Actual translations produced by the baselines and our system. For our system, we also display the long
distance dependencies correspondence in Chinese and English. Here we omit the edges irrelevant to the long distance
dependencies.

enly treat “鲍尔(Powell)” as the subjective, thus
result in translations with different meaning from
the source sentence. Conversely, although “在” is
falsely translated into a comma, dep2str captures
this complex dependency and translates it into “Af-
ter ... ,(should be at) Barnier said”, which accords
with the reordering of the reference.

In the second example, the Chinese input holds
a long distance dependency “中国 赞赏 ... 努
力” which corresponds to a simple pattern “noun
phrase+verb+noun phrase”. However, due to the
modifiers of “努力” which contains two sub-
sentences including 24 words, the sentence looks
rather complicated. Cons2str and hiero-re fail to
capture this long distance dependency and provide
monotonic translations which do not reflect the
meaning of the source sentence. In contrast, dep2str
successfully captures this long distance dependency
and translates it into “China appreciates efforts of

...”, which is almost the same with the reference
“China appreciates the efforts of ...”.

All these results prove the effectiveness of our
dependency-to-string model in both translation and
long distance reordering. We believe that the ad-
vantage of dep2str comes from the characteristics of
dependency structures tending to bring semantically
related elements together (e.g., verbs become adja-
cent to all their arguments) and are better suited to
lexicalized models (Quirk et al., 2005). And the in-
capability of cons2str and hiero-re in handling long
distance reordering of these sentences does not lie in
the representation of translation rules but the com-
promises in rule extraction or decoding so as to bal-
ance the speed or grammar size and performance.
The hierarchical phrase-based model prohibits any
nonterminal X from spanning a substring longer
than 10 on the source side to make the decoding al-
gorithm asymptotically linear-time (Chiang, 2005).
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While constituency structure-based models typically
constrain the number of internal nodes (Galley et
al., 2006) and/or the height (Liu et al., 2006) of
translation rules so as to balance the grammar size
and performance. Both strategies limit the ability of
the models in processing long distance reordering of
sentences with long and complex modification rela-
tions.

8 Related Works

As a first step towards semantics, dependency struc-
tures are attractive to machine translation. And
many efforts have been made to incorporating this
desirable knowledge into machine translation.

(Lin, 2004; Quirk et al., 2005; Ding and Palmer,
2005; Xiong et al., 2007) make use of source depen-
dency structures. (Lin, 2004) employs linear paths
as phrases and view translation as minimal path cov-
ering. (Quirk et al., 2005) extends paths to treelets,
arbitrary connected subgraphs of dependency struc-
tures, and propose a model based on treelet pairs.
Both models require projection of the source depen-
dency structure to the target side via word alignment,
and thus can not handle non-isomorphism between
languages. To alleviate this problem, (Xiong et al.,
2007) presents a dependency treelet string corre-
spondence model which directly map a dependency
structure to a target string. (Ding and Palmer, 2005)
presents a translation model based on Synchronous
Dependency Insertion Grammar(SDIG), which han-
dles some of the non-isomorphism but requires both
source and target dependency structures. Most im-
portant, all these works do not specify the ordering
information directly in translation rules, and resort
to either heuristics (Lin, 2004; Xiong et al., 2007) or
separate ordering models(Quirk et al., 2005; Ding
and Palmer, 2005) to control the word order of
translations. By comparison, our model requires
only source dependency structure, and handles non-
isomorphism and ordering problems simultaneously
by directly specifying the ordering information in
the head-dependents rules that represent the source
side as head-dependents relations and the target side
as strings.

(Shen et al., 2008) exploits target dependency
structures as dependency language models to ensure
the grammaticality of the target string. (Shen et al.,

2008) extends the hierarchical phrase-based model
and present a string-to-dependency model, which
employs string-to-dependency rules whose source
side are string and the target as well-formed depen-
dency structures. In contrast, our model exploits
source dependency structures, as a tree-based sys-
tem, it run much faster (linear time vs. cubic time,
see (Huang et al., 2006)).

9 Conclusions and future work

In this paper, we present a novel dependency-to-
string model, which employs head-dependents rules
that represent the source side as head-dependents
relations and the target side as string. The head-
dependents rules specify the ordering information
directly and require only substitution operation.
Thus, our model does not need heuristics or order-
ing model of the previous works to control the word
order of translations. Large scale experiments show
that our model exhibits good performance in long
distance reordering and outperforms the state-of-
the-art constituency-to-string model and hierarchi-
cal phrase-based model without resort to phrases and
parse forest. For the first time, a source dependency-
based model shows improvement over the state-of-
the-art translation models.

In our future works, we will exploit the semantic
information encoded in the dependency structures
which is expected to further improve the transla-
tions, and replace 1-best dependency structures with
dependency forests so as to alleviate the influence
caused by parse errors.
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