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Abstract

Independence between sentences is an as-
sumption deeply entrenched in the models and
algorithms used for statistical machine trans-
lation (SMT), particularly in the popular dy-
namic programming beam search decoding al-
gorithm. This restriction is an obstacle to re-
search on more sophisticated discourse-level
models for SMT. We propose a stochastic lo-
cal search decoding method for phrase-based
SMT, which permits free document-wide de-
pendencies in the models. We explore the sta-
bility and the search parameters of this method
and demonstrate that it can be successfully
used to optimise a document-level semantic
language model.

1 Motivation

In the field of translation studies, it is undisputed that
discourse-wide context must be considered care-
fully for good translation results (Hatim and Mason,
1990). By contrast, the state of the art in statistical
machine translation (SMT), despite significant ad-
vances in the last twenty years, still assumes that
texts can be translated sentence by sentence under
strict independence assumptions, even though it is
well known that certain linguistic phenomena such
as pronominal anaphora cannot be translated cor-
rectly without referring to extra-sentential context.
This is true both for the phrase-based and the syntax-
based approach to SMT. In the rest of this paper, we
shall concentrate on phrase-based SMT.

One reason why it is difficult to experiment
with document-wide models for phrase-based SMT
is that the dynamic programming (DP) algorithm

which has been used almost exclusively for decod-
ing SMT models in the recent literature has very
strong assumptions of locality built into it. DP
beam search for phrase-based SMT was described
by Koehn et al. (2003), extending earlier work on
word-based SMT (Tillmann et al., 1997; Och et al.,
2001; Tillmann and Ney, 2003). This algorithm con-
structs output sentences by starting with an empty
hypothesis and adding output words at the end until
translations for all source words have been gener-
ated. The core models of phrase-based SMT, in par-
ticular the n-gram language model (LM), only de-
pend on a constant number of output words to the
left of the word being generated. This fact is ex-
ploited by the search algorithm with a DP technique
called hypothesis recombination (Och et al., 2001),
which permits the elimination of hypotheses from
the search space if they coincide in a certain number
of final words with a better hypothesis and no future
expansion can possibly invert the relative ranking of
the two hypotheses under the given models. Hypoth-
esis recombination achieves a substantial reduction
of the search space without affecting search optimal-
ity and makes it possible to use aggressive pruning
techniques for fast search while still obtaining good
results.

The downside of this otherwise excellent ap-
proach is that it only works well with models that
have a local dependency structure similar to that
of an n-gram language model, so they only de-
pend on a small context window for each target
word. Sentence-local models with longer dependen-
cies can be added, but doing so greatly increases
the risk for search errors by inhibiting hypothesis
recombination. Cross-sentence dependencies can-
not be directly integrated into DP SMT decoding in
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any obvious way, especially if joint optimisation of
a number of interdependent decisions over an entire
document is required. Research into models with
a more varied, non-local dependency structure is to
some extent stifled by the difficulty of decoding such
models effectively, as can be seen by the problems
some researchers encountered when they attempted
to solve discourse-level problems. Consider, for in-
stance, the work on cache-based language models
by Tiedemann (2010) and Gong et al. (2011), where
error propagation was a serious issue, or the works
on pronominal anaphora by Le Nagard and Koehn
(2010), who implemented cross-sentence dependen-
cies with an ad-hoc two-pass decoding strategy, and
Hardmeier and Federico (2010) with the use of an
external decoder driver to manage backward-only
dependencies between sentences.

In this paper, we present a method for decoding
complete documents in phrase-based SMT. Our de-
coder uses a local search approach whose state con-
sists of a complete translation of an entire document
at any time. The initial state is improved by the ap-
plication of a series of operations using a hill climb-
ing strategy to find a (local) maximum of the score
function. This setup gives us complete freedom to
define scoring functions over the entire document.
Moreover, by optionally initialising the state with
the output of a traditional DP decoder, we can en-
sure that the final hypothesis is no worse than what
would have been found by DP search alone. We start
by describing the decoding algorithm and the state
operations used by our decoder, then we present em-
pirical results demonstrating the effectiveness of our
approach and its usability with a document-level se-
mantic language model, and finally we discuss some
related work.

2 SMT Decoding by Hill Climbing

In this section, we formally describe the phrase-
based SMT model implemented by our decoder as
well as the decoding algorithm we use.

2.1 SMT Model

Our decoder is based on local search, so its state at
any time is a representation of a complete translation
of the entire document. Even though the decoder op-
erates at the document level, it is important to keep

track of sentence boundaries, and the individual op-
erations that are applied to the state are still confined
to sentence scope, so it is useful to decompose the
state of a document into the state of its sentences,
and we define the overall state S as a sequence of
sentence states:

S = S1S2 . . .SN , (1)

where N is the number of sentences. This implies
that we constrain the decoder to emit exactly one
output sentence per input sentence.

Let i be the number of a sentence and mi the num-
ber of input tokens of this sentence, p and q (with
1 ≤ p ≤ q ≤ mi) be positions in the input sentence
and [p;q] denote the set of positions from p up to and
including q. We say that [p;q] precedes [p′;q′], or
[p;q]≺ [p′;q′], if q < p′. Let Φi([p;q]) be the set of
translations for the source phrase covering positions
[p;q] in the input sentence i as given by the phrase
table. We call A = 〈[p;q],φ〉 an anchored phrase
pair with coverage C(A) = [p;q] if φ ∈ Φi([p;q]) is
a target phrase translating the source words at posi-
tions [p;q]. Then a sequence of ni anchored phrase
pairs

Si = A1A2 . . .Ani (2)

is a valid sentence state for sentence i if the follow-
ing two conditions hold:

1. The coverage sets C(A j) for j in 1, . . . ,ni are
mutually disjoint, and

2. the anchored phrase pairs jointly cover the
complete input sentence, or

ni⋃
j=1

C(A j) = [1;mi]. (3)

Let f (S) be a scoring function mapping a state S
to a real number. As usual in SMT, it is assumed that
the scoring function can be decomposed into a linear
combination of K feature functions hk(S), each with
a constant weight λk, so

f (S) =
K

∑
k=1

λkhk(S). (4)

The problem addressed by the decoder is the search
for the state Ŝ with maximal score, such that

Ŝ = argmax
S

f (S). (5)
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The feature functions implemented in our baseline
system are identical to the ones found in the popular
Moses SMT system (Koehn et al., 2007). In particu-
lar, our decoder has the following feature functions:

1. phrase translation scores provided by the
phrase table including forward and backward
conditional probabilities, lexical weights and a
phrase penalty (Koehn et al., 2003),

2. n-gram language model scores implemented
with the KenLM toolkit (Heafield, 2011),

3. a word penalty score,

4. a distortion model with geometric decay
(Koehn et al., 2003), and

5. a feature indicating the number of times a given
distortion limit is exceeded in the current state.

In our experiments, the last feature is used with a
fixed weight of negative infinity in order to limit the
gaps between the coverage sets of adjacent anchored
phrase pairs to a maximum value. In DP search, the
distortion limit is usually enforced directly by the
search algorithm and is not added as a feature. In
our decoder, however, this restriction is not required
to limit complexity, so we decided to add it among
the scoring models.

2.2 Decoding Algorithm

The decoding algorithm we use (algorithm 1) is
very simple. It starts with a given initial document
state. In the main loop, which extends from line 3
to line 12, it generates a successor state S′ for the
current state S by calling the function Neighbour,
which non-deterministically applies one of the oper-
ations described in section 3 of this paper to S. The
score of the new state is compared to that of the pre-
vious one. If it meets a given acceptance criterion,
S′ becomes the current state, else search continues
from the previous state S. For the experiments in
this paper, we use the hill climbing acceptance cri-
terion, which simply accepts a new state if its score
is higher than that of the current state. Other accep-
tance criteria are possible and could be used to en-
dow the search algorithm with stochastic behaviour.

The main loop is repeated until a maximum num-
ber of steps (step limit) is reached or until a maxi-
mum number of moves are rejected in a row (rejec-
tion limit).

Algorithm 1 Decoding algorithm
Input: an initial document state S;

search parameters maxsteps and maxrejected
Output: a modified document state

1: nsteps← 0
2: nrejected← 0
3: while nsteps < maxsteps and

nrejected < maxrejected do
4: S′← Neighbour(S)
5: if Accept( f (S′), f (S)) then
6: S← S′

7: nrejected← 0
8: else
9: nrejected← nrejected +1

10: end if
11: nsteps← nsteps+1
12: end while
13: return S

A notable difference between this algorithm and
other hill climbing algorithms that have been used
for SMT decoding (Germann et al., 2004; Langlais
et al., 2007) is its non-determinism. Previous work
for sentence-level decoding employed a steepest as-
cent strategy which amounts to enumerating the
complete neighbourhood of the current state as de-
fined by the state operations and selecting the next
state to be the best state found in the neighbourhood
of the current one. Enumerating all neighbours of
a given state, costly as it is, has the advantage that
it makes it easy to prove local optimality of a state
by recognising that all possible successor states have
lower scores. It can be rather inefficient, since at
every step only one modification will be adopted;
many of the modifications that are discarded will
very likely be generated anew in the next iteration.

As we extend the decoder to the document level,
the size of the neighbourhood that would have to be
explored in this way increases considerably. More-
over, the inefficiency of the steepest ascent approach
potentially increases as well. Very likely, a promis-
ing move in one sentence will remain promising af-
ter a modification has been applied to another sen-
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tence, even though this is not guaranteed to be true
in the presence of cross-sentence models. We there-
fore adopt a first-choice hill climbing strategy that
non-deterministically generates successor states and
accepts the first one that meets the acceptance cri-
terion. This frees us from the necessity of gener-
ating the full set of successors for each state. On
the downside, if the full successor set is not known,
it is no longer possible to prove local optimality of a
state, so we are forced to use a different condition for
halting the search. We use a combination of two lim-
its: The step limit is a hard limit on the resources the
user is willing to expend on the search problem. The
value of the rejection limit determines how much of
the neighbourhood is searched for better successors
before a state is accepted as a solution; it is related
to the probability that a state returned as a solution
is in fact locally optimal.

To simplify notations in the description of the in-
dividual state operations, we write

Si −→ S′i (6)

to signify that a state operation, when presented with
a document state as in equation 1 and acting on sen-
tence i, returns a new document state of

S′ = S1 . . .Si−1 S′i Si+1 . . .SN . (7)

Similarly,

Si : A j . . .A j+h−1 −→ A′1 . . .A′h′ (8)

is equivalent to

Si −→ A1 . . .A j−1 A′1 . . .A′h′ A j+h . . .Ani (9)

and indicates that the operation returns a state in
which a sequence of h consecutive anchored phrase
pairs has been replaced by another sequence of h′

anchored phrase pairs.

2.3 Efficiency Considerations
When implementing the feature functions for the de-
coder, we have to exercise some care to avoid re-
computing scores for the whole document at every
iteration. To achieve this, the scores are computed
completely only once, at the beginning of the de-
coding run. In subsequent iterations, scoring func-
tions are presented with the scores of the previous

iteration and a list of modifications produced by the
state operation, a set of tuples 〈i,r,s,A′1 . . .A′h′〉, each
indicating that the document should be modified as
described by

Si : Ar . . .As −→ A′1 . . .A′h′ . (10)

If a feature function is decomposable in some way,
as all the standard features developed under the con-
straints of DP search are, it can then update the state
simply by subtracting and adding score components
pertaining to the modified parts of the document.
Feature functions have the possibility to store their
own state information along with the document state
to make sure the required information is available.
Thus, the framework makes it possible to exploit de-
composability for efficient scoring without impos-
ing any particular decomposition on the features as
beam search does.

To make scoring even more efficient, scores are
computed in two passes: First, every feature func-
tion is asked to provide an upper bound on the score
that will be obtained for the new state. In some
cases, it is possible to calculate reasonable upper
bounds much more efficiently than computing the
exact feature value. If the upper bound fails to meet
the acceptance criterion, the new state is discarded
right away; if not, the full score is computed and the
acceptance criterion is tested again.

Among the basic SMT models, this two-pass
strategy is only used for the n-gram LM, which re-
quires fairly expensive parameter lookups for scor-
ing. The scores of all the other baseline models are
fully computed during the first scoring pass. The
n-gram model is more complex. In its state informa-
tion, it keeps track of the LM score and LM library
state for each word. The first scoring pass then iden-
tifies the words whose LM scores are affected by the
current search step. This includes the words changed
by the search operation as well as the words whose
LM history is modified. The range of the history de-
pendencies can be determined precisely by consider-
ing the “valid state length” information provided by
the KenLM library. In the first pass, the LM scores
of the affected words are subtracted from the total
score. The model only looks up the new LM scores
for the affected words and updates the total score
if the new search state passes the first acceptance
check. This two-pass scoring approach allows us
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to avoid LM lookups altogether for states that will
be rejected anyhow because of low scores from the
other models, e. g. because the distortion limit is vi-
olated.

Model score updates become more complex and
slower as the number of dependencies of a model in-
creases. While our decoding algorithm does not im-
pose any formal restrictions on the number or type
of dependencies that can be handled, there will be
practical limits beyond which decoding becomes un-
acceptably slow or the scoring code becomes very
difficult to maintain. These limits are however fairly
independent of the types of dependencies handled
by a model, which permits the exploration of more
varied model types than those handled by DP search.

2.4 State Initialisation
Before the hill climbing decoding algorithm can be
run, an initial state must be generated. The closer the
initial state is to an optimum, the less work remains
to be done for the algorithm. If the algorithm is to be
self-contained, initialisation must be relatively unin-
formed and can only rely on some general prior as-
sumptions about what might be a good initial guess.
On the other hand, if optimal results are sought after,
it pays off to invest some effort into a good starting
point. One way to do this is to run DP search first.

For uninformed initialisation, we chose to imple-
ment a very simple procedure based only on the ob-
servation that, at least for language pairs involving
the major European languages, it is usually a good
guess to keep the word order of the output very sim-
ilar to that of the input. We therefore create the ini-
tial state by selecting, for each sentence in the docu-
ment, a sequence of anchored phrase pairs covering
the input sentence in monotonic order, that is, such
that for all pairs of adjacent anchored phrase pairs
A j and A j+1, we have that C(A j)≺C(A j+1).

For initialisation with DP search, we first run the
Moses decoder (Koehn et al., 2007) with default
search parameters and the same models as those
used by our decoder. Then we extract the best output
hypothesis from the search graph of the decoder and
map it into a sequence of anchored phrase pairs in
the obvious way. When the document-level decoder
is used with models that are incompatible with beam
search, Moses can be run with a subset of the mod-
els in order to find an approximation of the solution

which is then refined with the complete feature set.

3 State Operations

Given a document state S, the decoder uses a neigh-
bourhood function Neighbour to simulate a move
in the state space. The neighbourhood function non-
deterministically selects a type of state operation and
a location in the document to apply it to and returns
the resulting new state. We use a set of three opera-
tions that has the property that every possible docu-
ment state can be reached from every other state in
a sequence of moves.

Designing operations for state transitions in lo-
cal search for phrase-based SMT is a problem that
has been addressed in the literature (Langlais et
al., 2007; Arun et al., 2010). Our decoder’s first-
choice hill climbing strategy never enumerates the
full neighbourhood of a state. We therefore place
less emphasis than previous work on defining a com-
pact neighbourhood, but allow the decoder to make
quite extensive changes to a state in a single step
with a certain probability. Otherwise our operations
are similar to those used by Arun et al. (2010).

All of the operations described in this paper make
changes to a single sentence only. Each time it is
called, the Neighbour function selects a sentence
in the document with a probability proportional to
the number of input tokens in each sentence to en-
sure a fair distribution of the decoder’s attention over
the words in the document regardless of varying sen-
tence lengths.

3.1 Changing Phrase Translations

The change-phrase-translation operation re-
places the translation of a single phrase with a ran-
dom translation with the same coverage taken from
the phrase table. Formally, the operation selects an
anchored phrase pair A j by drawing uniformly from
the elements of Si and then draws a new translation
φ ′ uniformly from the set Φi(C(A j)). The new state
is given by

Si : A j −→ 〈C(A j),φ
′〉. (11)

3.2 Changing Word Order

The swap-phrases operation affects the output
word order without changing the phrase translations.
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It exchanges two anchored phrase pairs A j and A j+h,
resulting in an output state of

Si : A j . . .A j+h −→ A j+h A j+1 . . .A j+h−1 A j. (12)

The start location j is drawn uniformly from the el-
igible sentence positions; the swap range h comes
from a geometric distribution with configurable de-
cay. Other word-order changes such as a one-way
move operation that does not require another move-
ment in exchange or more advanced permutations
can easily be defined.

3.3 Resegmentation

The most complex operation is resegment, which
allows the decoder to modify the segmentation of the
source phrase. It takes a number of anchored phrase
pairs that form a contiguous block both in the input
and in the output and replaces them with a new set
of phrase pairs covering the same span of the input
sentence. Formally,

Si : A j . . .A j+h−1 −→ A′1 . . .A′h′ (13)

such that

j+h−1⋃
j′= j

C(A j′) =
h′⋃

j′=1

C(A′j′) = [p;q] (14)

for some p and q, where, for j′ = 1, . . . ,h′, we
have that A′j′ = 〈[p j′ ;q j′ ],φ j′〉, all [p j′ ;q j′ ] are mu-
tually disjoint and each φ j′ is randomly drawn from
Φi([p j′ ;q j′ ]).

Regardless of the ordering of A j . . .A j+h−1, the
resegment operation always generates a sequence
of anchored phrase pairs in linear order, such that
C(A′j′)≺C(A′j′+1) for j′ = 1, . . . ,h′−1.

As for the other operations, j is generated uni-
formly and h is drawn from a geometric distribution
with a decay parameter. The new segmentation is
generated by extending the sequence of anchored
phrase pairs with random elements starting at the
next free position, proceeding from left to right until
the whole range [p;q] is covered.

4 Experimental Results

In this section, we present the results of a series
of experiments with our document decoder. The

goal of our experiments is to demonstrate the be-
haviour of the decoder and characterise its response
to changes in the fundamental search parameters.

The SMT models for our experiments were cre-
ated with a subset of the training data for the
English-French shared task at the WMT 2011 work-
shop (Callison-Burch et al., 2011). The phrase ta-
ble was trained on Europarl, news-commentary and
UN data. To reduce the training data to a manage-
able size, singleton phrase pairs were removed be-
fore the phrase scoring step. Significance-based fil-
tering (Johnson et al., 2007) was applied to the re-
sulting phrase table. The language model was a 5-
gram model with Kneser-Ney smoothing trained on
the monolingual News corpus with IRSTLM (Fed-
erico et al., 2008). Feature weights were trained with
Minimum Error-Rate Training (MERT) (Och, 2003)
on the news-test2008 development set using the DP
beam search decoder and the MERT implementation
of the Moses toolkit (Koehn et al., 2007). Experi-
mental results are reported for the newstest2009 test
set, a corpus of 111 newswire documents totalling
2,525 sentences or 65,595 English input tokens.

4.1 Stability

An important difference between our decoder and
the classical DP decoder as well as previous work in
SMT decoding with local search is that our decoder
is inherently non-deterministic. This implies that re-
peated runs of the decoder with the same search pa-
rameters, input and models will not, in general, find
the same local maximum of the score space. The
first empirical question we ask is therefore how dif-
ferent the results are under repeated runs. The re-
sults in this and the next section were obtained with
random state initialisation, i. e. without running the
DP beam search decoder.

Figure 1 shows the results of 7 decoder runs with
the models described above, translating the news-
test2009 test set, with a step limit of 227 and a rejec-
tion limit of 100,000. The x-axis of both plots shows
the number of decoding steps on a logarithmic scale,
so the number of steps is doubled between two adja-
cent points on the same curve. In the left plot, the
y-axis indicates the model score optimised by the
decoder summed over all 2525 sentences of the doc-
ument. In the right plot, the case-sensitive BLEU
score (Papineni et al., 2002) of the current decoder
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Figure 1: Score stability in repeated decoder runs

state against a reference translation is displayed.

We note, as expected, that the decoder achieves
a considerable improvement of the initial state with
diminishing returns as decoding continues. Be-
tween 28 and 214 steps, the score increases at a
roughly logarithmic pace, then the curve flattens out,
which is partly due to the fact that decoding for
some documents effectively stopped when the max-
imum number of rejections was reached. The BLEU
score curve shows a similar increase, from an initial
score below 5 % to a maximum of around 21.5 %.
This is below the score of 22.45 % achieved by the
beam search decoder with the same models, which
is not surprising considering that our decoder ap-
proximates a more difficult search problem, from
which a number of strong independence assump-
tions have been lifted, without, at the moment, hav-
ing any stronger models at its disposal to exploit this
additional freedom for better translation.

In terms of stability, there are no dramatic differ-
ences between the decoder runs. Indeed, the small
differences that exist are hardly discernible in the
plots. The model scores at the end of the decod-
ing run range between −158767.9 and −158716.9,
a relative difference of only about 0.03 %. Final
BLEU scores range from 21.41 % to 21.63 %, an in-
terval that is not negligible, but comparable to the
variance observed when, e. g., feature weights from
repeated MERT runs are used with one and the same
SMT system. Note that these results were obtained
with random state initialisation. With DP initialisa-
tion, score differences between repeated runs rarely

exceed 0.02 absolute BLEU percentage points.
Overall, we conclude that the decoding results of

our algorithm are reasonably stable despite the non-
determinism inherent in the procedure. In our sub-
sequent experiments, the evaluation scores reported
are calculated as the mean of three runs for each ex-
periment.

4.2 Search Algorithm Parameters

The hill climbing algorithm we use has two param-
eters which govern the trade-off between decoding
time and the accuracy with which a local maximum
is identified: The step limit stops the search pro-
cess after a certain number of steps regardless of the
search progress made or lack thereof. The rejection
limit stops the search after a certain number of un-
successful attempts to make a step, when continued
search does not seem to be promising. In most of our
experiments, we used a step limit of 227 ≈ 1.3 · 108

and a rejection limit of 105. In practice, decoding
terminates by reaching the rejection limit for the vast
majority of documents. We therefore examined the
effect of different rejection limits on the learning
curves. The results are shown in figure 2.

The results show that continued search does pay
off to a certain extent. Indeed, the curve for re-
jection limit 107 seems to indicate that the model
score increases roughly logarithmically, albeit to a
higher base, even after the curve has started to flat-
ten out at 214 steps. At a certain point, however, the
probability of finding a good successor state drops
rather sharply by about two orders of magnitude, as
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Figure 2: Search performance at different rejection limits

evidenced by the fact that a rejection limit of 106

does not give a large improvement over one of 105,
while one of 107 does. The continued model score
improvement also results in an increase in BLEU
scores, and with a BLEU score of 22.1 % the system
with rejection limit 107 is fairly close to the score of
22.45 % obtained by DP beam search.

Obviously, more exact search comes at a cost, and
in this case, it comes at a considerable cost, which is
an explosion of the time required to decode the test
set from 4 minutes at rejection limit 103 to 224 min-
utes at rejection limit 105 and 38 hours 45 minutes
at limit 107. The DP decoder takes 31 minutes for
the same task. We conclude that the rejection limit
of 105 selected for our experiments, while techni-
cally suboptimal, realises a good trade-off between
decoding time and accuracy.

4.3 A Semantic Document Language Model

In this section, we present the results of the applica-
tion of our decoder to an actual SMT model with
cross-sentence features. Our model addresses the
problem of lexical cohesion. In particular, it rewards
the use of semantically related words in the trans-
lation output by the decoder, where semantic dis-
tance is measured with a word space model based
on Latent Semantic Analysis (LSA). LSA has been
applied to semantic language modelling in previous
research with some success (Coccaro and Jurafsky,
1998; Bellegarda, 2000; Wandmacher and Antoine,
2007). In SMT, it has mostly been used for domain
adaptation (Kim and Khudanpur, 2004; Tam et al.,

2007), or to measure sentence similarities (Banchs
and Costa-jussà, 2011).

The model we use is inspired by Bellegarda
(2000). It is a Markov model, similar to a stan-
dard n-gram model, and assigns to each content
word a score given a history of n preceding content
words, where n = 30 below. Scoring relies on a 30-
dimensional LSA word vector space trained with the
S-Space software (Jurgens and Stevens, 2010). The
score is defined based on the cosine similarity be-
tween the word vector of the predicted word and the
mean word vector of the words in the history, which
is converted to a probability by histogram lookup
as suggested by Bellegarda (2000). The model is
structurally different from a regular n-gram model
in that word vector n-grams are defined over content
words occurring in the word vector model only and
can cross sentence boundaries. Stop words, identi-
fied by an extensive stop word list and amounting to
around 60 % of the tokens, are scored by a different
mechanism based on their relative frequency (undis-
counted unigram probability) in the training corpus.
In sum, the score produced by the semantic docu-
ment LM has the following form:

h(w|h) =


punigr(w) if w is a stop word, else
α pcos(w|h) if w is known, else
ε if w is unknown,

(15)

where α is the proportion of content words in the
training corpus and ε is a small fixed probability.
It is integrated into the decoder as an extra feature
function. Since we lack an automatic method for
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training the feature weights of document-wide fea-
tures, its weight was selected by grid search over
a number of values, comparing translation perfor-
mance for the newstest2009 test set.

In these experiments, we used DP beam search
to initialise the state of our local search decoder.
Three results are presented (table 1): The first table
row shows the baseline performance using DP beam
search with standard sentence-local features only.
The scores in the second row were obtained by run-
ning the hill climbing decoder with DP initialisation,
but without adding any models. A marginal increase
in scores for all three test sets demonstrates that the
hill climbing decoder manages to fix some of the
search errors made by the DP search. The last row
contains the scores obtained by adding in the seman-
tic language model. Scores are presented for three
publicly available test sets from recent WMT Ma-
chine Translation shared tasks, of which one (news-
test2009) was used to monitor progress during de-
velopment and select the final model.

Adding the semantic language model results in a
small increase in NIST scores (Doddington, 2002)
for all three test sets as well as a small BLEU score
gain (Papineni et al., 2002) for two out of three cor-
pora. We note that the NIST score turned out to re-
act more sensitively to improvements due to the se-
mantic LM in all our experiments, which is reason-
able because the model specifically targets content
words, which benefit from the information weight-
ing done by the NIST score. While the results
we present do not constitute compelling evidence
in favour of our semantic LM in its current form,
they do suggest that this model could be improved
to realise higher gains from cross-sentence seman-
tic information. They support our claim that cross-
sentence models should be examined more closely
and that existing methods should be adapted to deal
with them, a problem addressed by our main contri-
bution, the local search document decoder.

5 Related Work

Even though DP beam search (Koehn et al., 2003)
has been the dominant approach to SMT decoding
in recent years, methods based on local search have
been explored at various times. For word-based
SMT, greedy hill-climbing techniques were advo-

cated as a faster replacement for beam search (Ger-
mann et al., 2001; Germann, 2003; Germann et al.,
2004), and a problem formulation specifically tar-
geting word reordering with an efficient word re-
ordering algorithm has been proposed (Eisner and
Tromble, 2006).

A local search decoder has been advanced as a
faster alternative to beam search also for phrase-
based SMT (Langlais et al., 2007; Langlais et al.,
2008). That work anticipates many of the features
found in our decoder, including the use of local
search to refine an initial hypothesis produced by
DP beam search. The possibility of using models
that do not fit well into the beam search paradigm is
mentioned and illustrated with the example of a re-
versed n-gram language model, which the authors
claim would be difficult to implement in a beam
search decoder. Similarly to the work by Germann
et al. (2001), their decoder is deterministic and ex-
plores the entire neighbourhood of a state in order
to identify the most promising step. Our main con-
tribution with respect to the work by Langlais et al.
(2007) is the introduction of the possibility of han-
dling document-level models by lifting the assump-
tion of sentence independence. As a consequence,
enumerating the entire neighbourhood becomes too
expensive, which is why we resort to a “first-choice”
strategy that non-deterministically generates states
and accepts the first one encountered that meets the
acceptance criterion.

More recently, Gibbs sampling was proposed as
a way to generate samples from the posterior distri-
bution of a phrase-based SMT decoder (Arun et al.,
2009; Arun et al., 2010), a process that resembles
local search in its use of a set of state-modifying
operators to generate a sequence of decoder states.
Where local search seeks for the best state attainable
from a given initial state, Gibbs sampling produces
a representative sample from the posterior. Like all
work on SMT decoding that we know of, the Gibbs
sampler presented by Arun et al. (2010) assumes in-
dependence of sentences and considers the complete
neighbourhood of each state before taking a sample.

6 Conclusion

In the last twenty years of SMT research, there has
been a strong assumption that sentences in a text
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newstest2009 newstest2010 newstest2011
BLEU NIST BLEU NIST BLEU NIST

DP search only 22.56 6.513 27.27 7.034 24.94 7.170
DP + hill climbing 22.60 6.518 27.33 7.046 24.97 7.169
with semantic LM 22.71 6.549 27.53 7.087 24.90 7.199

Table 1: Experimental results with a cross-sentence semantic language model

are independent of one another, and discourse con-
text has been largely neglected. Several factors have
contributed to this. Developing good discourse-level
models is difficult, and considering the modest trans-
lation quality that has long been achieved by SMT,
there have been more pressing problems to solve and
lower hanging fruit to pick. However, we argue that
the popular DP beam search algorithm, which deliv-
ers excellent decoding performance, but imposes a
particular kind of local dependency structure on the
feature models, has also had its share in driving re-
searchers away from discourse-level problems.

In this paper, we have presented a decoding pro-
cedure for phrase-based SMT that makes it possi-
ble to define feature models with cross-sentence de-
pendencies. Our algorithm can be combined with
DP beam search to leverage the quality of the tradi-
tional approach with increased flexibility for models
at the discourse level. We have presented prelimi-
nary results on a cross-sentence semantic language
model addressing the problem of lexical cohesion to
demonstrate that this kind of models is worth explor-
ing further. Besides lexical cohesion, cross-sentence
models are relevant for other linguistic phenomena
such as pronominal anaphora or verb tense selection.
We believe that SMT research has reached a point of
maturity where discourse phenomena should not be
ignored any longer, and we consider our decoder to
be a step towards this goal.
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mantic feature for Statistical Machine Translation. In
Proceedings of Fifth Workshop on Syntax, Semantics
and Structure in Statistical Translation, pages 126–
134, Portland, Oregon, USA, June. Association for
Computational Linguistics.

Jerome R. Bellegarda. 2000. Exploiting latent semantic
information in statistical language modeling. Proceed-
ings of the IEEE, 88(8):1279–1296.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
and Omar Zaidan. 2011. Findings of the 2011 Work-
shop on Statistical Machine Translation. In Proceed-
ings of the Sixth Workshop on Statistical Machine
Translation, pages 22–64, Edinburgh, Scotland, July.
Association for Computational Linguistics.

Noah Coccaro and Daniel Jurafsky. 1998. Towards bet-
ter integration of semantic predictors in statistical lan-
guage modeling. In Proceedings of the 5th Interna-
tional Conference on Spoken Language Processing,
Sydney.

George Doddington. 2002. Automatic evaluation of ma-
chine translation quality using n-gram co-occurrence
statistics. In Proceedings of the second Interna-
tional conference on Human Language Technology
Research, pages 138–145, San Diego.

Jason Eisner and Roy W. Tromble. 2006. Local search
with very large-scale neighborhoods for optimal per-
mutations in machine translation. In Proceedings of
the HLT-NAACL Workshop on Computationally Hard
Problems and Joint Inference in Speech and Language
Processing, pages 57–75.

Marcello Federico, Nicola Bertoldi, and Mauro Cettolo.
2008. IRSTLM: an open source toolkit for handling
large scale language models. In Interspeech 2008,
pages 1618–1621. ISCA.

Ulrich Germann, Michael Jahr, Kevin Knight, Daniel
Marcu, and Kenji Yamada. 2001. Fast decoding and
optimal decoding for machine translation. In Proceed-
ings of 39th Annual Meeting of the Association for
Computational Linguistics, pages 228–235, Toulouse,
France, July. Association for Computational Linguis-
tics.

1188



Ulrich Germann, Michael Jahr, Kevin Knight, Daniel
Marcu, and Kenji Yamada. 2004. Fast and optimal de-
coding for machine translation. Artificial Intelligence,
154(1–2):127–143.

Ulrich Germann. 2003. Greedy decoding for Statis-
tical Machine Translation in almost linear time. In
Proceedings of the 2003 Human Language Technol-
ogy Conference of the North American Chapter of the
Association for Computational Linguistics.

Zhengxian Gong, Min Zhang, and Guodong Zhou.
2011. Cache-based document-level Statistical Ma-
chine Translation. In Proceedings of the 2011 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 909–919, Edinburgh, Scotland, UK.,
July. Association for Computational Linguistics.

Christian Hardmeier and Marcello Federico. 2010. Mod-
elling Pronominal Anaphora in Statistical Machine
Translation. In Proceedings of the seventh Inter-
national Workshop on Spoken Language Translation
(IWSLT), pages 283–289.

Basil Hatim and Ian Mason. 1990. Discourse and the
Translator. Language in Social Life Series. Longman,
London.

Kenneth Heafield. 2011. KenLM: faster and smaller
language model queries. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, pages
187–197, Edinburgh, Scotland, July. Association for
Computational Linguistics.

Howard Johnson, Joel Martin, George Foster, and Roland
Kuhn. 2007. Improving translation quality by dis-
carding most of the phrasetable. In Proceedings of the
2007 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Natu-
ral Language Learning (EMNLP-CoNLL), pages 967–
975, Prague, Czech Republic, June. Association for
Computational Linguistics.

David Jurgens and Keith Stevens. 2010. The S-Space
package: An open source package for word space
models. In Proceedings of the ACL 2010 System
Demonstrations, pages 30–35, Uppsala, Sweden, July.
Association for Computational Linguistics.

Woosung Kim and Sanjeev Khudanpur. 2004. Cross-
lingual latent semantic analysis for language model-
ing. In IEEE international conference on acoustics,
speech, and signal processing (ICASSP), volume 1,
pages 257–260, Montréal.
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