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Abstract

In statistical machine translation, minimum
error rate training (MERT) is a standard
method for tuning a single weight with regard
to a given development data. However, due to
the diversity and uneven distribution of source
sentences, there are two problems suffered by
this method. First, its performance is highly
dependent on the choice of a development set,
which may lead to an unstable performance
for testing. Second, translations become in-
consistent at the sentence level since tuning is
performed globally on a document level. In
this paper, we propose a novel local training
method to address these two problems. Un-
like a global training method, such as MERT,
in which a single weight is learned and used
for all the input sentences, we perform training
and testing in one step by learning a sentence-
wise weight for each input sentence. We pro-
pose efficient incremental training methods to
put the local training into practice. In NIST
Chinese-to-English translation tasks, our lo-
cal training method significantly outperforms
MERT with the maximal improvements up to
2.0 BLEU points, meanwhile its efficiency is
comparable to that of the global method.

1 Introduction

Och and Ney (2002) introduced the log-linear model
for statistical machine translation (SMT), in which
translation is considered as the following optimiza-
tion problem:

ê(f ;W ) = arg max
e

P(e|f ;W )

= arg max
e

exp
{
W · h(f, e)

}∑
e′ exp

{
W · h(f, e′)

}
= arg max

e

{
W · h(f, e)

}
, (1)

where f and e (e′) are source and target sentences,
respectively. h is a feature vector which is scaled
by a weight W . Parameter estimation is one of
the most important components in SMT, and var-
ious training methods have been proposed to tune
W . Some methods are based on likelihood (Och and
Ney, 2002; Blunsom et al., 2008), error rate (Och,
2003; Zhao and Chen, 2009; Pauls et al., 2009; Gal-
ley and Quirk, 2011), margin (Watanabe et al., 2007;
Chiang et al., 2008) and ranking (Hopkins and May,
2011), and among which minimum error rate train-
ing (MERT) (Och, 2003) is the most popular one.

All these training methods follow the same
pipeline: they train only a single weight on a given
development set, and then use it to translate all the
sentences in a test set. We call them a global train-
ing method. One of its advantages is that it allows us
to train a single weight offline and thereby it is effi-
cient. However, due to the diversity and uneven dis-
tribution of source sentences(Li et al., 2010), there
are some shortcomings in this pipeline.

Firstly, on the document level, the performance of
these methods is dependent on the choice of a devel-
opment set, which may potentially lead to an unsta-
ble translation performance for testing. As referred
in our experiment, the BLEU points on NIST08 are
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 Source  Candidate Translation   

i  if  j  
ij

e  h  score  

1 我 是 学生 。 1 I am students . <2, 1> 0.5 

  2 I was students . <1,1> 0.2 

2 今天 星期 几 ？ 1 week several today ? <1,2> 0.3 

  2 today several weeks . <3,2> 0.1 

 (a) (b)

2 21 2 222,0 ( , ) ( , )h f e h f e   

2 22 2 212,0 ( , ) ( , )h f e h f e  1 11 1 121, 0 ( , ) ( , )h f e h f e  

1 12 1 111,0 ( , ) ( , )h f e h f e   

2 22 2 21( , ) ( , )h f e h f e

1 11 1 12( , ) ( , )h f e h f e

<-2,0>

<-1,0>

<1,0>

<2,0>

0h

1h

. .* *

2 21 2 22( , ) ( , )h f e h f e

1 12 1 11( , ) ( , )h f e h f e

Figure 1: (a). An Example candidate space of dimensionality two. score is a evaluation metric of e. (b). The non-
linearly separable classification problem transformed from (a) via tuning as ranking (Hopkins and May, 2011). Since
score of e11 is greater than that of e12, 〈1, 0〉 corresponds to a possitive example denoted as ”•”, and 〈−1, 0〉 corre-
sponds to a negative example denoted as ”*”. Since the transformed classification problem is not linearly separable,
there does not exist a single weight which can obtain e11 and e21 as translation results meanwhile. However, one can
obtain e11 and e21 with weights: 〈1, 1〉 and 〈−1, 1〉, respectively.

19.04 when the Moses system is tuned on NIST02
by MERT. However, its performance is improved to
21.28 points when tuned on NIST06. The automatic
selection of a development set may partially address
the problem. However it is inefficient since tuning
requires iteratively decoding an entire development
set, which is impractical for an online service.

Secondly, translation becomes inconsistent on the
sentence level (Ma et al., 2011). Global training
method such as MERT tries to optimize the weight
towards the best performance for the whole set, and
it can not necessarily always obtain good translation
for every sentence in the development set. The rea-
son is that different sentences may need different
optimal weights, and MERT can not find a single
weight to satisfy all of the sentences. Figure 1(a)
shows such an example, in which a development set
contains two sentences f1 and f2 with translations e
and feature vectors h. When we tune examples in
Figure 1(a) by MERT, it can be regarded as a non-
linearly separable classification problem illustrated
in Figure 1(b). Therefore, there exists no single
weightW which simultaneously obtains e11 and e21

as translation for f1 and f2 via Equation (1). How-
ever, we can achieve this with two weights: 〈1, 1〉
for f1 and 〈−1, 1〉 for f2.

In this paper, inspired by KNN-SVM (Zhang et
al., 2006), we propose a local training method,
which trains sentence-wise weights instead of a sin-
gle weight, to address the above two problems.
Compared with global training methods, such as

MERT, in which training and testing are separated,
our method works in an online fashion, in which
training is performed during testing. This online
fashion has an advantage in that it can adapt the
weights for each of the test sentences, by dynam-
ically tuning the weights on translation examples
which are similar to these test sentences. Similar
to the method of development set automatical selec-
tion, the local training method may also suffer the
problem of efficiency. To put it into practice, we
propose incremental training methods which avoid
retraining and iterative decoding on a development
set.

Our local training method has two advantages:
firstly, it significantly outperforms MERT, especially
when test set is different from the development set;
secondly, it improves the translation consistency.
Experiments on NIST Chinese-to-English transla-
tion tasks show that our local training method sig-
nificantly gains over MERT, with the maximum im-
provements up to 2.0 BLEU, and its efficiency is
comparable to that of the global training method.

2 Local Training and Testing

The local training method (Bottou and Vapnik,
1992) is widely employed in computer vision
(Zhang et al., 2006; Cheng et al., 2010). Compared
with the global training method which tries to fit
a single weight on the training data, the local one
learns weights based on the local neighborhood in-
formation for each test example. It is superior to
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the global one when the data sets are not evenly
distributed (Bottou and Vapnik, 1992; Zhang et al.,
2006).

Algorithm 1 Naive Local Training Method
Input: T = {ti}Ni=1(test set), K (retrieval size),

Dev(development set), D(retrieval data)
Output: Translation results of T

1: for all sentence ti such that 1 ≤ i ≤ N do
2: Retrieve the training examples Di with size

K for ti from D according to a similarity;
3: Train a local weight W i based on Dev and

Di;
4: Decode ti with W i;
5: end for

Suppose T be a test set, Dev a development set,
and D a retrieval data. The local training in SMT
is described in the Algorithm 1. For each sentence
ti in test set, training examples Di is retrieved from
D using a similarity measure (line 2), a weight W i

is optimized on Dev and Di (line 3)1, and, finally,
ti is decoded with W i for testing (line 4). At the
end of this algorithm, it returns the translation re-
sults for T . Note that weights are adapted for each
test sentence ti in line 3 by utilizing the translation
examples Di which are similar to ti. Thus, our local
training method can be considered as an adaptation
of translation weights.

Algorithm 1 suffers a problem of training effi-
ciency in line 3. It is impractical to train a weight
W i on Dev and Di from scratch for every sen-
tence, since iteratively decodingDev andDi is time
consuming when we apply MERT. To address this
problem, we propose a novel incremental approach
which is based on a two-phase training.

On the first phase, we use a global training
method, like MERT, to tune a baseline weight on
the development set Dev in an offline manner. On
the second phase, we utilize the retrieved examples
to incrementally tune sentence-wise local weights
based on the baseline weight. This method can
not only consider the common characteristics learnt
from the Dev, but also take into account the knowl-

1Usually, the quality of development set Dev is high, since
it is manually produced with multiple references. This is the
main reason why Dev is used as a part of new development set
to train W i.

edge for each individual sentence learnt from sim-
ilar examples during testing. On the phase of in-
cremental training, we perform decoding only once
for retrieved examples Di, though several rounds of
decoding are possible and potentially better if one
does not seriously care about training speed. Fur-
thermore, instead of on-the-fly decoding, we decode
the retrieval data D offline using the parameter from
our baseline weight and its nbest translation candi-
dates are saved with training examples to increase
the training efficiency.

Algorithm 2 Local Training Method Based on In-
cremental Training
Input: T = {ti}Ni=1 (test set), K (retrieval size),

Dev (development set),
D = {〈fs, rs〉}s=Ss=1 (retrieval data),

Output: Translation results of T
1: Run global Training (such as MERT) on Dev to

get a baseline weight Wb; // Phase 1
2: Decode each sentence in D to get
D = {〈fs, cs, rs〉}s=Ss=1 ;

3: for all sentence ti such that 1 ≤ i ≤ N do
4: Retrieve K training examples Di =

{〈f ij , cij , rij〉}
j=K
j=1 for ti from D according to

a similarity;
5: Incrementally train a local weight W i based

on Wb and Di; // Phase 2
6: Decode ti with W i;
7: end for

The two-phase local training algorithm is de-
scribed in Algorithm 2, where cs and rs denote the
translation candidate set and reference set for each
sentence fs in retrieval data, respectively, and K is
the retrieval size. It globally trains a baseline weight
Wb (line 1), and decodes each sentence in retrieval
data D with the weight Wb (line 2). For each sen-
tence ti in test set T , it first retrieves training exam-
ples Di from D (line 4), and then it runs local train-
ing to tune a local weight W i (line 5) and performs
testing with W i for ti (line 6). Please note that the
two-phase training contains global training in line 1
and local training in line 5.

From Algorithm 2, one can see that our method is
effective even if the test set is unknow, for example,
in the scenario of online translation services, since
the global training on development set and decoding
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on retrieval data can be performed offline.
In the next two sections, we will discuss the de-

tails about the similarity metric in line 4 and the in-
cremental training in line 5 of Algorithm 2.

3 Acquiring Training Examples

In line 4 of Algorithm 2, to retrieve training exam-
ples for the sentence ti , we first need a metric to
retrieve similar translation examples. We assume
that the metric satisfy the property: more similar the
test sentence and translation examples are, the better
translation result one obtains when decoding the test
sentence with the weight trained on the translation
examples.

The metric we consider here is derived from
an example-based machine translation. To retrieve
translation examples for a test sentence, (Watanabe
and Sumita, 2003) defined a metric based on the
combination of edit distance and TF-IDF (Manning
and Schütze, 1999) as follows:

dist(f1, f2) = θ × edit-dist(f1, f2)+

(1− θ)× tf-idf(f1, f2), (2)

where θ(0 ≤ θ ≤ 1) is an interpolation weight,
fi(i = 1, 2) is a word sequence and can be also
considered as a document. In this paper, we extract
similar examples from training data. Like example-
based translation in which similar source sentences
have similar translations, we assume that the optimal
translation weights of the similar source sentences
are closer.

4 Incremental Training Based on
Ultraconservative Update

Compared with retraining mode, incremental train-
ing can improve the training efficiency. In the field
of machine learning research, incremental training
has been employed in the work (Cauwenberghs and
Poggio, 2001; Shilton et al., 2005), but there is lit-
tle work for tuning parameters of statistical machine
translation. The biggest difficulty lies in that the fea-
ture vector of a given training example, i.e. transla-
tion example, is unavailable until actually decoding
the example, since the derivation is a latent variable.
In this section, we will investigate the incremental
training methods in SMT scenario.

Following the notations in Algorithm 2, Wb is
the baseline weight, Di = {〈f ij , cij , rij〉}Kj=1 denotes
training examples for ti. For the sake of brevity, we
will drop the index i, Di = {〈fj , cj , rj〉}Kj=1, in the
rest of this paper. Our goal is to find an optimal
weight, denoted by W i, which is a local weight and
used for decoding the sentence ti. Unlike the global
method which performs tuning on the whole devel-
opment set Dev +Di as in Algorithm 1, W i can be
incrementally learned by optimizing onDi based on
Wb. We employ the idea of ultraconservative update
(Crammer and Singer, 2003; Crammer et al., 2006)
to propose two incremental methods for local train-
ing in Algorithm 2 as follows.

Ultraconservative update is an efficient way to
consider the trade-off between the progress made on
development set Dev and the progress made on Di.
It desires that the optimal weight W i is not only
close to the baseline weight Wb, but also achieves
the low loss over the retrieved examples Di. The
idea of ultraconservative update can be formalized
as follows:

min
W

{
d(W,Wb) + λ · Loss(Di,W )

}
, (3)

where d(W,Wb) is a distance metric over a pair
of weights W and Wb. It penalizes the weights
far away from Wb and it is L2 norm in this paper.
Loss(Di,W ) is a loss function of W defined on Di

and it evaluates the performance of W over Di. λ
is a positive hyperparameter. If Di is more similar
to the test sentence ti, the better performance will be
achieved for the larger λ. In particular, ifDi consists
of only a single sentence ti, the best performance
will be obtained when λ goes to infinity.

4.1 Margin Based Ultraconservative Update
MIRA(Crammer and Singer, 2003; Crammer et al.,
2006) is a form of ultraconservative update in (3)
whose Loss is defined as hinge loss based on margin
over the pairwise translation candiates in Di. It tries
to minimize the following quadratic program:

1

2
||W −Wb||2+

λ

K

K∑
j=1

max
1≤n≤|cj |

(
`jn−W ·∆h(fj , ejn)

)
with

∆h(fj , ejn) = h(fj , ej·)− h(fj , ejn), (4)
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where h(fj , e) is the feature vector of candidate e,
ejn is a translation member of fj in cj , ej· is the
oracle one in cj , `jn is a loss between ej· and ejn
and it is the same as referred in (Chiang et al., 2008),
and |cj | denotes the number of members in cj .

Different from (Watanabe et al., 2007; Chiang
et al., 2008) employing the MIRA to globally train
SMT, in this paper, we apply MIRA as one of local
training method for SMT and we call it as margin
based ultraconservative update (MBUU for shortly)
to highlight its advantage of incremental training in
line 5 of Algorithm 2.

Further, there is another difference between
MBUU and MIRA in (Watanabe et al., 2007; Chi-
ang et al., 2008). MBUU is a batch update mode
which updates the weight with all training examples,
but MIRA is an online one which updates with each
example (Watanabe et al., 2007) or part of examples
(Chiang et al., 2008). Therefore, MBUU is more ul-
traconservative.

4.2 Error Rate Based Ultraconservative
Update

Instead of taking into account the margin-based
hinge loss between a pair of translations as the Loss
in (3), we directly optimize the error rate of trans-
lation candidates with respect to their references in
Di. Formally, the objective function of error rate
based ultraconservative update (EBUU) is as fol-
lows:

1

2
‖W −Wb‖2 +

λ

K

K∑
j=1

Error(rj ; ê(fj ;W )), (5)

where ê(fj ;W ) is defined in Equation (1), and
Error(rj , e) is the sentence-wise minus BLEU (Pa-
pineni et al., 2002) of a candidate e with respect to
rj .

Due to the existence of L2 norm in objective
function (5), the optimization algorithm MERT can
not be applied for this question since the exact line
search routine does not hold here. Motivated by
(Och, 2003; Smith and Eisner, 2006), we approxi-
mate the Error in (5) by the expected loss, and then
derive the following function:

1

2
‖W−Wb‖2+

λ

K

K∑
j=1

∑
e

Error(rj ; e)Pα(e|fj ;W ),

(6)

Systems NIST02 NIST05 NIST06 NIST08
Moses 30.39 26.31 25.34 19.07

Moses hier 33.68 26.94 26.28 18.65
In-Hiero 31.24 27.07 26.32 19.03

Table 1: The performance comparison of the baseline In-
Hiero VS Moses and Moses hier.

with

Pα(e|fj ;W ) =
exp[αW · h(fj , e)]∑

e′∈cj
exp[αW · h(fj , e′)]

, (7)

where α > 0 is a real number valued smoother. One
can see that, in the extreme case, for α → ∞, (6)
converges to (5).

We apply the gradient decent method to minimize
the function (6), as it is smooth with respect to λ.
Since the function (6) is non-convex, the solution
obtained by gradient descent method may depend on
the initial point. In this paper, we set the initial point
as Wb in order to achieve a desirable solution.

5 Experiments and Results

5.1 Setting
We conduct our experiments on the Chinese-to-
English translation task. The training data is FBIS
corpus consisting of about 240k sentence pairs. The
development set is NIST02 evaluation data, and the
test datasets are NIST05, NIST06,and NIST08.

We run GIZA++ (Och and Ney, 2000) on the
training corpus in both directions (Koehn et al.,
2003) to obtain the word alignment for each sen-
tence pair. We train a 4-gram language model on
the Xinhua portion of the English Gigaword cor-
pus using the SRILM Toolkits (Stolcke, 2002) with
modified Kneser-Ney smoothing (Chen and Good-
man, 1998). In our experiments the translation per-
formances are measured by case-insensitive BLEU4
metric (Papineni et al., 2002) and we use mteval-
v13a.pl as the evaluation tool. The significance test-
ing is performed by paired bootstrap re-sampling
(Koehn, 2004).

We use an in-house developed hierarchical
phrase-based translation (Chiang, 2005) as our base-
line system, and we denote it as In-Hiero. To ob-
tain satisfactory baseline performance, we tune In-
Hiero system for 5 times using MERT, and then se-
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Methods Steps Seconds
Global method Decoding 2.0
Local method Retrieval +0.6

Local training +0.3

Table 2: The efficiency of the local training and testing
measured by sentence averaged runtime.

Methods NIST05 NIST06 NIST08
Global MERT 27.07 26.32 19.03
Local MBUU 27.75+ 27.88+ 20.84+

EBUU 27.85+ 27.99+ 21.08+

Table 3: The performance comparison of local train-
ing methods (MBUU and EBUU) and a global method
(MERT). NIST05 is the set used to tune λ for MBUU and
EBUU, and NIST06 and NIST08 are test sets. + means
the local method is significantly better than MERT with
p < 0.05.

lect the best-performing one as our baseline for the
following experiments. As Table 1 indicates, our
baseline In-Hiero is comparable to the phrase-based
MT (Moses) and the hierarchical phrase-based MT
(Moses hier) implemented in Moses, an open source
MT toolkit2 (Koehn et al., 2007). Both of these sys-
tems are with default setting. All three systems are
trained by MERT with 100 best candidates.

To compare the local training method in Algo-
rithm 2, we use a standard global training method,
MERT, as the baseline training method. We do not
compare with Algorithm 1, in which retraining is
performed for each input sentence, since retraining
for the whole test set is impractical given that each
sentence-wise retraining may take some hours or
even days. Therefore, we just compare Algorithm
2 with MERT.

5.2 Runtime Results

To run the Algorithm 2, we tune the baseline weight
Wb on NIST02 by MERT3. The retrieval data is set
as the training data, i.e. FBIS corpus, and the re-
trieval size is 100. We translate retrieval data with
Wb to obtain their 100 best translation candidates.
We use the simple linear interpolated TF-IDF met-
ric with θ = 0.1 in Section 3 as the retrieval metric.

2See web: http://www.statmt.org
3Wb is exactly the weight of In-Hiero in Table 1.

NIST05 NIST06 NIST08
NIST02 0.665 0.571 0.506

Table 4: The similarity of development and three test
datasets.

For an efficient tuning, the retrieval process is par-
allelized as follows: the examples are assigned to 4
CPUs so that each CPU accepts a query and returns
its top-100 results, then all these top-100 results are
merged into the final top-100 retrieved examples to-
gether with their translation candidates. In our ex-
periments, we employ the two incremental training
methods, i.e. MBUU and EBUU. Both of the hyper-
parameters λ are tuned on NIST05 and set as 0.018
and 0.06 for MBUU and EBUU, respectively. In
the incremental training step, only one CPU is em-
ployed.

Table 2 depicts that testing each sentence with lo-
cal training method takes 2.9 seconds, which is com-
parable to the testing time 2.0 seconds with global
training method4. This shows that the local method
is efficient. Further, compared to the retrieval, the
local training is not the bottleneck. Actually, if we
use LSH technique (Andoni and Indyk, 2008) in re-
trieval process, the local method can be easily scaled
to a larger training data.

5.3 Results and Analysis

Table 3 shows the main results of our local train-
ing methods. The EBUU training method signifi-
cantly outperforms the MERT baseline, and the im-
provement even achieves up to 2.0 BLEU points on
NIST08. We can also see that EBUU and MBUU are
comparable on these three test sets. Both of these
two local training methods achieve significant im-
provements over the MERT baseline, which proves
the effectiveness of our local training method over
global training method.

Although both local methods MBUU and EBUU
achieved improvements on all the datasets, their
gains on NIST06 and NIST08 are significantly
higher than those achieved on NIST05 test dataset.
We conjecture that, the more different a test set and
a development set are, the more potential improvem-

4The runtime excludes the time of tuning and decoding on D
in Algorithm 2, since both of them can be performanced offline.
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Figure 2: The peformance of EBUU for different λ over
all the test datasets. The horizontal axis denotes the val-
ues of λ in function (6), and the vertical one denotes the
BLEU points.

Metthods Dev NIST08
NIST02 19.03

MERT NIST05 20.06
NIST06 21.28

EBUU NIST02 21.08

Table 5: The comparison of MERT with different de-
velopment datasets and local training method based on
EBUU.

nts local training has for the sentences in this test set.
To test our hypothesis, we measured the similarity
between the development set and a test set by the
average value5 of accumulated TF-IDF scores of de-
velopment dataset and each sentence in test datasets.
Table 4 shows that NIST06 and NIST08 are more
different from NIS02 than NIST05, thus, this is po-
tentially the reason why local training is more effec-
tive on NIST06 and NIST08.

As mentioned in Section 1, the global training
methods such as MERT are highly dependent on de-
velopment sets, which can be seen in Table 5. There-
fore, the translation performance will be degraded if
one chooses a development data which is not close

5Instead of using the similarity between two documents de-
velopment and test datasets, we define the similarity as the av-
erage similarity of the development set and the sentences in test
set. The reason is that it reduces its dependency on the number
of sentences in test dataset, which may cause a bias.

Methods Number Percents
MERT 1735 42.3%
EBUU 1606 39.1%

Table 6: The statistics of sentences with 0.0 sentence-
level BLEU points over three test datasets.

to the test data. We can see that, with the help of the
local training, we still gain much even if we selected
an unsatisfactory development data.

As also mentioned in Section 1, the global meth-
ods do not care about the sentence level perfor-
mance. Table 6 depicts that there are 1735 sentences
with zero BLEU points in all the three test datasets
for MERT. Besides obtaining improvements on doc-
ument level as referred in Table 3, the local training
methods can also achieve consistent improvements
on sentence level and thus can improve the users’
experiences.

The hyperparameters λ in both MBUU (4) and
EBUU (6) has an important influence on transla-
tion performance. Figure 2 shows such influence
for EBUU on the test datasets. We can see that, the
performances on all these datasets improve as λ be-
comes closer to 0.06 from 0, and the performance
continues improving when λ passes over 0.06 on
NIST08 test set, where the performance constantly
improves up to 2.6 BLEU points over baseline. As
mentioned in Section 4, if the retrieved examples are
very similar to the test sentence, the better perfor-
mance will be achieved with the larger λ. There-
fore, it is reasonable that the performances improved
when λ increased from 0 to 0.06. Further, the turn-
ing point appearing at 0.06 proves that the ultra-
conservative update is necessary. We can also see
that the performance on NIST08 consistently im-
proves and achieves the maximum gain when λ ar-
rives at 0.1, but those on both NIST05 and NIST06
achieves the best when it arrives at 0.06. This
phenomenon can also be interpreted in Table 4 as
the lowest similarity between the development and
NIST08 datasets.

Generally, the better performance may be
achieved when more examples are retrieved. Actu-
ally, in Table 7 there seems to be little dependency
between the numbers of examples retrieved and the
translation qualities, although they are positively re-
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Retrieval Size NIST05 NIST06 NIST08
40 27.66 27.81 20.87
70 27.77 27.93 21.08
100 27.85 27.99 21.08

Table 7: The performance comparison by varying re-
trieval size in Algorithm 2 based on EBUU.

Methods NIST05 NIST06 NIST08
MERT 27.07 26.32 19.03
EBUU 27.85 27.99 21.08
Oracle 29.46 29.35 22.09

Table 8: The performance of Oracle of 2-best results
which consist of 1-best resluts of MERT and 1-best
resluts of EBUU.

lated approximately.
Table 8 presents the performance of the oracle

translations selected from the 1-best translation re-
sults of MERT and EBUU. Clearly, there exists more
potential improvement for local training method.

6 Related Work

Several works have proposed discriminative tech-
niques to train log-linear model for SMT. (Och and
Ney, 2002; Blunsom et al., 2008) used maximum
likelihood estimation to learn weights for MT. (Och,
2003; Moore and Quirk, 2008; Zhao and Chen,
2009; Galley and Quirk, 2011) employed an eval-
uation metric as a loss function and directly opti-
mized it. (Watanabe et al., 2007; Chiang et al., 2008;
Hopkins and May, 2011) proposed other optimiza-
tion objectives by introducing a margin-based and
ranking-based indirect loss functions.

All the methods mentioned above train a single
weight for the whole development set, whereas our
local training method learns a weight for each sen-
tence. Further, our translation framework integrates
the training and testing into one unit, instead of treat-
ing them separately. One of the advantages is that it
can adapt the weights for each of the test sentences.

Our method resorts to some translation exam-
ples, which is similar as example-based translation
or translation memory (Watanabe and Sumita, 2003;
He et al., 2010; Ma et al., 2011). Instead of using
translation examples to construct translation rules
for enlarging the decoding space, we employed them

to discriminatively learn local weights.
Similar to (Hildebrand et al., 2005; Lü et al.,

2007), our method also employes IR methods to re-
trieve examples for a given test set. Their methods
utilize the retrieved examples to acquire translation
model and can be seen as the adaptation of trans-
lation model. However, ours uses the retrieved ex-
amples to tune the weights and thus can be consid-
ered as the adaptation of tuning. Furthermore, since
ours does not change the translation model which
needs to run GIZA++ and it incrementally trains lo-
cal weights, our method can be applied for online
translation service.

7 Conclusion and Future Work

This paper proposes a novel local training frame-
work for SMT. It has two characteristics, which
are different from global training methods such as
MERT. First, instead of training only one weight for
document level, it trains a single weight for sentence
level. Second, instead of considering the training
and testing as two separate units, we unify the train-
ing and testing into one unit, which can employ the
information of test sentences and perform sentence-
wise local adaptation of weights.

Local training can not only alleviate the prob-
lem of the development data selection, but also re-
duce the risk of sentence-wise bad translation re-
sults, thus consistently improve the translation per-
formance. Experiments show gains up to 2.0 BLEU
points compared with a MERT baseline. With the
help of incremental training methods, the time in-
curred by local training was negligible and the local
training and testing totally took 2.9 seconds for each
sentence.

In the future work, we will further investigate the
local training method, since there are more room for
improvements as observed in our experiments. We
will test our method on other translation models and
larger training data6.
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