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Abstract

Machine translation benefits from system

combination. We propose flexible interaction

of hypergraphs as a novel technique combin-

ing different translation models within one de-

coder. We introduce features controlling the

interactions between the two systems and ex-

plore three interaction schemes of hiero and

forest-to-string models—specification, gener-

alization, and interchange. The experiments

are carried out on large training data with

strong baselines utilizing rich sets of dense

and sparse features. All three schemes signif-

icantly improve results of any single system

on four testsets. We find that specification—a

more constrained scheme that almost entirely

uses forest-to-string rules, but optionally uses

hiero rules for shorter spans—comes out as

the strongest, yielding improvement up to 0.9

(Ter-Bleu)/2 points. We also provide a de-

tailed experimental and qualitative analysis of

the results.

1 Introduction

Recent years have witnessed the success of var-

ious statistical machine translation (SMT) mod-

els using different levels of linguistic knowledge–

phrase (Koehn et al., 2003), hiero (Chiang, 2005),

and syntax-based (Liu et al., 2006; Galley et al.,

2006). System combination became a promising

way of building up synergy from different SMT sys-

tems and their specific merits.

Numerous efforts that have been proposed in this

field recently can be broadly divided into two cat-

∗M. Č and H. M. contributed equally to this work.

egories: Offline system combination (Rosti et al.,

2007; He et al., 2008; Watanabe and Sumita, 2011;

Denero et al., 2010) aims at producing consensus

translations from the outputs of multiple individ-

ual systems. Those outputs usually contain k-best

lists of translations, which only explore a small por-

tion of the entire search space of each system. This

issue is well addressed in joint decoding (Liu et

al., 2009), or online system combination, showing

comparable improvements to the offline combina-

tion methods. Rather than finding consensus trans-

lations from the outputs of individual systems, joint

decoding works with different grammars at the de-

coding time. Although limited to individual systems

sharing the same search paradigm (e.g. left-to-right

or bottom-up), joint decoding offers many poten-

tial advatages: search through a larger space, bet-

ter efficiency, features designed once for all subsys-

tems, potential cross-system features, online sharing

of partial hypotheses, and many others.

Different approaches have different strengths in

general–hiero rules are believed to provide reliable

lexical coverage, while tree-to-string rules are good

at non-local reorderings. Different contexts present

different challenges–noun phrases usually follow

the adjacency principle, while verb phrases require

more challenging reorderings. In this work, we study

different schemes of interaction between translation

models, reflecting their specific strengths at differ-

ent (syntactic) contexts. We make five new contribu-

tions:

First, we propose a framework for joint decod-

ing by means of flexible combination of trans-

lation hypergraphs, allowing for detailed con-
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trol of interactions between the different sys-

tems using soft constraints (Section 3).

Second, we study three interaction schemes–

special cases of joint decoding: generalization,

specification, and interchange (Section 3.3).

Third, instead of using a tree-to-string system,

we use a much stronger forest-to-string sys-

tem with fuzzy match of nonterminal categories

(Section 2.1).

Fourth, we train strong systems on a large-

scale data set, and test all methods on four test

sets. Experimental results (Section 6) show that

our new approach brings improvement of up to

0.9 points in terms of (Ter − Bleu)/2 over the

best single system.

Fifth, we conduct a comprehensive experimen-

tal analysis, and find that joint decoding actu-

ally prefers tree-to-string rules in both shorter

and longer spans. (Section 6.3).

The paper is organized as follows: We briefly re-

view the individual models in Section 2, describe

the method of joint decoding using three alternative

interaction schemes in Section 3, describe the fea-

tures controlling the interactions and fuzzy match in

Section 4, review the related work in Section 5, and

finally, describe our experiments and give detailed

discussion of the results in Section 6.

2 Individual Models

Our individual models are two state-of-the-art sys-

tems: a hiero model (Chiang, 2005), and a forest-to-

string model (Mi et al., 2008; Mi and Huang, 2008).

We will use the following example from Chinese

to English to explain both individual and joint de-

coding algorithms throughout this paper.

SS tǎolùnSSSSSSSS hùiSSSSS zěnmeyàng

discussion/NN SSS will/VV how/VV

S discuss/VV SS meeting/NN

There are several possible meanings based on the

different POS tagging sequences:

1: NN VV VV: How is the discussion going?

2: VV NN VV: Discuss about the meeting.

3: NN NN VV: How was the discussion meeting?

4: VV VV VV: Discuss what will happen.

id rule

r1 VV(tǎolùn)→ discuss

r2 NP(tǎolùn)→ the discussion

r3 NP(hùi)→ the meeting

r4 VP(zěnmeyàng)→ how

r′
4

VP(zěnmeyàng)→ about

r5 IP(x1:NP x2:VP)→ x2 x1

r6 IP(x1:VV x2:IP)→ x1 x2

r7 IP(x1:NP VP(VV(hùi) x2:VP))→ x2 is x1 going

r11 X(x1:X zěnmeyàng)→ how was x1

r12 X(zěnmeyàng)→ what

r13 X(tǎolùn hùi)→ the discussion meeting

r14 X(hùi x1:X)→ x1 will happen

r15 S(x1:S x2:X)→ x1 x2

Table 1: Translation rules. Tree-to-string (r1–r7), hiero

(r11–r14), vanilla glue (r15).

IP

x1:NP VP

VV

hùi

x2:VP
→ x2 is x1 going

Figure 1: Tree-to-string rule r7.

Table 1 shows translation rules that can generate

all four translations. We will use those rules in the

following sections.

2.1 Forest-to-string

Forest-to-string translation (Mi et al., 2008) is a lin-

guistic syntax-based system, which significantly im-

proves the translation quality of the tree-to-string

model (Liu et al., 2006; Huang et al., 2006) by using

a packed parse forest as the input instead of a single

parse tree.

Figure 1 shows a tree-to-string translation

rule (Huang et al., 2006), which is a tuple

〈lhs(r), rhs(r), ψ(r)〉, where lhs(r) is the source-side

tree fragment, whose internal nodes are labeled by

nonterminal symbols (like NP and VP), and whose

frontier nodes are labeled by source-language words

(like “hùi”) or variables from a set X = {x1, x2, . . .};

rhs(r) is the target-side string expressed in target-

language words (like “going”) and variables; and

ψ(r) is a mapping from X to nonterminals. Each
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(a)

IP0, 3

VV0, 1

tǎolùn

NP0, 1

IP1, 3

NP1, 2

hùi

VV1, 2

VP1, 3

VP2, 3

zěnmeyàng

Rt

⇒
(b)

IP0, 3

X0, 2

VV0, 1

tǎolùn

NP0, 1

IP1, 3

NP1, 2

hùi

VV1, 2

X1, 3 VP1, 3

VP2, 3

zěnmeyàng

X0, 3

e5

e6

e7

⇓ Rh ⇓

(b′)

IP0, 3

X0, 2

VV0, 1

tǎolùn

NP0, 1

IP1, 3

NP1, 2

hùi

VV1, 2

X1, 3 VP1, 3

VP2, 3

zěnmeyàng

X2, 3

X0, 3

e11

e14

⇒ (c)

IP0, 3

X0, 2

VV0, 1

tǎolùn

NP0, 1

IP1, 3

NP1, 2

hùi

VV1, 2

X1, 3 VP1, 3

VP2, 3

zěnmeyàng

X2, 3

X0, 3

Figure 2: Parse and translation hypergraphs. (a) The parse forest of the example sentence. Solid hyperedges denote

the 1-best parse. (b) The corresponding translation forest F t after applying the tree-to-string translation rule set Rt.

Target lexical content is not shown. Each translation hyperedge (e.g. e7) has the same index as the corresponding rule

(r7). Gray nodes (e.g. VP1,3) became inaccessible due to the insufficient rule coverage. (b′) The translation forest Fh

after applying the hierarchical rule set Rh to the input sentence. (c) The combined translation forest Hm obtained by

superimposing b and b′. The nodes within each solid box share the same span. See Figure 3 for an example of the

internal structure of a box. The forest-to-string system can produce the translation 1 (dashed derivation: r2, r4 and r7)

and 2 (solid derivation: r1, r3, r′
4
, r5, and r6). Hierarchical rules generate the translation 3 (r11 and r13). The translation

4 is available by using joint decoding at X1, 3 → IP1, 3 with the derivation: r1, r6, r12, and r14.

variable xi ∈ X occurs exactly once in lhs(r) and

exactly once in rhs(r). Take the rule r7 in Figure 1

for example, we have:

lhs(r7) = IP(x1:NP VP(VV(hùi) x2:VP)),

rhs(r7) = x2 is x1 going,

ψ(r7) = {x1 7→ NP, x2 7→ VP}.

Typically, a forest-to-string system performs

translation in two steps (shown in Figure 2): pars-

ing and decoding. In the parsing step, we convert the

source language input into a parse forest (a). In the

decoding step, we first convert the parse forest into a

translation forest Ft in (b) by using the fast pattern-

matching technique (Zhang et al., 2009). For exam-

ple, we pattern-match the rule r7 rooted at IP0, 3, in

such a way that x1 spans NP0, 1 and x2 spans VP2, 3,

and add a translation hyperedge e7 in (b). Then the

decoder searches for the best derivation on the trans-

lation forest and outputs the target string.

2.2 Hiero

Hiero (hierarchical phrase-based) model (Chiang,

2005) acquires rules of synchronous context-free

grammars (SCFGs) from word-aligned parallel data,

and uses plain sequences of words as the input, with-

out any syntactic information.
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FN

IP′1, 3

IP1, 3

BBBBSN

X′1, 3

X1, 3

EEEE

scheme interaction edges in supernode

Generalization

IP′1, 3 X′1, 3

IP1, 3 X1, 3

Specification

IP′1, 3 X′1, 3

IP1, 3 X1, 3

Interchange

IP′1, 3 X′1, 3

IP1, 3 X1, 3

Figure 3: Three interaction schemes for joint decoding.

Details of the interaction supernode for span (1, 3) shown

in Figure 2 (c). Soft constraints control the transitions.

SCFG can be formalized as a set of tuples

〈lhs(r), rhs(r), φ(r)〉, where lhs(r) is the source-side

one-level CFG, whose root is X or S, and whose

frontier nodes are labeled by source-language words

(like “hùi”) or variables from a set X = {x1, x2, . . .};

rhs(r) is the target-side string expressed in target-

language words (like “going”) and variables; and

φ(r) is a mapping from X to nonterminals. Table 1

shows examples of hiero rules r11–r15.

Although different on source side, hiero decod-

ing can be formalized equally as forest-to-string de-

coding: First, pattern-match the input sentence into

a translation forest Fh. For example, since the rule

r11 matches “zěnmeyàng” such that x1 spans the first

two words, add a hyperedge e11 in Figure 2 (b′).

Then search for the best derivation over the trans-

lation forest.

3 Joint Decoding

The goal of joint decoding is to let different MT

models collaborate within the framework of a single

decoder. This can be done by combining translation

hypergraphs of the different models at the decod-

ing time, so that online sharing of partial hypotheses

overcomes weaknesses and boosts strengths of the

systems combined.

As both forest-to-string and hiero produce trans-

lation forests that share the same hypergraph struc-

ture, we first formalize the hypergraph, then we in-

troduce an algorithm to combine different hyper-

graphs, and finally we describe three joint decoding

schemes over the merged hypergraph.

3.1 Hypergraphs

More formally, a hypergraph H is a pair 〈V, E〉,

where V is the set of nodes, and E the set of hyper-

edges. For a given sentence w1:l = w1 . . .wl, each

node v ∈ V is in the form of Y i, j, where Y is a

nonterminal in the context-free grammar1 and i, j,

0 ≤ i < j ≤ l, are string positions in the sentence

w1:l, which denote the recognition of nonterminal

Y spanning the substring from positions i through j

(that is, wi+1 . . .w j). Each hyperedge e ∈ E is a tuple

〈tails(e), head(e), target(e)〉, where head(e) ∈ V is

the consequent node in the deductive step, tails(e) ∈

V∗ is the list of antecedent nodes, and target(e) is

a list of rhs(r) for rules r such that each rule r has

the same lhs(r) pattern-matched at the node head(e).

For example, the hyperedge e7 in Figure 2 (b) is

e7 = 〈(NP0, 1,VP2, 3), IP0, 3, (x2 is x1 going)〉,

where we can infer the mapping to be

{x1 7→ NP0, 1, x2 7→ VP2, 3 }.

We also denote BS(v) to be the set of incoming

hyperedges of node v, which represent the different

ways of deriving v. For example, BS(IP0, 3) is a set

of e7 and e6.

There is also a distinguished root node TOP in

each hypergraph, denoting the goal item in transla-

tion, which is simply TOP0, l.

3.2 Combining Hypergraphs

We enable interaction between translation hyper-

graphs, such as hiero Fh = 〈Vh, Eh〉 and forest-to-

string Ft = 〈V t, Et〉, on nodes covering the same

span (e.g. IP1, 3 and X1, 3 in Figure 2 (c) grouped in

a box). We call such groups interaction supernodes

and show a detailed example of a supernode for span

(1, 3) in Figure 3.

The combination runs in four steps:

1In this paper, nonterminal labels X and S denote hiero

derivations, other labels are tree-to-string labels.
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1. For each node v = Y i, j, v ∈ Vh ∪ V t, we create

a new interaction node v′ = Y ′i, j with empty

BS (v′). For example, we create two nodes,

IP′1, 3 and X′1, 3, at the top of Figure 3.

2. For each hyperedge e ∈ BS(v), v ∈ V t ∪ Vh,

we replace each v in tails(e) with v′. For exam-

ple, e7 becomes 〈(NP′0, 1,VP′2, 3), IP0, 3, (x2 is

x1 going)〉.

3. All the nodes and hyperedges form the merged

hypergraph Fm, such as in Figure 2 (c).

4. Insert interaction hyperedges connecting nodes

within each interaction supernode to make Fm

connected again.

In the following subsection we present details of in-

teractions and introduce three alternative schemes.

3.3 Three Schemes of Joint Decoding

Interaction hyperedges within each supernode allow

the decoder either to stay within the same system

(e.g. in hiero using X1, 3 → X′1, 3 in Figure 3), or to

switch to the other (e.g. to forest-to-string using X1, 3

→ IP′1, 3).

For example, translation 4 can be produced as

follows: The source string “zěnmeyàng” is trans-

lated by the phrase rule r12. The hiero hyperedge

e14 combines it with the translation of “hùi”, reach-

ing the hiero node X1, 3. Using the interaction edge

X1, 3 → IP′1, 3 will switch into the tree-to-string

model, so that the translation can be completed with

the tree-to-string edge e6 that connects it with a par-

tial tree-to string translation of “tǎolùn” done by r1.

In order to achieve more precise control over the

interaction between tree-to-string and hiero deriva-

tions, we propose the following three basic inter-

action schemes: generalization, specification, in-

terchange. The schemes control the interaction be-

tween hiero and tree-to-string models by means of

soft constraints. Some schemes may even restrict

certain types of transitions. The schemes are de-

picted in Figure 3 and their details are discussed in

the following three subsections.

3.3.1 Specification

The specification decoding scheme reflects the in-

tuition of using hiero rules to translate shorter spans

and tree-to-string rules to reorder higher-level sen-

tence structures. In other words, the scheme allows

one-way switching from the hiero general nontermi-

nal into the more specific nonterminal of a tree-to-

string rule. Transitions in reverse directions are not

allowed. This is achieved by inserting specification

interaction hyperedges e leading from hiero nodes

Xi, j or Si, j into all tree-to-string interaction nodes

Y′i, j within the same supernode.

3.3.2 Generalization

In some translation domains, hiero outperforms

tree-to-string systems, as was shown in experiments

in Section 6. While local hiero or tree-to-string re-

orderings perform well, long distance reorderings

proposed by tree-to-string may be too risky (e.g. due

to parsing errors), so that monotone concatenation

of long sequences2 is the more reliable strategy. The

generalization decoding scheme, complementary to

the specification, is motivated by the idea of incorpo-

rating reliable tree-to-string translations for some se-

quences into a strong hiero translation system. This

is achieved by inserting generalization interaction

hyperedges e leading from tree-to-string nodes Yi, j

nodes into general hiero interaction nodes X′i, j and

S′i, j within the same supernode.

3.3.3 Interchange

The interchange decoding scheme is a union of

the two previous approaches. Any derivation can

freely combine hiero and tree-to-string productions.

Both specification and generalization interaction

hyperedges are inserted leading from all hiero and

tree-to-string nodes Xi, j, Si, j, and Yi, j into all inter-

action nodes X′i, j, S′i, j, and Y′i, j.

3.4 Fuzzy match

The translation rule set cannot usually cover all

hyperedges in the parse forest, thus some nodes

become inaccessible in the translation forest (e.g.

VP1, 3 in Figure 2). However, in the parse forest, as

opposed to a 1-best tree, we can find other nodes

spanning the same sequence wi: j (e.g. node IP1, 3).

In order to re-enable inaccessible nodes and to in-

crease the variability of the translation forest, we

allow reaching them from the other tree-to-string

2Monotone glue is the only possibility for very long spans

exceeding the hiero maxParse treshold.
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nodes within the same interaction node. This can

be achieved by adding fuzzy hyperedges between

every tree-to-string state Y i, j and a differently la-

beled tree-to-string interaction state Z′i, j. For exam-

ple, in the span (0,1), we have a fuzzy hyperedge

VV0, 1 → NP′0, 1.

While interaction hyperedges combine different

translation models, fuzzy hyperedges combine dif-

ferent derivations within the same (tree-to-string)

model.

4 Interaction Features

Our baseline systems use the log-linear framework

to estimate the probability P(D) of a derivation D

from features φi and their weights λi as P(D) ∝

exp
(∑

i λiφi

)

. Similarly as Chiang et al. (2009), our

systems use tens of dense (e.g. language models,

translation probabilities) and thousands of sparse

(e.g. lexical, fertility) features.

The features related to the joint decoding experi-

ments are the costs for specification, generalization,

interchange, and the fuzzy match. Let Lt be the set

of the labels used by the source language parser and

Lh = {S,X} be the labels used by hiero.

The generalization feature

φY→Z = |{e; e ∈ D,∃i, j tails(e) = {Yi, j} (1)

∧head(e) = Z′i, j}|

is the total number of generalization hyperedges in

D going from tree-to-string states Y ∈ Lt to hiero

states Z′ ∈ Lh.

The specification feature

φZ→Y = |{e; e ∈ D,∃i, j tails(e) = {Zi, j} (2)

∧head(e) = Y′i, j}|

is the total number of specification hyperedges in D

going from hiero states Z ∈ Lh to tree-to-string states

Y ′ ∈ Lt.

The interchange feature is implemented by en-

abling the generalization and specification features

at the same time for both tuning and testing.

The fuzzy match feature

φU→W = |{e; e ∈ D,∃i, j tails(e) = {Ui, j} (3)

∧head(e) =W′i, j}|

is the total number of fuzzy match hyperedges in D

going from tree-to-tree states U ∈ Lt to tree-to-string

states W′ ∈ Lt. 3

We use MIRA to obtain weights for the new fea-

tures by tuning on the development set. The num-

ber of new parameters to tune can be estimated as

|Lh| × |Lt| for generalization and specification, and

2 × |Lh| × |Lt| for interchange. For the fuzzy match

of tree-to-string nonterminals we have |Lt| × |Lt| pa-

rameters organized as a sparse matrix, since we only

consider combinations on nonterminal labels that

cooccur in the data.4

5 Related Work

From the previous explorations of online translation

model combination, we see the work of Liu et al.

(2009) proposing an unconstrained combination of

hiero and tree-to-string models as a special configu-

ration of our framework, and we also replicate it.

Denero et al. (2010) combine translation mod-

els even with different search paradigms. Their ap-

proach is different, since their component systems

do not interact at decoding time, instead, each of

them provides its weighted translation forest first,

the forests are then combined to infer a new com-

bination model.

6 Experiment

In this section we describe the setup, present results,

and analyze the experiments. Finally, we propose fu-

ture directions of research.

3Here we allow U = W, which can be viewed in such a way

that exact match is a special case of fuzzy match.
4We also carried out an alternative experiment with only

three fuzzy match features estimated from the training data

parse forest by Naı̈ve Bayes by observing all spans in the train-

ing data, accumulating counts Cs(U) and Cs(U,W) of nonter-

minals (or pairs of nonterminals) heading the same span s. The

first two features (one for each direction) are based on condi-

tional probabilities:

φ(U |W) = − log

(
∑

s∈spans Cs (U,W)
∑

s∈spans Cs(W)

)

. (4)

The third feature is based on joint probability:

φ(U,W) = − log

(
∑

s∈spans Cs(U,W)
∑

s∈spans,A,B∈Lt Cs(A, B)

)

. (5)

The average performance drops by 0.1 (Ter-Bleu)/2 points,

compared to the interchange eperiment.
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System
GALE-web P1R6-web MT08 news MT08 web Avg.

Bleu (T-B)/2 Bleu (T-B)/2 Bleu (T-B)/2 Bleu (T-B)/2 (T-B)/2

Single

T2S 32.6 11.6 16.9 23.5 37.7 7.8 28.1 14.5 14.4

Hiero 33.7 10.2 17.0 23.1 39.2 6.3 28.8 13.7 13.3

F2S 34.0 10.3 17.3 23.2 39.6 6.3 29.2 13.6 13.4

Joint

Liu:09 34.1 9.7 17.0 23.0 38.8 6.7 29.0 13.2 13.2

Gen. 34.4 9.7 17.8 22.6 40.0 6.1 29.6 13.1 12.9

Spe. 35.1 9.4 18.1 22.2 40.2 5.8 29.6 12.9 12.6

Int. 34.9 9.4 17.9 22.3 40.0 6.2 29.6 12.9 12.7

Table 2: All results of single and joint decoding systems.

6.1 Setup

The training corpus consists of 16 million sen-

tence pairs available within the DARPA BOLT

Chinese-English task. The corpus includes a mix

of newswire, broadcast news, webblog and comes

from various sources such as LDC, HK Law, HK

Hansard and UN data. The Chinese text is seg-

mented with a segmenter trained on CTB data using

conditional random fields (CRF). Language models

are trained on the English side of the parallel cor-

pus, and on monolingual corpora, such as Gigaword

(LDC2011T07) and Google News, altogether com-

prising around 10 billion words.

We use a modified version of the Berkeley parser

(Petrov and Klein, 2007) to obtain a parse forest

for each training sentence, then we prune it with

the marginal probability-based inside-outside algo-

rithm to contain only 3n CFG nodes, where n is the

sentence length. Finally, we apply the forest-based

GHKM algorithm (Mi and Huang, 2008; Galley et

al., 2004) to extract tree-to-string translation rules

from forest-string pairs.

In the decoding step, we prune the input hyper-

graphs to 10n nodes before we use fast pattern-

matching (Zhang et al., 2009) to convert the parse

forest into the translation forest.

We tune on 1275 sentences, each with 4 refer-

ences, from the LDC2010E30 corpus, initially re-

leased under the DARPA GALE program.

All MT experiments are optimized with

MIRA (Crammer et al., 2006) to maximize

(Ter-Bleu)/2.

We test on four different test sets: GALE-web test

set from LDC2010E30 corpus (1239 sentences, 4

references), P1R6-web test set from LDC2012E124

corpus (1124 sentences, 1 reference), NIST MT08

newswire portion (691 sentences, 4 references), and

NIST MT08 web portion (666 sentences, 4 refer-

ences).

6.2 Results

Table 2 shows all results of single and joint decoding

systems. The Bleu score of the single hiero baseline

is 39.2 on MT08-news, showing that it is a strong

system. The single F2S baseline achieves compara-

ble scores on all four test sets.

Then, for reference, we present results of joint Hi-

ero and T2S decoding, which is, to our knowledge, a

strong and competitive reimplementaion of the work

described by Liu et al. (2009). Finally, we present re-

sults of joint decoding of hiero and F2S in three in-

teraction schemes: generalization, specification, and

interchange.

All three combination schemes significantly im-

prove results of any single system on all four test-

sets. On average and measured in (Ter-Bleu)/2,

our systems improve the best single system by 0.4

(generalization), 0.7 (specification), and 0.6 (inter-

change).

The specification comes out as the strongest inter-

action scheme, beating the second interchange on 2

testsets by 0.1 and 0.4 (Ter-Bleu)/2 points and on 3

testsets by 0.2 Bleu points.

6.3 Discussion of Results

Interpretations of model behavior with thousands of

parameters that may possibly overlap and interfere

should be always attempted with caution. In this sec-

tion we highlight some interesting observations, ac-
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Specification Generalization Interchange

X→ ∗ ∗ → X X→ ∗ ∗ → X

VP

IP

VV

NR

ADVP

QP

CC

DVP

NP

P

...

CS

CP

AD

VRD

PU

ADJP

DNP

PP

PRN

DP

0.069

0.059

0.053

0.032

0.025

0.023

0.017

0.017

0.017

0.012

...

-0.005

-0.007

-0.011

-0.012

-0.028

-0.028

-0.045

-0.064

-0.069

-0.092

QP

PP

NN

DP

NR

DNP

NP

LC

DEC

DEG

...

VV

PRN

PN

BA

VP

VRD

JJ

VC

DFL

PU

0.057

0.054

0.048

0.044

0.034

0.032

0.030

0.025

0.023

0.023

...

-0.010

-0.011

-0.013

-0.015

-0.015

-0.028

-0.035

-0.037

-0.054

-0.073

VV

VP

NN

QP

ADVP

LCP

NP

P

IP

NR

...

VSB

PN

PU

M

VRD

DNP

ADJP

PP

DP

PRN

0.062

0.044

0.034

0.025

0.022

0.021

0.018

0.017

0.016

0.016

...

-0.004

-0.004

-0.004

-0.007

-0.014

-0.023

-0.039

-0.058

-0.070

-0.080

NN

PP

CP

LCP

DEG

DP

DEC

QP

LC

NP

...

FLR

DVP

BA

JJ

AS

VRD

ADVP

PN

DFL

PU

0.048

0.041

0.035

0.035

0.031

0.028

0.027

0.027

0.021

0.019

...

-0.006

-0.009

-0.010

-0.011

-0.014

-0.017

-0.021

-0.033

-0.038

-0.103

Table 3: Examples of specification, generalization, and interchange weights. POS tags in italics.
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Figure 4: Average span length for selected syntactic la-

bels on GALE-web test set.

companying them with our subjective judgements

and speculations.

Table 3 shows the specification and generalization

features tuned for the three combination schemes,

then sorted by their weights λX→Y or λY→X . Features

shown at the top of the table are very expensive (the

#Interactions Generalization Inter. gen.

F2S→ glue 5557 4202

F2S→ hiero 695 1178

total gen. 6252 5380

Specification Inter. spec.

phrase→ F2S 2763 2235

glue→ F2S 946 841

hiero→ F2S 683 839

total spec. 4392 3915

Table 5: Rule interactions on GALE-web test set.

system tries to avoid them), while inexpensive fea-

tures are at the bottom (the system is encouraged to

use them).

The most expensive interactions for the specifi-

cation belong to constituents (IP, VP) that usually

occur higher in a syntactic tree (see Figure 4 for av-

erage span lengths of selected syntactic labels), and

often require non-local reorderings. This indicates

that the decoder is discouraged from switching from

hiero into F2S derivation at these higher-level spans.

552



rule type Generalization Specification Interchange

F2S 18,807 58% 19,399 70% 18,400 61%

Hiero 3,730 12% 2,330 8% 3,133 10%

Glue 7,367 23% 571 2% 4,714 16%

Phrase 2,274 7% 5,484 20% 3,868 13%

total 32,178 27,784 30,115

Table 4: Rule counts on GALE-web test set.
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Figure 5: Rule distributions on GALE-web test set.

The third most expensive feature belongs to a

part-of-speech tag—the preterminal VV. We may

hypothesize that it shows the importance of lexical

information for the precision of reordering typically

carried out within (parent) VP nodes, and/or the im-

portance of POS information for succesful disam-

biguation of word senses in translation. Ideally, the

system can use a VP rule with a lexicalized VV. Less

preferably, the VV part has to be translated by an-

other T2S rule (losing the lexical constraint). In the

worst case, the system has to use a hiero hypothe-

sis to translate the VV part (losing the syntactic con-

straint), risking imprecise translation, since the hiero

rule is not constrained to senses corresponding to the

source POS VV. Again, the high penalty discourages

from using the hiero derivation in this context.

On the other hand, the bottom of the table shows

labels that encourage using hiero–DP, PP, DNP,

ADJP, etc.–shorter phrases that tend to be monotone

and less ambiguous.

Similar interpretations seem plausible when ex-

amining the generalization experiment. Expensive

features related to preterminals (NR, NN, CD) may

suggest two alternative principles: First, using F2S

rules for thes POS categories and then switching to

hiero is discouraged, since these contexts are more

reliably handled by hiero due to better lexical cover-

age and common adjacency in nominal categories.

Second, since there is only one attempt to switch

from F2S derivation to hiero, letting F2S complete

even larger spans (and maybe switching to hiero

later) is favorable.

The tail of generalization feature weights is more

difficult to interpret. The discount on VP encourages

decoder to use F2S for entire verb phrases before

switching to hiero, on the other hand, other verb-

related preterminals occupy the tail as well, hurrying

into early switching from F2S to hiero.
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Finally, the feature weights tuned for the in-

terchange experiment are divided into two sub-

columns. Both generalization and specification

weights show similar trends as in the previous two

interaction schemes, although blurred (VP and IP

descending from the absolute top). Since transitions

in both ways are allowed, the search space is big-

ger and the system may behave differently. It is even

possible for a path in the hypergraph to zigzag be-

tween F2S and hiero nodes to collect interaction dis-

counts, “diluting” the syntactic homogeneity of the

hypothesis.

Figure 5 and Tables 4 and 5 show rule distribu-

tions, total rule counts, and numbers of interactions

of different types for the three interaction schemes

on the GALE-web test set. The scope of phrase rules

is limited to 6 words. The scope of hiero rules is lim-

ited to 20 words by the commonly used maxParse

parameter, leaving longer spans to the glue rule.

The trends of F2S and glue rules show the most

obvious difference. In the generalization, F2S rules

translate spans of up to 50 words. Glue rules pre-

vail on spans longer then 7 words. The specification

is reversed, pushing the longest scope of hiero and

glue rules down to 40 words, completing the longest

sentences entirely with F2S. The interchange comes

out as a mixture of the previous two trends.

All three schemes prefer using F2S rules at

shorter spans, to the contrary of our original assump-

tion of phrasal and hiero rules being stronger on lo-

cal contexts in general. Here we may refer again

to the specification feature weights for preterminals

VV, NR, CC and P in Table 3 and to our previously

stated hypothesis about the importance of preserving

lexical and syntactic context.

Hiero rules usage on longer spans drops fastest

for specification, slowest for generalization, and in

between for interchange.

It is also interesting to notice the trends on very

short spans (2–4 words) shown by rule distributions

and reflected in numbers of interaction types. While

specification often transitions from a single phrase

rule directly into F2S, the interchange has relatively

higher counts of hiero rules, another sign of the hiero

and F2S interaction.

Synthesizing from several sources of indications

is difficult, however, we arrive at the conclusion that

joint decoding of hiero and F2S significantly im-

proves the performance. While the single systems

show similar performance, their roles are not bal-

anced in joint decoding. It seems that the role of hi-

ero consists in enabling F2S in most contexts.

We have focused on three special cases of inter-

action. We see a great potential in further studies

of other schemes, allowing more flexible interaction

than simple specification, but still more constrained

than the interchange. It seems also promising to re-

fine the interaction modeling with features taking

into account more information than a single syntac-

tic label, and to explore additional ways of parame-

ter estimation.

7 Conclusion

We have proposed flexible interaction of hyper-

graphs as a novel technique combining hiero

and forest-to-string translation models within one

decoder. We have explored three basic interac-

tion schemes—specification, generalization, and

interchange—and described soft constraints control-

ling the interactions. We have carried out experi-

ments on large training data and with strong base-

lines. Of the three schemes, the specification shows

the highest gains, achieving improvements from 0.5

to 0.9 (Ter-Bleu)/2 points over the best single sys-

tem. We have conducted a detailed analysis of each

system output based on different indications of inter-

actions, discussed possible interpretations of results,

and finally offered our conclusion and proposed fu-

ture lines of research.
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