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Abstract

While large-scale discriminative training has
triumphed in many NLP problems, its defi-
nite success on machine translation has been
largely elusive. Most recent efforts along this
line are not scalable (training on the small
dev set with features from top ∼100 most fre-
quent words) and overly complicated. We in-
stead present a very simple yet theoretically
motivated approach by extending the recent
framework of “violation-fixing perceptron”,
using forced decoding to compute the target
derivations. Extensive phrase-based transla-
tion experiments on both Chinese-to-English
and Spanish-to-English tasks show substantial
gains in BLEU by up to +2.3/+2.0 on dev/test
over MERT, thanks to 20M+ sparse features.
This is the first successful effort of large-scale
online discriminative training for MT.

1 Introduction

Large-scale discriminative training has witnessed
great success in many NLP problems such as pars-
ing (McDonald et al., 2005) and tagging (Collins,
2002), but not yet for machine translation (MT) de-
spite numerous recent efforts. Due to scalability is-
sues, most of these recent methods can only train
on a small dev set of about a thousand sentences
rather than on the full training set, and only with
2,000–10,000 rather “dense-like” features (either
unlexicalized or only considering highest-frequency
words), as in MIRA (Watanabe et al., 2007; Chiang
et al., 2008; Chiang, 2012), PRO (Hopkins and May,
2011), and RAMP (Gimpel and Smith, 2012). How-
ever, it is well-known that the most important fea-
tures for NLP are lexicalized, most of which can not
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be seen on a small dataset. Furthermore, these meth-
ods often involve complicated loss functions and
intricate choices of the “target” derivations to up-
date towards or against (e.g. k-best/forest oracles, or
hope/fear derivations), and are thus hard to replicate.
As a result, the classical method of MERT (Och,
2003) remains the default training algorithm for MT
even though it can only tune a handful of dense fea-
tures. See also Section 6 for other related work.

As a notable exception, Liang et al. (2006) do
train a structured perceptron model on the train-
ing data with sparse features, but fail to outperform
MERT. We argue this is because structured percep-
tron, like many structured learning algorithms such
as CRF and MIRA, assumes exact search, and search
errors inevitably break theoretical properties such as
convergence (Huang et al., 2012). Empirically, it
is now well accepted that standard perceptron per-
forms poorly when search error is severe (Collins
and Roark, 2004; Zhang et al., 2013).

To address the search error problem we propose a
very simple approach based on the recent framework
of “violation-fixing perceptron” (Huang et al., 2012)
which is designed specifically for inexact search,
with a theoretical convergence guarantee and excel-
lent empirical performance on beam search pars-
ing and tagging. The basic idea is to update when
search error happens, rather than at the end of the
search. To adapt it to MT, we extend this framework
to handle latent variables corresponding to the hid-
den derivations. We update towards “gold-standard”
derivations computed by forced decoding so that
each derivation leads to the exact reference transla-
tion. Forced decoding is also used as a way of data
selection, since those reachable sentence pairs are
generally more literal and of higher quality, which
the training should focus on. When the reachable
subset is small for some language pairs, we augment
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it by including reachable prefix-pairs when the full
sentence pair is not.

We make the following contributions:

1. Our work is the first successful effort to scale
online structured learning to a large portion of
the training data (as opposed to the dev set).

2. Our work is the first to use a principled learning
method customized for inexact search which
updates on partial derivations rather than full
ones in order to fix search errors. We adapt it
to MT using latent variables for derivations.

3. Contrary to the common wisdom, we show that
simply updating towards the exact reference
translation is helpful, which is much simpler
than k-best/forest oracles or loss-augmented
(e.g. hope/fear) derivations, avoiding sentence-
level BLEU scores or other loss functions.

4. We present a convincing analysis that it is the
search errors and standard perceptron’s inabil-
ity to deal with them that prevent previous
work, esp. Liang et al. (2006), from succeed-
ing.

5. Scaling to the training data enables us to engi-
neer a very rich feature set of sparse, lexical-
ized, and non-local features, and we propose
various ways to alleviate overfitting.

For simplicity and efficiency reasons, in this paper
we use phrase-based translation, but our method has
the potential to be applicable to other translation
paradigms. Extensive experiments on both Chinese-
to-English and Spanish-to-English tasks show statis-
tically significant gains in BLEU by up to +2.3/+2.0
on dev/test over MERT, and up to +1.5/+1.5 over
PRO, thanks to 20M+ sparse features.

2 Phrase-Based MT and Forced Decoding

We first review the basic phrase-based decoding al-
gorithm (Koehn, 2004), which will be adapted for
forced decoding.

2.1 Background: Phrase-based Decoding

We will use the following running example from
Chinese to English from Mi et al. (2008):

0 1 2 3 4 5 6

Figure 1: Standard beam-search phrase-based decoding.

Bùshı́
Bush

yǔ
with

Shālóng
Sharon

jǔxı́ng
hold

le
-ed

huı̀tán
meeting

‘Bush held a meeting with Sharon’

Phrase-based decoders generate partial target-
language outputs in left-to-right order in the form
of hypotheses (or states) (Koehn, 2004). Each hy-
pothesis has a coverage vector capturing the source-
language words translated so far, and can be ex-
tended into a longer hypothesis by a phrase-pair
translating an uncovered segment. For example, the
following is one possible derivation:

(0 ) : (0, “”)

(•1 ) : (s1, “Bush”)
r1

(• •••6) : (s2, “Bush held talks”)
r2

(•••3•••) : (s3, “Bush held talks with Sharon”)
r3

where a • in the coverage vector indicates the source
word at this position is “covered” and where each
si is the score of each state, each adding the rule
score and the distortion cost (dc) to the score of the
previous state. To compute the distortion cost we
also need to maintain the ending position of the last
phrase (e.g., the 3 and 6 in the coverage vectors).
In phrase-based translation there is also a distortion-
limit which prohibits long-distance reorderings.

The above states are called−LM states since they
do not involve language model costs. To add a bi-
gram model, we split each −LM state into a series
of +LM states; each +LM state has the form (v,a)
where a is the last word of the hypothesis. Thus a
+LM version of the above derivation might be:

(0 ,<s>) : (0, “<s>”)

(•1 ,Bush) : (s′1, “<s> Bush”)
r1

(• •••6,talks) : (s′2, “<s> Bush held talks”)
r2

(•••3•••,Sharon) : (s′3, “<s> Bush held ... with Sharon”)
r3
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0 1 2 3 4 5 6

Bush held

held talks

talks with

with Sharon

Sharon

Figure 2: Forced decoding and y-good derivation lattice.

where the score of applying each rule now also in-
cludes a combination cost due to the bigrams formed
when applying the phrase-pair, e.g.

s′3 = s′2 + s(r3) +dc(|6−3|)− logPlm(with | talk)

To make this exponential-time algorithm practi-
cal, beam search is the standard approximate search
method (Koehn, 2004). Here we group +LM states
into n bins, with each bin Bi hosting at most b states
that cover exactly i Chinese words (see Figure 1).

2.2 Forced Decoding

The idea of forced decoding is to consider only those
(partial) derivations that can produce (a prefix of)
the exact reference translation (assuming single ref-
erence). We call these partial derivations “y-good”
derivations (Daumé, III and Marcu, 2005), and those
that deviate from the reference translation “y-bad”
derivations. The forced decoding algorithm is very
similar to +LM decoding introduced above, with the
new “forced decoding LM” to be defined as only
accepting two consecutive words on the reference
translation, ruling out any y-bad hypothesis:

Pforced (b | a) =

{
1 if ∃j, s.t. a = yj and b = yj+1

0 otherwise

In the +LM state, we can simply replace the
boundary word by the index on the reference trans-
lation:

(0 ,0) : (0, “<s>”)

(•1 ,1) : (w′1, “<s> Bush”)
r1

(• •••6,3) : (w′2, “<s> Bush held talks”)
r2

(•••3•••,5) : (w′3, “<s> Bush held talks with Sharon”)
r3

The complexity of this forced decoding algorithm
is reduced to O(2nn3) where n is the source sen-
tence length, without the expensive bookkeeping for
English boundary words.
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uá
n

jiā
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hǔ

zh
èn
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Figure 3: Example of unreachable sentence pair and
reachable prefix-pair. The first big jump is disallowed for
a distortion limit of 4, but we can still extract the top-left
box as a reachable prefix-pair. Note that this example is
perfectly reachable in syntax-based MT.

2.3 Reachable Prefix-Pairs
In practice, many sentence pairs in the parallel text
fail in forced decoding due to two reasons:

1. distortion limit: long-distance reorderings are
disallowed but are very common between lan-
guages with very different word orders such as
English and Chinese.

2. noisy alignment and phrase limit: the word-
alignment quality (typically from GIZA++) are
usually very noisy, which leads to unnecessar-
ily big chunks of rules beyond the phrase limit.

If we only rely on the reachable whole sentence
pairs, we will not be able to use much of the training
set for Chinese-English. So we propose to augment
the set of reachable examples by considering reach-
able prefix-pairs (see Figure 3 for an example).

3 Violation-Fixing Perceptron for MT

Huang et al. (2012) establish a theoretical frame-
work called “violation-fixing perceptron” which is
tailored for structured learning with inexact search
and has provable convergence properties. The high-
level idea is that standard full update does not fix
search errors; to do that we should instead up-
date when search error occurs, e.g., when the gold-
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standard derivation falls below the beam. Huang et
al. (2012) show dramatic improvements in the qual-
ity of the learned model using violation-fixing per-
ceptron (compared to standard perceptron) on incre-
mental parsing and part-of-speech tagging.

Since phrase-based decoding is also an incremen-
tal search problem which closely resembles beam-
search incremental parsing, it is very natural to em-
ploy violation-fixing perceptron here for MT train-
ing. Our goal is to produce the exact reference trans-
lation, or in other words, we want at least one y-good
derivation to survive in the beam search.

To adapt the violation-fixing perceptron frame-
work to MT we need to extend the framework
to handle latent variables since the gold-standard
derivation is not observed. This is done in a way
similar to the latent variable structured perceptron
(Zettlemoyer and Collins, 2005; Liang et al., 2006;
Sun et al., 2009) where each update is from the best
(y-bad) derivation towards the best y-good deriva-
tion in the current model; the latter is a constrained
search which is exactly forced decoding in MT.

3.1 Notations
We first establish some necessary notations. Let
〈x, y〉 be a sentence pair in the training data, and

d = r1 ◦ r2 ◦ . . . ◦ r|d|

be a (partial) derivation, where each ri =
〈c(ri), e(ri)〉 is a rule, i.e., a Chinese-English

phrase-pair. Let |c(d)| ∆
=

∑
i |c(ri)| be the num-

ber of Chinese words covered by this derivation, and
e(d)

∆
= e(r1) ◦ e(r2) . . . ◦ e(r|d|) be the English pre-

fix generated so far. Let D(x) be the set of all pos-
sible partial derivations translating part of the input
sentence x. Let pre(y)

∆
= {y[0:j] | 0 ≤ j ≤ |y|}

be the set of prefixes of the reference translation y,
and good i(x, y) be the set of partial y-good deriva-
tions whose English side is a prefix of the reference
translation y, and whose Chinese projection covers
exactly i words on the input sentence x, i.e.,

good i(x, y)
∆
= {d ∈ D(x) | e(d)∈pre(y), |c(d)|= i}.

Conversely, we define the set of y-bad partial deriva-
tions covering i Chinese words to be:

bad i(x, y)
∆
= {d ∈ D(x) | e(d) /∈pre(y), |c(d)|= i}.

Basically, at each bin Bi, y-good derivations
good i(x, y) and y-bad ones bad i(x, y) compete for
the b slots in the bin:

B0 = {ε} (1)

Bi = topb
⋃

j=1..l

{d ◦ r | d ∈ Bi−j , |c(r)| = j} (2)

where r is a rule covering j Chinese words, l is
the phrase-limit, and topb S is a shorthand for
argtopb

d∈S w · Φ(x, d) which selects the top b
derivations according to the current model w.

3.2 Algorithm 1: Early Update
As a special case of violation-fixing perceptron,
early update (Collins and Roark, 2004) stops decod-
ing whenever the gold derivation falls off the beam,
makes an update on the prefix so far and move on
to the next example. We adapt it to MT as fol-
lows: if at a certain bin Bi, all y-good derivations
in good i(x, y) have fallen off the bin, then we stop
and update, rewarding the best y-good derivation in
good i(x, y) (with respect to current model w), and
penalizing the best y-bad derivation in the same step:

d+
i (x, y)

∆
= argmax

d∈goodi(x,y)
w ·Φ(x, d) (3)

d−i (x, y)
∆
= argmax

d∈badi(x,y)∩Bi

w ·Φ(x, d) (4)

w← w + ∆Φ(x, d+
i (x, y), d−i (x, y)) (5)

where ∆Φ(x, d, d′)
∆
= Φ(x, d)−Φ(x, d′) is a short-

hand notation for the difference of feature vectors.
Note that the set good i(x, y) is independent of the
beam search and current model and is instead pre-
computed in the forced decoding phase, whereas the
negative signal d−i (x, y) depends on the beam.

In practice, however, there are exponentially
many y-good derivations for each reachable sen-
tence pair, and our goal is just to make sure (at least)
one y-good derivation triumphs at the end. So it
is possible that at a certain bin, all y-good partial
derivations fall off the bin, but the search can still
continue and produce the exact reference translation
through some other y-good path that avoids that bin.
For example, in Figure 1, the y-good states in steps
3 and 5 are not critical; it is totally fine to miss them
in the search as long as we save the y-good states
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Figure 4: Illustration of four update methods. The blue
paths denote (possibly lots of) gold-standard derivations
from forced decoding. Standard update in this case is
invalid as it reinforces the error of w (Huang et al., 2012).

in bins 1, 4 and 6. So we actually use a “softer”
version of the early update algorithm: only stop and
update when there is no hope to continue. To be
more concrete, let l denote the phrase-limit then we
stop where there are l consecutive bins without any
y-good states, and update on the first among them.

3.3 Algorithm 2: Max-Violation Update
While early update learns substantially better mod-
els than standard perceptron in the midst of inex-
act search, it is also well-known to be converging
much slower than the latter, since each update is
on a (short) prefix. Huang et al. (2012) propose an
improved method “max-violation” which updates at
the worst mistake instead of the first, and converges
much faster than early update with similar or better
accuracy. We adopt this idea here as follows: decode
the whole sentence, and find the step i∗ where the
difference between the best y-good derivation and
the best y-bad one is the biggest. This amount of dif-
ference is called the amount of “violation” in Huang
et al. (2012), and the place of maximum violation is
intuitively the site of the biggest mistake during the
search. More formally, the update rule is:

i∗
∆
= argmin

i
w ·∆Φ(x, d+

i (x, y), d−i (x, y)) (6)

w← w + ∆Φ(x, d+
i∗(x, y), d−i∗(x, y)) (7)

3.4 Previous Work: Standard and Local Updates
We compare the above new update methods with the
two existing ones from Liang et al. (2006).

Standard update (also known as “bold update”
in Liang et al. (2006)) simply updates at the very
end, from the best derivation in the beam towards the
best gold-standard derivation (regardless of whether

it survives the beam search):

w← w + ∆Φ(x, d+
|x|(x, y), d−|x|(x, y)) (8)

Local update, however, updates towards the
derivation in the final bin that is most similar to the
reference y, denoted dy

|x|(x, y):

dy
|x|(x, y) = argmax

d∈B|x|

Bleu+1(y, e(d)) (9)

w← w + ∆Φ(x, dy
|x|(x, y), d−|x|(x, y))

(10)

where Bleu+1(·, ·) returns the sentence-level BLEU.
Liang et al. (2006) observe that standard update

performs worse than local update, which they at-
tribute to the fact that the former often update to-
wards a gold derivation made up of “unreasonable”
rules. Here we give a very different but theoreti-
cally more reasonable explanation based on the the-
ory of Huang et al. (2012), who define an update
∆Φ(x, d+, d−) to be invalid if d+ scores higher
than d− (i.e., w · ∆Φ(x, d+, d−) > 0, or update
∆w points to the same direction as w in Fig. 4), in
which case there is no “violation” or mistake to fix.
Perceptron is guaranteed to converge if all updates
are valid. Clearly, early and max-violation updates
are valid. But standard update is not: it is possible
that at the end of search, the best y-good derivation
d+
|x|(x, y), though pruned earlier in the search, ranks

even higher in the current model than anything in the
final bin (see Figure 4). In other words, there is no
mistake at the final step, while there must be some
search error in earlier steps which expels the y-good
subderivation. We will see in Section 5.3 that invalid
updates due to search errors are indeed the main rea-
son why standard update fails. Local update, how-
ever, is always valid in that definition.

Finally, it is worth noting that in terms of imple-
mentation, standard and max-violation are the easi-
est, while early update is more involved.

4 Feature Design

Our feature set includes the following 11 dense fea-
tures: LM, four conditional and lexical translation
probabilities (pc(e|f), pc(f |e), pl(e|f), pl(f |e)),
length and phrase penalties, distortion cost, and
three lexicalized reordering features. All these fea-
tures are inherited from Moses (Koehn et al., 2007).
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(•1 ,Bush) : (s′1, “<s> Bush”)

(• •••6,talks) : (s′2, “<s> Bush held talks”)
r2

</s>jǔxı́ng le huı̀tányǔ ShālóngBùshı́<s>

held talksBush<s>

r1 r2

features for applying r2 on span x[3:6]

WordEdges

c(r2)[0] = jǔxı́ng, c(r2)[−1] = huı̀tán
e(r2)[0] = held, e(r2)[−1] = talks

x[2:3] = Shālóng, x[6:7] = </s>, |c(r2)| = 3

... (combos of the above atomic features) ...

non-local e(r0 ◦ r1)[−2:] ◦ id(r2)
id(r1) ◦ id(r2)

Figure 5: Examples of WordEdges and non-local features. The notation uses the Python style subscript syntax.

4.1 Local Sparse Features: Ruleid & WordEdges
We first add the rule identification feature for each
rule: id(ri). We also introduce lexicalized Word-
Edges features, which are shown to be very effec-
tive in parsing (Charniak and Johnson, 2005) and
MT (Liu et al., 2008; He et al., 2008) literatures.
We use the following atomic features when apply-
ing a rule ri = 〈c(ri), e(ri)〉: the source-side length
|c(ri)|, the boundary words of both c(ri) and e(ri),
and the surrounding words of c(ri) on the input sen-
tence x. See Figure 5 for examples. These atomic
features are concatenated to generate all kinds of
combo features.

Chinese English class size budget
word 52.9k 64.2k 5

characters - 3.7k - 3
Brown cluster, full string 200 3
Brown cluster, prefix 6 6 8 2
Brown cluster, prefix 4 4 4 2

POS tag 52 36 2
word type - 4 - 1

Table 1: Various levels of backoff for WordEdges fea-
tures. Class size is estimated on the small Chinese-
English dataset (Sec. 5.3). The POS tagsets are ICT-
CLAS for Chinese (Zhang et al., 2003) and Penn Tree-
bank for English (Marcus et al., 1993).

4.2 Addressing Overfitting
With large numbers of lexicalized combo features
we will face the overfitting problem, where some
combo features found in the training data are too
rare to be seen in the test data. Thus we propose
three ways to alleviate this problem.

First, we introduce various levels of backoffs for
each word w (see Table 1). We include w’s Brown
cluster and its prefixes of lengths 4 and 6 (Brown et

al., 1992), and w’s part-of-speech tag. If w is Chi-
nese we also include its word type (punctuations,
digits, alpha, or otherwise) and (leftmost or right-
most) character. In such a way, we significantly in-
crease the feature coverage on unseen data.

However, if we allow arbitrary combinations, we
can extract a hexalexical feature (4 Chinese + 2 En-
glish words) for a local window in Figure 5, which
is unlikely to be seen at test time. To control model
complexity we introduce a feature budget for each
level of backoffs, shown in the last column in Ta-
ble 1. The total budget for a combo feature is the
sum of the budgets of all atomic features. In our ex-
periments, we only use the combo features with a
total budget of 10 or less, i.e., we can only include
bilexical but not trilexical features, and we can in-
clude for example combo features with one Chinese
word plus two English tags (total budget: 9).

Finally, we use two methods to alleviate overfit-
ting due to one-count rules: for large datasets, we
simply remove all one-count rules, but for small
datasets where out-of-vocabulary words (OOVs)
abound, we use a simple leave-one-out method:
when training on a sentence pair (x, y), do not use
the one-count rules extracted from (x, y) itself.

4.3 Non-Local Features

Following the success of non-local features in pars-
ing (Huang, 2008) and MT (Vaswani et al., 2011),
we also introduce them to capture the contextual in-
formation in MT. Our non-local features, shown in
Figure 5, include bigram rule-ids and the concatena-
tion of a rule id with the translation history, i.e. the
last two English words. Note that we also use back-
offs (Table 1) for the words included. Experiments
(Section 5.3) show that although the set of non-local
features is just a tiny fraction of all features, it con-
tributes substantially to the improvement in BLEU.
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Scale
Language Training Data Reachability ∆BLEU

Sections
Pair # sent. # words sent. words # feats # refs dev/test

small
CH-EN

30K 0.8M/1.0M 21.4% 8.8% 7M
4

+2.2/2.0 5.2, 5.3
large 230K 6.9M/8.9M 32.1% 12.7% 23M +2.3/2.0 5.2, 5.4
large SP-EN 174K 4.9M/4.3M 55.0% 43.9% 21M 1 +1.3/1.1 5.5

Table 2: Overview of all experiments. The ∆BLEU column shows the absolute improvements of our method MAX-
FORCE on dev/test sets over MERT. The Chinese datasets also use prefix-pairs in training (see Table 3).

5 Experiments

In order to test our approach in different language
pairs, we conduct three experiments, shown in Ta-
ble 2, on two significantly different language pairs
(long vs. short distance reorderings), Chinese-to-
English (CH-EN) and Spanish-to-English (SP-EN).

5.1 System Preparation and Data
We base our experiments on Cubit, a state-of-art
phrase-based system in Python (Huang and Chiang,
2007).1 We set phrase-limit to 7 in rule extraction,
and beam size to 30 and distortion limit 6 in de-
coding. We compare our violation-fixing percep-
tron with two popular tuning methods: MERT (Och,
2003) and PRO (Hopkins and May, 2011).

For word alignments we use GIZA++-`0
(Vaswani et al., 2012) which produces sparser align-
ments, alleviating the garbage collection problem.
We use the SRILM toolkit (Stolcke, 2002) to train a
trigram language model with modified Kneser-Ney
smoothing on 1.5M English sentences.

Our dev and test sets for CH-EN task are from the
newswire portion of 2006 and 2008 NIST MT Eval-
uations (616/691 sentences, 18575/18875 words),
with four references.2 The dev and test sets for SP-
EN task are from newstest2012 and newstest2013,
with only one reference. Below both MERT and PRO

tune weights on the dev set, while our method on the
training set. Specifically, our method only uses the
dev set to know when to stop training.

5.2 Forced Decoding Reachability on Chinese
As mentioned in Section 2.2, we perform forced de-
coding to select reachable sentences from the train-

1http://www.cis.upenn.edu/˜lhuang3/cubit/. We
will release the new version at http://acl.cs.qc.edu.

2We use the “average” reference length to compute the
brevity penalty factor, which does not decrease with more ref-
erences unlike the “shortest” heuristic.
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Figure 6: Reachability ratio vs. sentence length on the
small CH-EN training set.

small large
sent. words sent. words

full 21.4% 8.8% 32.1% 12.7%
+prefix 61.3% 24.6% 67.3% 32.8%

Table 3: Ratio of sentence reachability and word cover-
age on the two CH-EN training data (distortion limit: 6).

ing data; this part is done with exact search with-
out any beam pruning. Figure 6 shows the reacha-
bility ratio vs. sentence length on the small CH-EN

training data, where the ratio decreases sharply with
sentence length, and increases with distortion limit.
We can see that there are a lot of long distance re-
orderings beyond small distortion limits. In the ex-
treme case of unlimited distortion, a large amount of
sentences will be reachable, but at the cost of much
slower decoding (O(n2V 2) in beam search decod-
ing, andO(2nn3) in forced decoding). In fact forced
decoding is too slow in the unlimited mode that we
only plot reachability for sentences up to 30 words.

Table 3 shows the statistics of forced decoding on
both small and large CH-EN training sets. In the
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Figure 7: Average number of derivations in gold lattices.

small data-set, 21.4% sentences are fully reachable
which only contains 8.8% words (since shorter sen-
tences are more likely to be reachable). Larger data
improves reachable ratios significantly thanks to bet-
ter alignment quality, but still only 12.7% words can
be used. In order to add more examples for per-
ceptron training, we pick all non-trivial reachable
prefix-pairs (with 5 or more Chinese words) as addi-
tional training examples (see Section 2.2). As shown
in Table 3, with prefix-pairs we can use about 1/4 of
small data and 1/3 of large data for training, which is
10x and 120x bigger than the 616-sentence dev set.

After running forced decoding, we obtain gold
translation lattice for each reachable sentence (or
prefix) pair. Figure 7 shows, as expected, the av-
erage number of gold derivations in these lattices
grows exponentially with sentence length.

5.3 Analysis on Small Chinese-English Data

Figure 8 shows the BLEU scores of different learn-
ing algorithms on the dev set. MAXFORCE3 per-
forms the best, peaking at iteration 13 while early
update learns much slower (the first few iterations
are faster than other methods due to early stopping
but this difference is immaterial later). The local and
standard updates, however, underperform MERT; in
particular, the latter gets worse as training goes on.

As analysized in Section 3.4, the reason why stan-
dard update (or “bold update” in Liang et al. (2006))
fails is that inexact search leads to many invalid up-
dates. This is confirmed by Figure 9, where more

3Stands for Max-Violation Perceptron w/ Forced Decoding
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Figure 8: BLEU scores on the heldout dev set for different
update methods (trained on small CH-EN data).
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Figure 9: Ratio of invalid updates in standard update.

than half of the updates remain invalid even at a
beam of 30. These analyses provide an alternative
but theoretically more reasonable explanation to the
findings of Liang et al. (2006): while they blame
“unreasonable” gold derivations for the failure of
standard update, we observe that it is the search er-
rors that make the real difference, and that an up-
date that respects search errors towards a gold sub-
derivation is indeed helpful, even if that subderiva-
tion might be “unreasonable”.

In order to speedup training, we use mini-batch
parallelization of Zhao and Huang (2013) which has
been shown to be much faster than previous paral-
lelization methods. We set the mini-batch size to
24 and train MAXFORCE with 1, 6, and 24 cores
on a small subset of the our original reachable sen-
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Figure 11: Comparison between different training meth-
ods. Ours trains the training set while others on dev set.

tences. The number of sentence pairs in this subset
is 1,032, which contains similar number of words to
our 616-sentence dev set (since reachable sentences
are much shorter). Thus, it is reasonable to compare
different learning algorithms in terms of speed and
performance. Figure 10 shows that first of all, mini-
batch improves BLEU even in the serial setting, and
when run on 24 cores, it leads to a speedup of about
7x. It is also interesting to know that on 1 CPU,
minibatch perceptron takes similar amount of time
to reach the same performance as MERT and PRO.

Figure 11 compares the learning curves of MAX-
FORCE, MERT, and PRO. We test PRO in three
different ways: PRO-dense (dense features only),
PRO-medium (dense features plus top 3K most fre-
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Figure 12: Incremental contributions of different feature
sets (dense features, ruleid, WordEdges, and non-local).

type count % BLEU

dense 11 - 22.3
+ruleid +9,264 +0.1% +0.8

+WordEdges +7,046,238 +99.5% +2.0
+non-local +22,536 +0.3% +0.7

all 7,074,049 100% 25.8

Table 4: Feature counts and incremental BLEU improve-
ments. MAXFORCE with all features is +2.2 over MERT.

quent sparse features4), and PRO-large (dense fea-
tures plus all sparse features). The results show that
PRO-dense performs almost the same as MERT but
with a stabler learning curve while PRO-medium im-
proves by +0.6. However, PRO-large decreases the
performance significantly, which indicates PRO is
not scalable to truly sparse features. By contrast,
our method handles large-scale sparse features well
and outperforms all other methods by a large margin
and with a stable learning curve.

We also investigate the individual contribution
from each group of features (ruleid, WordEdges, and
non-local features). So we perform experiments by
adding each group incrementally. Figure 12 shows
the learning curves and Table 4 lists the counts and
incremental contributions of different feature sets.
With dense features alone MAXFORCE does not do

4To prevent overfitting we remove all lexicalized features
and only use Brown clusters. It is difficult to engineer the right
feature set for PRO, whereas MAXFORCE is much more robust.
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system algorithm # feat. dev test
Moses MERT 11 25.5 22.5

Cubit

MERT 11 25.4 22.5

PRO

11 25.6 22.6
3K 26.3 23.0
36K 17.7 14.3

MAXFORCE 23M 27.8 24.5

Table 5: BLEU scores (with four references) using the
large CH-EN data. Our approach is +2.3/2.0 over MERT.

well because perceptron is known to suffer from fea-
tures of vastly different scales. Adding ruleid helps,
but still not enough. WordEdges (which is the vast
majority of features) improves BLEU by +2.0 points
and outperforms MERT, when sparse features totally
dominate dense features. Finally, the 0.3% non-local
features contribute a final +0.7 in BLEU.

5.4 Results on Large Chinese-English Data

Table 5 shows all BLEU scores for different learn-
ing algorithms on the large CH-EN data. The MERT

baseline on Cubit is essentially the same as Moses.
Our MAXFORCE activates 23M features on reach-
able sentences and prefixes in the training data, and
takes 35 hours to finish 15 iterations on 24 cores,
peaking at iteration 13. It achieves significant im-
provements over other approaches: +2.3/+2.0 points
over MERT and +1.5/+1.5 over PRO-medium on de-
v/test sets, respectively.

5.5 Results on Large Spanish-English Data

In SP-EN translation, we first run forced decod-
ing on the training set, and achieve a very high
reachability of 55% (with the same distortion limit
of 6), which is expected since the word order be-
tween Spanish and English are more similar than
than between Chinese and English, and most SP-
EN reorderings are local. Table 6 shows that MAX-
FORCE improves the translation quality over MERT

by +1.3/+1.1 BLEU on dev/test. These gains are
comparable to the improvements on the CH-EN task,
since it is well accepted in MT literature that a
change of δ in 1-reference BLEU is roughly equiva-
lent to a change of 2δ with 4 references.

system algorithm # feat. dev test
Moses MERT 11 27.4 24.4
Cubit MAXFORCE 21M 28.7 25.5

Table 6: BLEU scores (with one reference) on SP-EN.

6 Related Work

Besides those discussed in Section 1, there are also
some research on tuning sparse features on the train-
ing data, but they integrate those sparse features into
the MT log-linear model as a single feature weight,
and tune its weight on the dev set (e.g. (Liu et al.,
2008; He et al., 2008; Wuebker et al., 2010; Simi-
aner et al., 2012; Flanigan et al., 2013; Setiawan
and Zhou, 2013; He and Deng, 2012; Gao and He,
2013)). By contrast, our approach learns sparse fea-
tures only on the training set, and use dev set as held-
out to know when to stop.

Forced decoding has been used in the MT litera-
ture. For example, open source MT systems Moses
and cdec have implemented it. Liang et al. (2012)
also use the it to boost the MERT tuning by adding
more y-good derivations to the standard k-best list.

7 Conclusions and Future Work

We have presented a simple yet effective approach
of structured learning for machine translation which
scales, for the first time, to a large portion of the
whole training data, and enables us to tune a rich set
of sparse, lexical, and non-local features. Our ap-
proach results in very significant BLEU gains over
MERT and PRO baselines. For future work, we will
consider other translation paradigms such as hierar-
chical phrase-based or syntax-based MT.
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