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Abstract

Phrase-based models directly trained
on mix-of-domain corpora can be
sub-optimal. In this paper we equip
phrase-based models with a latent domain
variable and present a novel method for
adapting them to an in-domain task rep-
resented by a seed corpus. We derive an
EM algorithm which alternates between
inducing domain-focused phrase pair
estimates, and weights for mix-domain
sentence pairs reflecting their relevance
for the in-domain task. By embedding
our latent domain phrase model in a
sentence-level model and training the
two in tandem, we are able to adapt all
core translation components together
– phrase, lexical and reordering. We
show experiments on weighing sentence
pairs for relevance as well as adapting
phrase-based models, showing significant
performance improvement in both tasks.

1 Mix vs. Latent Domain Models

Domain adaptation is usually perceived as utiliz-
ing a small seed in-domain corpus to adapt an ex-
isting system trained on an out-of-domain corpus.
Here we are interested in adapting an SMT sys-
tem trained on a large mix-domain corpus Cmix

to an in-domain task represented by a seed paral-
lel corpus Cin. The mix-domain scenario is in-
teresting because often a large corpus consists of
sentence pairs representing diverse domains, e.g.,
news, politics, finance, sports, etc.

At the core of a standard state-of-the-art phrase-
based system (Och and Ney, 2004) is a phrase
table {〈ẽ, f̃〉} extracted from the word-aligned
training data together with estimates for Pt(ẽ | f̃)
and Pt(f̃ | ẽ). Because the translations of
words often vary across domains, it is likely
that in a mix-domain corpus Cmix the translation
ambiguity will increase with the domain diver-
sity. Furthermore, the statistics in Cmix will re-
flect translation preferences averaged over the di-
verse domains. In this sense, phrase-based mod-
els trained on Cmix can be considered domain-
confused. This often leads to suboptimal perfor-
mance (Gascó et al., 2012; Irvine et al., 2013).

Recent adaptation techniques can be seen as
mixture models, where two or more phrase ta-
bles, estimated from in- and mix-domain corpora,
are combined together by interpolation, fill-up, or
multiple-decoding paths (Koehn and Schroeder,
2007; Bisazza et al., 2011; Sennrich, 2012; Raz-
mara et al., 2012; Sennrich et al., 2013). Here
we are interested in the specific question how to
induce a phrase-based model from Cmix for in-
domain translation? We view this as in-domain
focused training on Cmix, a complementary adap-
tation step which might precede any further com-
bination with other models, e.g., in-, mix- or
general-domain.

The main challenge is how to induce from Cmix

a phrase-based model for the in-domain task,
given only Cin as evidence? We present an ap-
proach whereby the contrast between in-domain
prior distributions and “out-domain” distributions
is exploited for softly inviting (or recruiting) Cmix

phrase pairs to either camp. To this end we in-
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troduce a latent domain variable D to signify in-
(D1) and out-domain (D0) respectively.1

With the introduction of the latent variables, we
extend the translation tables in phrase-based mod-
els from generic Pt(ẽ | f̃) to domain-focused by
conditioning them on D, i.e., Pt(ẽ | f̃ , D) and de-
composing them as follows:

Pt(ẽ | f̃ , D) =
Pt(ẽ | f̃)P(D | ẽ, f̃)∑
ẽ Pt(ẽ | f̃)P(D | ẽ, f̃)

. (1)

Where P(D | ẽ, f̃) is viewed as the latent phrase-
relevance models, i.e., the probability that a
phrase pair is in- (D1) or out-domain (D0). In the
end, our goal is to replace the domain-confused
tables, Pt(ẽ | f̃) and Pt(f̃ | ẽ), with the in-domain
focused ones, Pt(ẽ | f̃ , D1) and Pt(f̃ | ẽ, D1).2

Note how Pt(ẽ | f̃ , D1) and Pt(f̃ | ẽ, D1) contains
Pt(ẽ | f̃) and Pt(f̃ | ẽ) as special case.

Eq. 1 shows that the key to training the latent
phrase-based translation models is to train the la-
tent phrase-relevance models, P (D | ẽ, f̃). Our
approach is to embed P (D | ẽ, f̃) in asymmetric
sentence-level models P (D | e, f) and train them
on Cmix. We devise an EM algorithm where at
every iteration, in- or out-domain estimates pro-
vide full sentence pairs 〈e, f〉 with expectations
{P (D | e, f) | D ∈ {0, 1}}. Once these ex-
pectation are in Cmix, we induce re-estimates for
the latent phrase-relevance models, P (D | ẽ, f̃).
Metaphorically, during each EM iteration the cur-
rent in- or out-domain phrase pairs compete on
inviting Cmix sentence pairs to be in- or out-
domain, which bring in new (weights for) in- and
out-domain phrases. Using the same algorithm we
also show how to adapt all core translation com-
ponents in tandem, including also lexical weights
and lexicalized reordering models.

Next we detail our model, the EM-based invita-
tion training algorithm and provide technical so-
lutions to a range of difficulties. We report exper-

1Crucially, the lack of explicit out-domain data in Cmix is
a major technical difficulty. We follow (Cuong and Sima’an,
2014) and in the sequel present a relatively efficient solution
based on a kind of “burn-in” procedure.

2It is common to use these domain-focused models as
additional features besides the domain-confused features.
However, here we are more interested in replacing the
domain-confused features rather than complementing them.
This distinguishes this work from other domain adaptation
literature for MT.

iments showing good instance weighting perfor-
mance as well as significantly improved phrase-
based translation performance.

2 Model and training by invitation

Eq. 1 shows that the key to training the latent
phrase-based translation models is to train the la-
tent phrase-relevance models, P (D | ẽ, f̃). As
mentioned, for training P (D | ẽ, f̃) on parallel
sentences in Cmix we embed them in two asym-
metric sentence-level models {P (D | e, f) | D ∈
{0, 1}}.
2.1 Domain relevance sentence models
Intuitively, sentence models for domain relevance
P (D | e, f) are somewhat related to data selec-
tion approaches (Moore and Lewis, 2010; Axel-
rod et al., 2011). The dominant approach to data
selection uses the contrast between perplexities
of in- and mix-domain language models.3 In the
translation context, however, often a source phrase
has different senses/translations in different do-
mains, which cannot be distinguished with mono-
lingual language models (Cuong and Sima’an,
2014). Therefore, our proposed latent sentence-
relevance model includes two major latent com-
ponents - monolingual domain-focused relevance
models and domain-focused translation models
derives as follows:

P (D | e, f) =
P (e, f, D)∑

D∈{D1,D0} P (e, f, D)
, (2)

where P (e, f, D) can be decomposed as:

P (f, e, D) =
1
2

(
P (D)Plm(e | D)Pt(f | e, D)

+ P (D)Plm(f | D)Pt(e | f, D)
)
.

(3)

Here

• Pt(e|f, D) and similarly Pt(f|e, D): the latent
domain-focused translation models aim at cap-
turing the faithfulness of translation with re-
spect to different domains. We simplify this as
3Note that earlier work on data selection exploits the con-

trast between in- and mix-domain. In (Cuong and Sima’an,
2014), we present the idea of using the language and transla-
tion models derived separately from in- and out-domain data,
and show how it helps for data selection.
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“bag-of-possible-phrases” translation models:4

Pt(e|f, D) :=
∏

〈ẽ,f̃〉∈A(e,f)
Pt(ẽ|f̃ , D)c(ẽ,f̃),

(4)
where A(e, f) is the multiset of phrases in
〈e, f〉 and c(·) denotes their count. Sub-model
Pt(ẽ|f̃ , D) is given by Eq. 1.

• Plm(e|D), Plm(f|D): the latent monolingual
domain-focused relevance models aim at cap-
turing the relevance of e and f for identifying
domain D but here we consider them language
models (LMs).5 As mentioned, the out-domain
LMs differ from previous works, e.g., (Axel-
rod et al., 2011), which employ mix-domain
LMs. Here, we stress the difficulty in finding
data to train out-domain LMs and present a so-
lution based on identifying pseudo out-domain
data.

• P (D): the domain priors aim at modeling
the percentage of relevant data that the learn-
ing framework induces. It can be estimated
via phrase-level parameters but here we prefer
sentence-level parameters:6

P (D) :=

∑
〈e,f〉∈Cmix

P (D | e, f)∑
D

∑
〈e,f〉∈Cmix

P (D | e, f)
(5)

2.2 Training by invitation
Generally, our model can be viewed to have latent
parameters Θ = {ΘD0 , ΘD1}. The training pro-
cedure seeks Θ that maximize the log-likelihood
of the observed sentence pairs 〈e, f〉 ∈ Cmix:

L =
∑

〈e,f〉∈Cmix

log
∑

D
PΘD

(D, e, f). (6)

It is obvious that there does not exist a closed-form
solution for Equation 6 because of the existence of

4We design our latent domain translation models with ef-
ficiency as our main concern. Future extensions could in-
clude the lexical and reordering sub-models (as suggested by
an anonymous reviewer.)

5Relevance for identification or retrieval could be differ-
ent from frequency or fluency. We leave this extension for
future work.

6It should be noted that in most phrase-based SMT sys-
tems bilingual phrase probabilities are estimated heuristically
from word alignmened data which often leads to overfitting.
Estimating P (D) from sentence-level parameters rather than
from phrase-level parameters helps us avoid the overfitting
which often accompanies phrase extraction.

the log-term log
∑

. The EM algorithm (Dempster
et al., 1977) comes as an alternative solution to fit
the model. It can be seen to maximizeL via block-
coordinate ascent on a lower bound F(q, Θ) using
an auxiliary distribution q(D | e, f)

F(q, Θ) =
∑

〈e,f〉
∑

D q(D | e, f) log
PΘD

(D, e, f)
q(D | e, f)

(7)
where the inequality results, i.e., L ≥ F(q, Θ),
derived from log being concave and Jensen’s in-
equality. We rewrite the Free Energy F(q, Θ)
(Neal and Hinton, 1999) as follows:

F =
∑

〈e,f〉
∑

D
q(D | e, f) log

PΘD
(D | e, f)

q(D | e, f)

+
∑

〈e,f〉
∑

D
q(D | e, f) log PΘ(e, f)

=
∑

〈e,f〉 log PΘ(e, f) (8)

−KL[q(D | e, f) || PΘD
(D | e, f)],

where KL[· || ·] is the KL-divergence.
With the introduction of the KL-divergence, the

alternating E and M steps for our EM algorithm
are easily derived as

E-step : qt+1 (9)

argmaxq(D | e,f)F(q, Θt) =

argminq(D | e,f) KL[q(D|e, f) || PΘt
D

(D|e, f)]

= PΘt
D

(D | e, f)

M-step : Θt+1 (10)

argmaxΘF(qt+1, Θ) =

argmaxΘ

∑
〈e,f〉

∑
D

q(D | e, f) log PΘD
(D, e, f)

The iterative procedure is illustrated in Fig-
ure 1.7 At the E-step, a guess for P (D | ẽ, f̃) can
be used to update Pt(f̃ | ẽ, D) and Pt(ẽ | f̃ , D)
(i.e., using Eq. 1) and consequently Pt(f | e, D)
and Pt(e | f, D) (i.e., using Eq. 4). These resulting
table estimates, together with the domain-focused
LMs and the domain priors are served as expected
counts to update P (D | e, f).8 At the M-step,

7For simplicity, we ignore the LMs and prior models in
the illustration in Fig. 1.

8Since we only use the in-domain corpus as priors to ini-
tilize the EM parameters, in technical perspective we do not
want P (D | e, f) parameters to go too far off from the initial-
ization. We therefore prefer the averaged style in practice,
i.e., at the iteration n we update the P (D |e, f) parameters,
P (n)(D|e, f) as 1

n
(P (n)(D | e, f) +

∑n−1
i=1 P (i)(D | e, f)).
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P (ẽ|f̃ , D)

P (f̃ |ẽ, D)

P (e|f, D)

P (f|e, D)

P (f, e, D)

P (D|ẽ, f̃) P (D|e, f)

Phrase-level Sentence-level

Re-update phrase-level parameters

Update sentence-level parameters

Figure 1: Our probabilistic invitation framework.

the new estimates for P (D | e, f) can be used to
(softly) fill in the values of hidden variable D and
estimate parameters P (D | ẽ, f̃) and P (D). The
EM is guaranteed to converge to a local maximum
of the likelihood under mild conditions (Neal and
Hinton, 1999).

Before EM training starts we must provide a
“reasonable” initial guess for P (D | ẽ, f̃). We
must also train the out-domain LMs, which needs
the construction of pseudo out-domain data.9

One simple way to do that is inspired by burn-
in in sampling, under the guidance of an in-
domain data set, Cin as prior. At the begin-
ning, we train Pt(ẽ | f̃ , D1) and Pt(f̃ | ẽ, D1)
for all phrases learned from Cin. We also train
Pt(ẽ | f̃) and Pt(f̃ | ẽ) for all phrases learned
from Cmix. During burn-in we assume that the
out-domain phrase-based models are the domain-
confused phrase-based models, i.e., Pt(ẽ | f̃ , D0)
≈ Pt(ẽ | f̃) and Pt(f̃ | ẽ, D0) ≈ Pt(f̃ | ẽ). We
isolate all the LMs and the prior models from our
model, and apply a single EM iteration to update
P (D | e, f) based on those domain-focused mod-
els Pt(ẽ | f̃ , D) and Pt(f̃ | ẽ, D).

In the end, we use P (D | e, f) to fill in the val-
ues of hidden variable D in Cmix, so it provides
us with an initialization for P (D | ẽ, f̃). Subse-
quently, we also rank sentence pairs in Cmix with
P (D1 | e, f) and select a subset of smallest scor-
ing pairs as a pseudo out-domain subset to train
Plm(e | D0) and Plm(f | D0). Once the latent
domain-focused LMs have been trained, the LM
probabilities stay fixed during EM. Crucially, it

9The in-domain LMs Plm(e | D1) and Plm(f | D1) can
be simply trained on the source and target sides of Cin re-
spectively.

is important to scale the probabilities of the four
LMs to make them comparable: we normalize the
probability that a LM assigns to a sentence by the
total probability this LM assigns to all sentences
in Cmix.

3 Intrinsic evaluation

We evaluate the ability of our model to retrieve
“hidden” in-domain data in a large mix-domain
corpus, i.e., we hide some in-domain data in a
large mix-domain corpus. We weigh sentence
pairs under our model with P (D1 | ẽ, f̃) and
P (D1 | e, f) respectively. We report pseudo-
precision/recall at the sentence-level using a
range of cut-off criteria for selecting the top
scoring instances in the mix-domain corpus. A
good relevance model expects to score higher for
the hidden in-domain data.

Baselines Two standard perplexity-based se-
lection models in the literature have been
implemented as the baselines: cross-entropy
difference (Moore and Lewis, 2010) and bilingual
cross-entropy difference (Axelrod et al., 2011),
investigating their ability to retrieve the hiding
data as well. Training them over the data to learn
the sentences with their relevance, we then rank
the sentences to select top of pairs to evaluate the
pseudo-precision/recall at the sentence-level.

Results We use a mix-domain corpus Cg of 770K
sentence pairs of different genres.10 There is also
a Legal corpus of 183K pairs that serves as the
in-domain data. We create Cmix by selecting an
arbitrary 83K pairs of in-domain pairs and adding
them to Cg (the hidden in-domain data); we use
the remaining 100k in-domain pairs as Cin.

To train the baselines, we construct interpo-
lated 4-gram Kneser-Ney LMs using BerkeleyLM
(Pauls and Klein, 2011). Training our model on
the data takes six EM-iterations to converge.11

10Count of sentence pairs: European Parliament (Koehn,
2005): 183, 793; Pharmaceuticals: 190, 443, Software:
196, 168, Hardware: 196, 501.

11After the fifth EM iteration we do not observe any sig-
nificant increase in the likelihood of the data. Note that we
use the same setting as for the baselines to train the latent
domain-focused LMs for use in our model – interpolated 4-
gram Kneser-Ney LMs using BerkeleyLM. This training set-
ting is used for all experiments in this work.
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Figure 2: Intrinsic evaluation.

Fig. 2 helps us examine how the pseudo sen-
tence invitation are done during each EM iter-
ation. For later iterations we observe a better
pseudo-precision and pseudo-recall at sentence-
level (Fig. 2(a), Fig. 2(b)). Fig. 2 also reveals
a good learning capacity of our learning frame-
work. Nevertheless, we observe that the baselines
do not work well for this task. This is not new,
as pointed out in our previous work (Cuong and
Sima’an, 2014).

Which component type contributes more to the
performance, the latent domain language models
or the latent domain translation models? Further
experiments have been carried on to neutralize
each component type in turn and build a selection
system with the rest of our model parameters. It
turns out that the latent domain translation mod-
els are crucial for performance for the learning
framework, while the latent domain LMs make a
far smaller yet substantial contribution. We refer
readers to our previous work (Cuong and Sima’an,
2014), which provides detail analysis of the data
selection problem.

4 Translation experiments: Setting

Data We use a mix-domain corpus consisting of
4M sentence pairs, collected from multiple re-
sources including EuroParl (Koehn, 2005), Com-
mon Crawl Corpus, UN Corpus, News Commen-
tary. As in-domain corpus we use “Consumer
and Industrial Electronics” manually collected
by Translation Automation Society (TAUS.com).
The corpus statistics are summarized in Table 1.
System We train a standard state-of-the-art

English Spanish

Cmix
Sents 4M
Words 113.7M 127.1M

Domain:
Electronics

Cin

Sents 109K
Words 1, 485, 558 1, 685, 716

Dev Sents 984
Words 13130 14, 955

Test Sents 982
Words 13, 493 15, 392

Table 1: The data preparation.

phrase-based system, using it as the baseline.12

There are three main kinds of features for the
translation model in the baseline - phrase-based
translation features, lexical weights (Koehn et al.,
2003) and lexicalized reordering features (Koehn
et al., 2005).13 Other features include the penal-
ties for word, phrase and distance-based reorder-
ing.

The mix-domain corpus is word-aligned using
GIZA++ (Och and Ney, 2003) and symmetrized
with grow(-diag)-final-and (Koehn et al., 2003).
We limit phrase length to a maximum of seven
words. The LMs are interpolated 4-grams with
Kneser-Ney, trained on 2.2M English sentences
from Europarl augmented with 248.8K sentences
from News Commentary Corpus (WMT 2013).
We tune the system using k-best batch MIRA
(Cherry and Foster, 2012). Finally, we use Moses

12We use Stanford Phrasal - a standard state-of-the-art
phrase-based translation system developed by Cer et al.
(2010).

13The lexical weights and the lexical reordering features
will be described in more detail in Section 6.

570



19.91 

20.48 
20.5 

20.64 

20.51 20.52 

19.8

20

20.2

20.4

20.6

20.8

21

21.2

Baseline Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5

Electrics (Training Data: 1 Million) 
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(Koehn et al., 2007) as decoder.14

We report BLEU (Papineni et al., 2002), ME-
TEOR 1.4 (Denkowski and Lavie, 2011) and TER
(Snover et al., 2006), with statistical significance
at 95% confidence interval under paired bootstrap
re-sampling (Press et al., 1992). For every system
reported, we run the optimizer at least three times,
before running MultEval (Clark et al., 2011) for
resampling and significance testing.
Outlook In Section 5 we examine the effect of
training only the latent domain-focused phrase ta-
ble using our model. In Section 6 we proceed fur-
ther to estimate also latent domain-focused lexical
weights and lexicalized reordering models, exam-
ining how they incrementally improve the transla-
tion as well.

5 Adapting phrase table only

Here we investigate the effect of adapting the
phrase table only; we will delay adapting the
lexical weights and lexicalized reordering fea-
tures to Section 6. We build a phrase-based sys-
tem with the usual features as the baseline, in-
cluding two bi-directional phrase-based models,
plus the penalties for word, phrase and distortion.
We also build a latent domain-focused phrase-
based system with the two bi-directional latent
phrase-based models, and the standard penalties
described above.

We explore training data sizes 1M , 2M
and 4M sentence pairs. Three baselines are
trained yielding 95.77M , 176.29M and 323.88M
phrases respectively. We run 5 EM iterations to

14While we implement the latent domain phrase-based
models using Phrasal for some advantages, we prefer to use
Moses for decoding.

train our learning framework. We use the pa-
rameter estimates for P (D | ẽ, f̃) derived at each
EM iteration to train our latent domain-focused
phrase-based systems. Fig. 3 presents the results
(in BLEU) at each iteration in detail for the case of
1M sentence pairs. Similar improvements are ob-
served for METEOR and TER. Here, we consis-
tently observe improvements at p-value = 0.0001
for all cases.

It should be noted that when doubling the train-
ing data to 2M and 4M , we observe the similar
results.

Finally, for all cases we report their best result
in Table 2. Here, note how the improvement could
be gained when doubling the training data.

Data System Avg ∆ p-value

1M
Baseline 19.91 − −
Our System 20.64 +0.73 0.0001

2M
Baseline 20.54 − −
Our System 21.41 +0.87 0.0001

4M
Baseline 21.44 − −
Our System 22.62 +1.18 0.0001

Table 2: BLEU averaged over multiple runs.

It is also interesting to consider the average
entropy of phrase table entries in the domain-
confused systems, i.e.,

−∑〈ẽ,f̃〉 pt(ẽ|f̃) log pt(ẽ|f̃)

number of phrases〈ẽ, f̃〉
against that in the domain-focused systems

−∑〈ẽ,f̃〉 pt(ẽ|f̃ , D1) log pt(ẽ|f̃ , D1)

number of phrases〈ẽ, f̃〉 .

Following (Hasler et al., 2014) in Table 3 we also
show that the entropy decreases significantly in
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the adapted tables in all cases, which indicates that
the distributions over translations of phrases have
become sharper.

Baseline Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5
0.210 0.187 0.186 0.185 0.185 0.184

Table 3: Average entropy of distributions.

In practice, the third iteration systems usually
produce best translations. This is somewhat ex-
pected because as EM invites more pseudo in-
domain pairs in later iterations, it sharpens the
estimates of P (D1 | ẽ, f̃), making pseudo out-
domain pairs tend to 0.0. Table 4 shows the per-
centage of entries with P (D1 | ẽ, f̃) < 0.01 at
every iteration, e.g., 34.52% at the fifth iteration.
This induced schism in Cmix diminishes the dif-
ference between the relevance scores for certain
sentence pairs, limiting the ability of the latent
phrase-based models to further discriminate in the
gray zone.

Entries P (D1|f̃ , ẽ) < 0.01
Iter. 1 22.82%
Iter. 2 27.06%
Iter. 3 30.07%
Iter. 4 32.47%
Iter. 5 34.52%

Table 4: Phrase analyses.

Finally, to give a sense of the improvement
in translation, we (randomly) select cases where
the systems produce different translations and
present some of them in Table 5. These ex-
amples are indeed illuminating, e.g., “can repro-
duce signs of audio”/“can play signals audio”,
“password teacher”/“password master”, reveal-
ing thoroughly the benefit derived from adapting
the phrase models from being domain-confused to
being domain-focused. Table 6 presents phrase ta-
ble entries, i.e., pt(e | f) and pt(e | f, D1), for the
“can reproduce signs of audio”/“can play signals
audio” example.

6 Fully adapted translation model

The preceding experiments reveal that adapting
the phrase tables significantly improves transla-
tion performance. Now we also adapt the lexical

señales reproducir
Entries signals signs play reproduce
Baseline 0.29 0.36 0.15 0.20
Iter. 1 0.36 0.23 0.29 0.16
Iter. 2 0.37 0.19 0.32 0.17
Iter. 3 0.37 0.17 0.34 0.16
Iter. 4 0.37 0.16 0.36 0.16
Iter. 5 0.37 0.15 0.37 0.16

Table 6: Phrase entry examples.

and reordering components. The result is a fully
adapted, domain-focused, phrase-based system.

Briefly, the lexical weights provide smooth es-
timates for the phrase pair based on word trans-
lation scores P (e | f) between pairs of words
〈e, f〉, i.e., P (e | f) = c(e,f)∑

e c(e,f) (Koehn et
al., 2003). Our latent domain-focused lexical
weights, on the other hand, are estimated ac-
cording to P (e | f, D1), i.e., P (e | f, D1) =

P (e | f)P (D1 | e, f)∑
f P (e | f)P (D1 | e, f) .

The lexicalized reordering models with orien-
tation variable O, P (O | ẽ, f̃), model how likely
a phrase 〈ẽ, f̃〉 directly follows a previous phrase
(monotone), swaps positions with it (swap), or
is not adjacent to it (discontinous) (Koehn et al.,
2005). We make these domain-focused:

P (O | ẽ, f̃ , D1) = P (O | ẽ, f̃)P (D1 | O, ẽ, f̃)∑
O P (O | ẽ, f̃)P (D1 | O, ẽ, f̃)

(11)
Estimating P (D1 | O, ẽ, f̃) and P (D1 | e, f) is
similar to estimating P (D1 | ẽ, f̃) and hinges on
the estimates of P (D1 | e, f) during EM.

The baseline for the following experiments is a
standard state-of-the-art phrase-based system, in-
cluding two bi-directional phrase-based transla-
tion features, two bi-directional lexical weights,
six lexicalized reordering features, as well as the
penalties for word, phrase and distortion. We de-
velop three kinds of domain-adapted systems that
are different at their adaptation level to fit the task.
The first (Sys. 1) adapts only the phrase-based
models, using the same lexical weights, lexical-
ized reordering models and other penalties as the
baseline. The second (Sys. 2) adapts also the lex-
ical weights, fixing all other features as the base-
line. The third (Sys. 3) adapts both the phrase-
based models, lexical weights and lexicalized re-

572



Translation Examples
Input El reproductor puede reproducir señales de audio grabadas en mix-mode cd, cd-g, cd-extra y cd text.

Reference The player can play back audio signals recorded in mix-mode cd, cd-g, cd-extra and cd text.

Baseline The player can reproduce signs of audio recorded in mix-mode cd, cd-g, cd-extra and cd text.

Our System The player can play signals audio recorded in mix-mode cd, cd-g, cd-extra and cd text.

Input Se puede crear un archivo autodescodificable cuando el archivo codificado se abre con la contraseña maestra.

Reference A self-decrypting file can be created when the encrypted file is opened with the master password.

Baseline To create an file autodescodificable when the file codified commenced with the password teacher.

Our System You can create an archive autodescodificable when the file codified opens with the password master.

Input Repite todas las pistas (únicamente cds de vı́deo sin pbc)

Reference Repeat all tracks (non-pbc video cds only)

Baseline Repeated all avenues (only cds video without pbc)

Our System Repeated all the tracks (only cds video without pbc)

Table 5: Translation examples yielded by a domain-confused phrase-based system (the baseline) and a
domain-focused phrase-based system (our system).

ordering models15, fixing other penalties as the
baseline.

Metric System Avg ∆ p-value
Consumer and Industrial Electronics
(In-domain: 109K pairs; Dev: 982 pairs; Test: 984 pairs)

BLEU

Baseline 22.9 − −
Sys. 1 23.4 +0.5 0.008
Sys. 2 23.9 +1.0 0.0001
Sys. 3 24.0 +1.1 0.0001

METEOR

Baseline 30.0 − −
Sys. 1 30.4 +0.4 0.0001
Sys. 2 30.8 +0.8 0.0001
Sys. 3 30.9 +0.9 0.0001

TER

Baseline 59.5 − −
Sys. 1 58.8 -0.7 0.0001
Sys. 2 58.0 -1.5 0.0001
Sys. 3 57.9 -1.6 0.0001

Table 7: Metric scores for the systems, which are
averages over multiple runs.

Table 7 presents results for training data size
of 4M parallel sentences. It shows that the fully
domain-focused system (Sys. 3) significantly im-
proves over the baseline. The table also shows
that the latent domain-focused phrase-based mod-
els and lexical weights are crucial for the im-
proved performance, whereas adapting the re-
ordering models makes a far smaller contribution.

Finally we also apply our approach to other
15We run three EM iterations to train our invitation frame-

work, and then use the parameter estimates for P (D1 | ẽ, f̃),
P (D1 | e, f) and P (D1 | O, ẽ, f̃) to train these domain-
focused features. We adopt this training setting for all other
different tasks in the sequel.

tasks where the relation between their in-domain
data and the mix-domain data varies substantially.
Table 8 presents their in-domain, tuning and test
data in detail, as well as the translation results
over them. It shows that the fully domain-focused
systems consistently and significantly improve the
translation accuracy for all the tasks.

7 Combining multiple models

Finally, we proceed further to test our latent
domain-focused phrase-based translation model
on standard domain adaptation. We conduct ex-
periments on the task “Professional & Business
Services” as an example.16 For standard adap-
tation we follow (Koehn and Schroeder, 2007)
where we pass multiple phrase tables directly to
the Moses decoder and tune them together. For
baseline we combine the standard phrase-based
system trained on Cmix with the one trained on
the in-domain data Cin. We also combine our la-
tent domain-focused phrase-based system with the
one trained on Cin. Table 9 presents the results
showing that combining our domain-focused sys-
tem adapted from Cmix with the in-domain model
outperforms the baseline.

16We choose this task for additional experiments because
it has very small in-domain data (23K). This is supposed
to make adaptation difficult because of the robust large-scale
systems trained on Cmix.
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Metric System Avg ∆ p-value
Professional & Business Services
(In-domain: 23K pairs; Dev: 1, 000 pairs; Test: 998 pairs)

BLEU Baseline 22.0 − −
Our System 23.1 +1.1 0.0001

METEOR Baseline 30.8 − −
Our System 31.4 +0.6 0.0001

TER Baseline 58.0 − −
Our System 56.6 -1.4 0.0001

Financials
(In-domain: 31K pairs; Dev: 1, 000 pairs; Test: 1, 000 pairs)

BLEU Baseline 31.1 − −
Our System 31.8 +0.7 0.0001

METEOR Baseline 36.3 − −
Our System 36.6 +0.3 0.0001

TER Baseline 48.8 − −
Our System 48.3 -0.5 0.0001

Computer Hardware
(In-domain: 52K pairs; Dev: 1, 021 pairs; Test: 1, 054 pairs)

BLEU Baseline 24.6 − −
Our System 25.3 +0.7 0.0001

METEOR Baseline 32.4 − −
Our System 33.1 +0.7 0.0001

TER Baseline 56.4 − −
Our System 55.0 -1.4 0.0001

Computer Software
(In-domain: 65K pairs; Dev: 1, 100 pairs; Test: 1, 000 pairs)

BLEU Baseline 27.4 − −
Our System 28.3 +0.9 0.0001

METEOR Baseline 34.0 − −
Our System 34.7 +0.7 0.0001

TER Baseline 51.7 − −
Our System 50.6 -1.1 0.0001

Pharmaceuticals & Biotechnology
(In-domain: 85K pairs; Dev: 920 pairs; Test: 1, 000 pairs)

BLEU Baseline 31.6 − −
Our System 32.4 +0.8 0.0001

METEOR Baseline 34.0 − −
Our System 34.4 +0.4 0.0001

TER Baseline 51.4 − −
Our System 50.6 -0.8 0.0001

Table 8: Metric scores for the systems, which are
averages over multiple runs.

8 Related work

A distantly related, but clearly complementary,
line of research focuses on the role of docu-
ment topics (Eidelman et al., 2012; Zhang et al.,
2014; Hasler et al., 2014). An off-the-shelf Latent
Dirichlet Allocation tool is usually used to infer
document-topic distributions. On one hand, this
setting may not require in-domain data as prior.
On the other hand, it requires meta-information
(e.g., document information).

Part of this work (the latent sentence-relevance
models) relates to data selection (Moore and
Lewis, 2010; Axelrod et al., 2011), where
sentence-relevance weights are used for hard-

Metric System Avg ∆ p-value
Professional & Business Services
(In-domain: 23K pairs; Dev: 1, 000 pairs; Test: 998 pairs)

BLEU In-domain 46.5 − −
+ Mix-domain 46.6 − −
+ Our system 47.9 +1.3 0.0001

METEOR In-domain 39.8 − −
+ Mix-domain 40.1 − −
+ Our System 41.1 +1.0 0.0001

TER In-domain 38.2 − −
+ Mix-domain 38.0 − −
+ Our System 36.9 -1.1 0.0001

Table 9: Domain adaptation experiments. Metric
scores for the systems, which are averages over
multiple runs.

filtering rather than weighting. The idea of using
sentence-relevance estimates for phrase-relevance
estimates relates to Matsoukas et al. (2009) who
estimate the former using meta-information over
documents as main features. In contrast, our work
overcomes the mutual dependence of sentence and
phrase estimates on one another by training both
models in tandem.

Adaptation using small in-domain data has
a different but complementary goal to another
line of research aiming at combining a domain-
adapted system with the another trained on the in-
domain data (Koehn and Schroeder, 2007; Bisazza
et al., 2011; Sennrich, 2012; Razmara et al., 2012;
Sennrich et al., 2013). Our work is somewhat re-
lated to, but markedly different from, phrase pair
weighting (Foster et al., 2010). Finally, our latent
domain-focused phrase-based models and invita-
tion training paradigm can be seen to shift atten-
tion from adaptation to making explicit the role of
domain-focused models in SMT.

9 Conclusion

We present a novel approach for in-domain fo-
cused training of a phrase-based system on a
mix-of-domain corpus by using prior distributions
from a small in-domain corpus. We derive an EM
training algorithm for learning latent domain rel-
evance models for the phrase- and sentence-levels
in tandem. We also show how to overcome the
difficulty of lack of explicit out-domain data by
bootstrapping pseudo out-domain data.

In future work, we plan to explore generative
Bayesian models as well as discriminative learn-
ing approaches with different ways for estimat-
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ing the latent domain relevance models. We hy-
pothesize that bilingual, but also monolingual, rel-
evance models can be key to improved perfor-
mance.
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