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Abstract

We present a pairwise learning-to-rank
approach to machine translation evalua-
tion that learns to differentiate better from
worse translations in the context of a given
reference. We integrate several layers
of linguistic information encapsulated in
tree-based structures, making use of both
the reference and the system output simul-
taneously, thus bringing our ranking closer
to how humans evaluate translations. Most
importantly, instead of deciding upfront
which types of features are important, we
use the learning framework of preference
re-ranking kernels to learn the features au-
tomatically. The evaluation results show
that learning in the proposed framework
yields better correlation with humans than
computing the direct similarity over the
same type of structures. Also, we show
our structural kernel learning (SKL) can
be a general framework for MT evaluation,
in which syntactic and semantic informa-
tion can be naturally incorporated.

1 Introduction

We have seen in recent years fast improvement
in the overall quality of machine translation (MT)
systems. This was only possible because of the
use of automatic metrics for MT evaluation, such
as BLEU (Papineni et al., 2002), which is the de-
facto standard; and more recently: TER (Snover et
al., 2006) and METEOR (Lavie and Denkowski,
2009), among other emerging MT evaluation met-
rics. These automatic metrics provide fast and in-
expensive means to compare the output of differ-
ent MT systems, without the need to ask for hu-
man judgments each time the MT system has been
changed.

As a result, this has enabled rapid develop-
ment in the field of statistical machine translation
(SMT), by allowing to train and tune systems as
well as to track progress in a way that highly cor-
relates with human judgments.

Today, MT evaluation is an active field of re-
search, and modern metrics perform analysis at
various levels, e.g., lexical (Papineni et al., 2002;
Snover et al., 2006), including synonymy and
paraphrasing (Lavie and Denkowski, 2009); syn-
tactic (Giménez and Màrquez, 2007; Popović
and Ney, 2007; Liu and Gildea, 2005); semantic
(Giménez and Màrquez, 2007; Lo et al., 2012);
and discourse (Comelles et al., 2010; Wong and
Kit, 2012; Guzmán et al., 2014; Joty et al., 2014).

Automatic MT evaluation metrics compare the
output of a system to one or more human ref-
erences in order to produce a similarity score.
The quality of such a metric is typically judged
in terms of correlation of the scores it produces
with scores given by human judges. As a result,
some evaluation metrics have been trained to re-
produce the scores assigned by humans as closely
as possible (Albrecht and Hwa, 2008). Unfortu-
nately, humans have a hard time assigning an ab-
solute score to a translation. Hence, direct hu-
man evaluation scores such as adequacy and flu-
ency, which were widely used in the past, are
now discontinued in favor of ranking-based eval-
uations, where judges are asked to rank the out-
put of 2 to 5 systems instead. It has been shown
that using such ranking-based assessments yields
much higher inter-annotator agreement (Callison-
Burch et al., 2007).

While evaluation metrics still produce numeri-
cal scores, in part because MT evaluation shared
tasks at NIST and WMT ask for it, there has also
been work on a ranking formulation of the MT
evaluation task for a given set of outputs. This
was shown to yield higher correlation with human
judgments (Duh, 2008; Song and Cohn, 2011).
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Learning automatic metrics in a pairwise set-
ting, i.e., learning to distinguish between two al-
ternative translations and to decide which of the
two is better (which is arguably one of the easiest
ways to produce a ranking), emulates closely how
human judges perform evaluation assessments in
reality. Instead of learning a similarity function
between a translation and the reference, they learn
how to differentiate a better from a worse trans-
lation given a corresponding reference. While the
pairwise setting does not provide an absolute qual-
ity scoring metric, it is useful for most evaluation
and MT development scenarios.

In this paper, we propose a pairwise learning
setting similar to that of Duh (2008), but we extend
it to a new level, both in terms of feature represen-
tation and learning framework. First, we integrate
several layers of linguistic information encapsu-
lated in tree-based structures; Duh (2008) only
used lexical and POS matches as features. Second,
we use information about both the reference and
two alternative translations simultaneously, thus
bringing our ranking closer to how humans rank
translations. Finally, instead of deciding upfront
which types of features between hypotheses and
references are important, we use a our structural
kernel learning (SKL) framework to generate and
select them automatically.

The structural kernel learning (SKL) framework
we propose consists in: (i) designing a struc-
tural representation, e.g., using syntactic and dis-
course trees of translation hypotheses and a refer-
ences; and (ii) applying structural kernels (Mos-
chitti, 2006; Moschitti, 2008), to such representa-
tions in order to automatically inject structural fea-
tures in the preference re-ranking algorithm. We
use this method with translation-reference pairs
to directly learn the features themselves, instead
of learning the importance of a predetermined set
of features. A similar learning framework has
been proven to be effective for question answer-
ing (Moschitti et al., 2007), and textual entailment
recognition (Zanzotto and Moschitti, 2006).

Our goals are twofold: (i) in the short term, to
demonstrate that structural kernel learning is suit-
able for this task, and can effectively learn to rank
hypotheses at the segment-level; and (ii) in the
long term, to show that this approach provides a
unified framework that allows to integrate several
layers of linguistic analysis and information and to
improve over the state-of-the-art.

Below we report the results of some initial ex-
periments using syntactic and discourse structures.
We show that learning in the proposed framework
yields better correlation with humans than apply-
ing the traditional translation–reference similarity
metrics using the same type of structures. We
also show that the contributions of syntax and dis-
course information are cumulative. Finally, de-
spite the limited information we use, we achieve
correlation at the segment level that outperforms
BLEU and other metrics at WMT12, e.g., our met-
ric would have been ranked higher in terms of cor-
relation with human judgments compared to TER,
NIST, and BLEU in the WMT12 Metrics shared
task (Callison-Burch et al., 2012).

2 Kernel-based Learning from Linguistic
Structures

In our pairwise setting, each sentence s in
the source language is represented by a tuple
〈t1, t2, r〉, where t1 and t2 are two alternative
translations and r is a reference translation. Our
goal is to develop a classifier of such tuples that
decides whether t1 is a better translation than t2
given the reference r.

Engineering features for deciding whether t1 is
a better translation than t2 is a difficult task. Thus,
we rely on the automatic feature extraction en-
abled by the SKL framework, and our task is re-
duced to choosing: (i) a meaningful structural rep-
resentation for 〈t1, t2, r〉, and (ii) a feature func-
tion φmt that maps such structures to substruc-
tures, i.e., our feature space. Since the design
of φmt is complex, we use tree kernels applied
to two simpler structural mappings φM (t1, r) and
φM (t2, r). The latter generate the tree representa-
tions for the translation-reference pairs (t1, r) and
(t2, r). The next section shows such mappings.

2.1 Representations

To represent a translation-reference pair (t, r), we
adopt shallow syntactic trees combined with RST-
style discourse trees. Shallow trees have been
successfully used for question answering (Severyn
and Moschitti, 2012) and semantic textual sim-
ilarity (Severyn et al., 2013b); while discourse
information has proved useful in MT evaluation
(Guzmán et al., 2014; Joty et al., 2014). Com-
bined shallow syntax and discourse trees worked
well for concept segmentation and labeling (Saleh
et al., 2014a).
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Figure 1: Hypothesis and reference trees combining discourse, shallow syntax and POS.

Figure 1 shows two example trees combining
discourse, shallow syntax and POS: one for a
translation hypothesis (top) and the other one for
the reference (bottom). To build such structures,
we used the Stanford POS tagger (Toutanova et
al., 2003), the Illinois chunker (Punyakanok and
Roth, 2001), and the discourse parser1 of (Joty et
al., 2012; Joty et al., 2013).

The lexical items constitute the leaves of the
tree. The words are connected to their respec-
tive POS tags, which are in turn grouped into
chunks. Then, the chunks are grouped into el-
ementary discourse units (EDU), to which the
nuclearity status is attached (i.e., NUCLEUS or
SATELLITE). Finally, EDUs and higher-order dis-
course units are connected by discourse relations
(e.g., DIS:ELABORATION).

2.2 Kernels-based modeling

In the SKL framework, the learning objects are
pairs of translations 〈t1, t2〉. Our objective is to
automatically learn which pair features are impor-
tant, independently of the source sentence. We
achieve this by using kernel machines (KMs) over
two learning objects 〈t1, t2〉, 〈t′1, t

′
2〉, along with

an explicit and structural representation of the
pairs (see Fig. 1).

1The discourse parser can be downloaded from
http://alt.qcri.org/tools/

More specifically, KMs carry out learning using
the scalar product

Kmt(〈t1, t2〉, 〈t′1, t
′
2〉) = φmt(t1, t2) ·φmt(t

′
1, t

′
2),

where φmt maps pairs into the feature space.
Considering that our task is to decide whether

t1 is better than t2, we can conveniently rep-
resent the vector for the pair in terms of the
difference between the two translation vectors,
i.e., φmt(t1, t2) = φK(t1) − φK(t2). We can
approximate Kmt with a preference kernel PK to
compute this difference in the kernel space K:

PK(〈t1, t2〉, 〈t′1, t′2〉) (1)

= K(t1)− φK(t2)) · (φK(t′1)− φK(t′2))
= K(t1, t′1) +K(t2, t′2)−K(t1, t′2)−K(t2, t′1)

The advantage of this is that now K(ti, t′j) =
φK(ti) · φK(t′j) is defined between two transla-
tions only, and not between two pairs of transla-
tions. This simplification enables us to map trans-
lations into simple trees, e.g., those in Figure 1,
and then to apply them tree kernels, e.g., the Par-
tial Tree Kernel (Moschitti, 2006), which carry out
a scalar product in the subtree space.

We can further enrich the representation φK , if
we consider all the information available to the
human judges when they are ranking translations.
That is, the two alternative translations along with
their corresponding reference.
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In particular, let r and r′ be the references for
the pairs 〈t1, t2〉 and 〈t′1, t′2〉, we can redefine all
the members of Eq. 1, e.g., K(t1, t′1) becomes
K(〈t1, r〉, 〈t′1, r′〉) = PTK(φM (t1, r), φM (t′1, r′))
+ PTK(φM (r, t1), φM (r′, t′1)),
where φM maps a pair of texts to a single tree.

There are several options to produce the bitext-
to-tree mapping for φM . A simple approach is
to only use the tree corresponding to the first ar-
gument of φM . This leads to the basic model
K(〈t1, r〉, 〈t′1, r′〉) = PTK(φM (t1), φM (t′1)) +
PTK(φM (r), φM (r′)), i.e., the sum of two tree
kernels applied to the trees constructed by φM (we
previously informally mentioned it).

However, this simple mapping may be ineffec-
tive since the trees within a pair, e.g., (t1, r), are
treated independently, and no meaningful features
connecting t1 and r can be derived from their
tree fragments. Therefore, we model φM (r, t1) by
using word-matching relations between t1 and r,
such that connections between words and con-
stituents of the two trees are established using
position-independent word matching. For exam-
ple, in Figure 1, the thin dashed arrows show the
links connecting the matching words between t1
and r. The propagation of these relations works
from the bottom up. Thus, if all children in a con-
stituent have a link, their parent is also linked.

The use of such connections is essential as it en-
ables the comparison of the structural properties
and relations between two translation-reference
pairs. For example, the tree fragment [ELABORA-
TION [SATELLITE]] from the translation is con-
nected to [ELABORATION [SATELLITE]] in the
reference, indicating a link between two entire dis-
course units (drawn with a thicker arrow), and pro-
viding some reliability to the translation2.

Note that the use of connections yields a graph
representation instead of a tree. This is problem-
atic as effective models for graph kernels, which
would be a natural fit to this problem, are not cur-
rently available for exploiting linguistic informa-
tion. Thus, we simply use K, as defined above,
where the mapping φM (t1, r) only produces a tree
for t1 annotated with the marker REL represent-
ing the connections to r. This marker is placed on
all node labels of the tree generated from t1 that
match labels from the tree generated from r.

2Note that a non-pairwise model, i.e., K(t1, r), could
also be used to match the structural information above, but
it would not learn to compare it to a second pair (t2, r).

In other words, we only consider the trees en-
riched by markers separately, and ignore the edges
connecting both trees.

3 Experiments and Discussion

We experimented with datasets of segment-level
human rankings of system outputs from the
WMT11 and the WMT12 Metrics shared tasks
(Callison-Burch et al., 2011; Callison-Burch et al.,
2012): we used the WMT11 dataset for training
and the WMT12 dataset for testing. We focused
on translating into English only, for which the
datasets can be split by source language: Czech
(cs), German (de), Spanish (es), and French (fr).
There were about 10,000 non-tied human judg-
ments per language pair per dataset. We scored
our pairwise system predictions with respect to
the WMT12 human judgments using the Kendall’s
Tau (τ ), which was official at WMT12.

Table 1 presents the τ scores for all metric vari-
ants introduced in this paper: for the individual
language pairs and overall. The left-hand side of
the table shows the results when using as sim-
ilarity the direct kernel calculation between the
corresponding structures of the candidate transla-
tion and the reference3, e.g., as in (Guzmán et al.,
2014; Joty et al., 2014). The right-hand side con-
tains the results for structured kernel learning.

We can make the following observations:
(i) The overall results for all SKL-trained metrics
are higher than the ones when applying direct sim-
ilarity, showing that learning tree structures is bet-
ter than just calculating similarity.
(ii) Regarding the linguistic representation, we see
that, when learning tree structures, syntactic and
discourse-based trees yield similar improvements
with a slight advantage for the former. More in-
terestingly, when both structures are put together
in a combined tree, the improvement is cumula-
tive and yields the best results by a sizable margin.
This provides positive evidence towards our goal
of a unified tree-based representation with multi-
ple layers of linguistic information.
(iii) Comparing to the best evaluation metrics
that participated in the WMT12 Metrics shared
task, we find that our approach is competitive and
would have been ranked among the top 3 partici-
pants.

3Applying tree kernels between the members of a pair to
generate one feature (for each different kernel function) has
become a standard practice in text similarity tasks (Severyn et
al., 2013b) and in question answering (Severyn et al., 2013a).
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Similarity Structured Kernel Learning
Structure cs-en de-en es-en fr-en all cs-en de-en es-en fr-en all

1 SYN 0.169 0.188 0.203 0.222 0.195 0.190 0.244 0.198 0.158 0.198
2 DIS 0.130 0.174 0.188 0.169 0.165 0.176 0.235 0.166 0.160 0.184
3 DIS+POS 0.135 0.186 0.190 0.178 0.172 0.167 0.232 0.202 0.133 0.183
4 DIS+SYN 0.156 0.205 0.206 0.203 0.192 0.210 0.251 0.240 0.223 0.231

Table 1: Kendall’s (τ ) correlation with human judgements on WMT12 for each language pair.

Furthermore, our result (0.237) is ahead of the
correlation obtained by popular metrics such as
TER (0.217), NIST (0.214) and BLEU (0.185) at
WMT12. This is very encouraging and shows the
potential of our new proposal.

In this paper, we have presented only the first
exploratory results. Our approach can be easily
extended with richer linguistic structures and fur-
ther combined with some of the already existing
strong evaluation metrics.

Testing
Train cs-en de-en es-en fr-en all

1 cs-en 0.210 0.204 0.217 0.204 0.209
2 de-en 0.196 0.251 0.203 0.202 0.213
3 es-en 0.218 0.204 0.240 0.223 0.221
4 fr-en 0.203 0.218 0.224 0.223 0.217
5 all 0.231 0.258 0.226 0.232 0.237

Table 2: Kendall’s (τ ) on WMT12 for cross-
language training with DIS+SYN.

Note that the results in Table 1 were for train-
ing on WMT11 and testing on WMT12 for each
language pair in isolation. Next, we study the im-
pact of the choice of training language pair. Ta-
ble 2 shows cross-language evaluation results for
DIS+SYN: lines 1-4 show results when training on
WMT11 for one language pair, and then testing for
each language pair of WMT12.

We can see that the overall differences in perfor-
mance (see the last column: all) when training on
different source languages are rather small, rang-
ing from 0.209 to 0.221, which suggests that our
approach is quite independent of the source lan-
guage used for training. Still, looking at individ-
ual test languages, we can see that for de-en and
es-en, it is best to train on the same language; this
also holds for fr-en, but there it is equally good
to train on es-en. Interestingly, training on es-en
improves a bit for cs-en.

These somewhat mixed results have motivated
us to try tuning on the full WMT11 dataset; as line
5 shows, this yielded improvements for all lan-
guage pairs except for es-en. Comparing to line
4 in Table 1, we see that the overall Tau improved
from 0.231 to 0.237.

4 Conclusions and Future Work

We have presented a pairwise learning-to-rank ap-
proach to MT evaluation, which learns to differen-
tiate good from bad translations in the context of
a given reference. We have integrated several lay-
ers of linguistic information (lexical, syntactic and
discourse) in tree-based structures, and we have
used the structured kernel learning to identify rel-
evant features and learn pairwise rankers.

The evaluation results have shown that learning
in the proposed SKL framework is possible, yield-
ing better correlation (Kendall’s τ ) with human
judgments than computing the direct kernel sim-
ilarity between translation and reference, over the
same type of structures. We have also shown that
the contributions of syntax and discourse informa-
tion are cumulative, indicating that this learning
framework can be appropriate for the combination
of different sources of information. Finally, de-
spite the limited information we used, we achieved
better correlation at the segment level than BLEU
and other metrics in the WMT12 Metrics task.

In the future, we plan to work towards our long-
term goal, i.e., including more linguistic informa-
tion in the SKL framework and showing that this
can help. This would also include more semantic
information, e.g., in the form of Brown clusters or
using semantic similarity between the words com-
posing the structure calculated with latent seman-
tic analysis (Saleh et al., 2014b).

We further want to show that the proposed
framework is flexible and can include information
in the form of quality scores predicted by other
evaluation metrics, for which a vector of features
would be combined with the structured kernel.
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Lluı́s Màrquez, and Shafiq Joty. 2014b. Semantic
kernels for semantic parsing. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP ’14, Doha, Qatar.

Aliaksei Severyn and Alessandro Moschitti. 2012.
Structural relationships for large-scale learning of
answer re-ranking. In Proceedings of the 35th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’12,
pages 741–750, Portland, Oregon, USA.

Aliaksei Severyn, Massimo Nicosia, and Alessandro
Moschitti. 2013a. Learning adaptable patterns for
passage reranking. In Proceedings of the Seven-
teenth Conference on Computational Natural Lan-
guage Learning, CoNLL ’13, pages 75–83, Sofia,
Bulgaria.

Aliaksei Severyn, Massimo Nicosia, and Alessandro
Moschitti. 2013b. Learning semantic textual sim-
ilarity with structural representations. In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), ACL ’13, pages 714–718, Sofia, Bulgaria.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In Proceedings of the 7th Biennial Conference of the
Association for Machine Translation in the Ameri-
cas, AMTA ’06, Cambridge, Massachusetts, USA.

Xingyi Song and Trevor Cohn. 2011. Regression and
ranking based optimisation for sentence-level MT
evaluation. In Proceedings of the Sixth Workshop
on Statistical Machine Translation, WMT ’11, pages
123–129, Edinburgh, Scotland, UK.

Kristina Toutanova, Dan Klein, Christopher Manning,
and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology
- Volume 1, HLT-NAACL ’03, pages 173–180, Ed-
monton, Canada.

Billy Wong and Chunyu Kit. 2012. Extending ma-
chine translation evaluation metrics with lexical co-
hesion to document level. In Proceedings of the
2012 Joint Conference on Empirical Methods in
Natural Language Processing and Computational
Natural Language Learning, EMNLP-CoNLL ’12,
pages 1060–1068, Jeju Island, Korea.

Fabio Massimo Zanzotto and Alessandro Moschitti.
2006. Automatic learning of textual entailments
with cross-pair similarities. In Proceedings of the
21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Associ-
ation for Computational Linguistics, COLING-ACL
’06, pages 401–408, Sydney, Australia.

220


