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Abstract

We study a novel architecture for syntactic
SMT. In contrast to the dominant approach
in the literature, the system does not rely
on translation rules, but treat translation
as an unconstrained target sentence gen-
eration task, using soft features to cap-
ture lexical and syntactic correspondences
between the source and target languages.
Target syntax features and bilingual trans-
lation features are trained consistently in
a discriminative model. Experiments us-
ing the IWSLT 2010 dataset show that the
system achieves BLEU comparable to the
state-of-the-art syntactic SMT systems.

1 Introduction

Translation rules have been central to hierarchi-
cal phrase-based and syntactic statistical machine
translation (SMT) (Galley et al., 2004; Chiang,
2005; Liu et al., 2006; Quirk et al., 2005; Marcu et
al., 2006; Shen and Joshi, 2008; Xie et al., 2011).
They are attractive by capturing the recursiveness
of languages and syntactic correspondences be-
tween them. One important advantage of trans-
lation rules is that they allow efficient decoding
by treating MT as a statisticalparsing task, trans-
forming a source sentence to its translation via re-
cursive rule application.

The efficiency takes root in the fact that target
word orders are encoded in translation rules. This
fact, however, also leads to rule explosion, noise
and coverage problems (Auli et al., 2009), which
can hurt translation quality. Flexibility of function
word usage, rich morphology and paraphrasing all
add to the difficulty of rule extraction. In addition,
restricting target word orders by hard translation
rules can also hurt output fluency.

∗* Work done while visiting Singapore University of
Technology and Design (SUTD)

Figure 1: Overall system architecture.

A potential solution to the problems above is to
treat translation as ageneration task, represent-
ing syntactic correspondences usingsoft features.
Both adequacy and fluency can potentially be im-
proved by giving full flexibility to target synthe-
sis, and leaving all options to the statistical model.
The main challenge to this method is a signifi-
cant increase in the search space (Knight, 1999).
To this end, recent advances in tackling complex
search tasks for text generation offer some so-
lutions (White and Rajkumar, 2009; Zhang and
Clark, 2011).

In this short paper, we present a preliminary in-
vestigation on the possibility of building a syn-
tactic SMT system that does not use hard transla-
tion rules, by utilizing recent advances in statisti-
cal natural language generation (NLG). The over-
all architecture is shown in Figure 1. Translation
is performed by first parsing the source sentence,
then transferring source words and phrases to their
target equivalences, and finally synthesizing the
target output.

We choose dependency grammar for both the
source and the target syntax, and adapt the syntac-
tic text synthesis system of Zhang (2013), which
performs dependency-based linearization. The
linearization task for MT is different from the
monolingual task in that not all translation options
are used to build the output, and that bilingual cor-
respondences need to be taken into account dur-
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ing synthesis. The algorithms of Zhang (2013) are
modified to perform word selection as well as or-
dering, using two sets of features to control trans-
lation adequacy and fluency, respectively.

Preliminary experiments on the IWSLT1 2010
data show that the system gives BLEU compara-
ble to traditional tree-to-string and string-to-tree
translation systems. It demonstrates the feasibility
of leveraging statistical NLG techniques for SMT,
and the possibility of building a statistical transfer-
based MT system.

2 Approach

The main goal being proof of concept, we keep
the system simple by utilizing existing methods
for the main components, minimizing engineer-
ing efforts. Shown in Figure 1, the end-to-end
system consists of two main components:lexical
transfer andsynthesis. The former provides can-
didate translations for (overlapping) source words
and phrases. Although lexicons and rules can
be used for this step, we take a simple statisti-
cal alignment-based approach. The latter searches
for a target translation by constructing dependency
trees bottom-up. The process can be viewed as
a syntax-based generation process from a bag of
overlapping translation options.

2.1 Lexical transfer

We perform word alignment using IBM model 4
(Brown et al., 1993), and then extract phrase pairs
according to the alignment and automatically-
annotated target syntax. In particular, consistent
(Och et al., 1999) and cohesive (Fox, 2002) phrase
pairs are extracted from intersected alignments in
both directions: the target side must form a pro-
jective span, with a single root, and the source side
must be contiguous. A resulting phrase pair con-
sists of the source phrase, its target translation, as
well as the head position and head part-of-speech
(POS) of the target span, which are useful for tar-
get synthesis. We further restrict that neither the
source nor the target side of a valid phrase pair
contains overs words.

Given an input source sentence, the lexical
transfer unit finds all valid target translation op-
tions for overlapping source phrases up to sizes,
and feeds them as inputs to the target synthesis de-
coder. The translation options with a probability

1International Workshop on Spoken Language Transla-
tion, http://iwslt2010.fbk.eu

belowλ · Pmax are filtered out, wherePmax is the
probability of the most probable translation. Here
the probability of a target translation is calculated
as the count of the translation divided by the count
of all translations of the source phrase.

2.2 Synthesis

The synthesis module is based on the monolingual
text synthesis algorithm of Zhang (2013), which
constructs an ordered dependency tree given a bag
of words. In the bilingual setting, inputs to the al-
gorithm are translation options, which can be over-
lapping and mutually exclusive, and not necessar-
ily all of which are included in the output. As a
result, the decoder needs to perform word selec-
tion in addition to word ordering. Another differ-
ence between the bilingual and monolingual set-
tings is that the former requires translation ade-
quacy in addition to output fluency.

We largely rely on the monolingual system for
MT decoding. To deal with overlapping transla-
tion options, a source coverage vector is used to
impose mutual exclusiveness on input words and
phrases. Each element in the coverage vector is
a binary value that indicates whether a particular
source word has been translated in the correspond-
ing target hypothesis. For translation adequacy,
we use a set of bilingual features on top of the set
of monolingual features for text synthesis.

2.2.1 Search

The search algorithm is the best-first algorithm of
Zhang (2013). Each search hypothesis is a par-
tial or full target-language dependency tree, and
hypotheses are constructed bottom-up from leaf
nodes, which are translation options. Anagenda
is used to maintain a list of search hypothesis to
be expanded, and achart is used to record a set
of accepted hypotheses. Initially empty, the chart
is a beam of sizek · n, wheren is the number
of source words andk is a positive integer. The
agenda is a priority queue, initialized with all leaf
hypotheses (i.e. translation options). At each step,
the highest-scored hypothesise is popped off the
agenda, and expanded by combination with all hy-
potheses on the chart in all possible ways, with
the set of newly generated hypothesese1, e2, ...eN

being put onto the agenda, ande being put onto
the chart. When two hypotheses are combined,
they can be put in two different orders, and in each
case different dependencies can be constructed be-
tween their head words, leading to different new

178



dependency syntax
WORD(h) · POS(h) · NORM(size) ,
WORD(h) · NORM(size), POS(h) · NORM(size)
POS(h) · POS(m) · POS(b) · dir
POS(h) · POS(hl) · POS(m) · POS(mr) · dir (h > m),
POS(h) · POS(hr) · POS(m) · POS(ml) · dir (h < m)
WORD(h) · POS(m) · POS(ml) · dir ,
WORD(h) · POS(m) · POS(mr) · dir
POS(h) · POS(m) · POS(m1) · dir ,
POS(h) · POS(m1) · dir , POS(m) · POS(m1) · dir
WORD(h) · POS(m) · POS(m1) · POS(m2) · dir ,
POS(h) · POS(m) · POS(m1) · POS(m2) · dir ,
...

dependency syntax for completed words
WORD(h) · POS(h) · WORD(hl) · POS(hl),
POS(h) · POS(hl),
WORD(h) · POS(h) · POS(hl),
POS(h) · WORD(hl) · POS(hl) ,
WORD(h) · POS(h) · WORD(hr) · POS(hr),
POS(h) · POS(hr),
...

surface string patterns (B—bordering index)
WORD(B − 1) · WORD(B), POS(B − 1) · POS(B),
WORD(B − 1) · POS(B), POS(B − 1) · WORD(B),
WORD(B − 1) · WORD(B) · WORD(B + 1),
WORD(B − 2) · WORD(B − 1) · WORD(B),
POS(B − 1) · POS(B) · POS(B + 1),
...

surface string patterns for complete sentences
WORD(0), WORD(0) · WORD(1),
WORD(size − 1),
WORD(size − 1) · WORD(size − 2),
POS(0), POS(0) · POS(1),
POS(0) · POS(1) · POS(2),
...

Table 1: Monolingual feature templates.

hypotheses. The decoder expands a fixed number
L hypotheses, and then takes the highest-scored
chart hypothesis that contains overβ · n words as
the output, whereβ is a real number near 1.0.

2.2.2 Model and training

A scaled linear model is used by the decoder to
score search hypotheses:

Score(e) =
~θ · Φ(e)

|e| ,

whereΦ(e) is the global feature vector of the hy-
pothesise, ~θ is the parameter vector of the model,
and |e| is the number of leaf nodes ine. The
scaling factor|e| is necessary because hypothe-
ses with different numbers of words are compared
with each other in the search process to capture
translation equivalence.

While the monolingual features of Zhang
(2013) are applied (example feature templates
from the system are shown in Table 1), an addi-
tional set of bilingual features is defined, shown

phrase translation features
PHRASE(m) · PHRASE(t), P (trans),

bilingual syntactic features
POS(th) · POS(tm) · dir · LEN(path),
WORD(th) · POS(tm) · dir · LEN(path),
POS(th) · WORD(tm) · dir · LEN(path),
WORD(th) · WORD(tm) · dir · LEN(path),
WORD(sh) · WORD(sm) · dir · LEN(path),
WORD(sh) · WORD(th) · dir · LEN(path),
WORD(sm) · WORD(tm) · dir · LEN(path),

bilingual syntactic features (LEN(path) ≤ 3)
POS(th) · POS(tm) · dir · LABELS(path),
WORD(th) · POS(tm) · dir · LABELS(path),
POS(th) · WORD(tm) · dir · LABELS(path),
WORD(th) · WORD(tm) · dir · LABELS(path),
WORD(sh) · WORD(sm) · dir · LABELS(path),
WORD(sh) · WORD(th) · dir · LABELS(path),
WORD(sm) · WORD(tm) · dir · LABELS(path),
POS(th) · POS(tm) · dir · LABELSPOS(path),
WORD(th) · POS(tm) · dir · LABELSPOS(path),
POS(th) · WORD(tm) · dir · LABELSPOS(path),
WORD(th) · WORD(tm) · dir · LABELSPOS(path),
WORD(sh) · WORD(sm) · dir · LABELSPOS(path),
WORD(sh) · WORD(th) · dir · LABELSPOS(path),
WORD(sm) · WORD(tm) · dir · LABELSPOS(path),

Table 2: Bilingual feature templates.

in Table 2. In the tables,s and t represent the
source and target, respectively;h and m repre-
sent the head and modifier in a dependency arc,
respectively;hl andhr represent the neighboring
words on the left and right ofh, respectively;ml

andmr represent the neighboring words on the left
and right ofm, respectively;m1 and m2 repre-
sent the closest and second closest sibling ofm on
the side ofh, respectively.dir represents the arc
direction (i.e. left or right); PHRASE represents
a lexical phrase; P(trans) represents the source-
to-target translation probability from the phrase-
table, used as a real-valued feature;path repre-
sents the shortest path in the source dependency
tree between the two nodes that correspond to the
target head and modifier, respectively; LEN(path)
represents the number of arcs onpath, normalized
to bins of [5, 10, 20, 40+]; LABELS(path) repre-
sents the array of dependency arc labels onpath;
LABELSPOS(path) represents the array of depen-
dency arc labels and source POS onpath. In addi-
tion, a real-valued four-gram language model fea-
ture is also used, with four-grams extracted from
the surface boundary when two hypothesis are
combined.

We apply the discriminative learning algorithm
of Zhang (2013) to train the parameters~θ. The al-
gorithm requires training examples that consist of
full target derivations, with leaf nodes beinginput
translation options. However, the readily available
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training examples are automatically-parsed target
derivations, with leaf nodes beingthe reference
translation. As a result, we apply a search pro-
cedure to find a derivation process, through which
the target dependency tree is constructed from a
subset of input translation options. The search
procedure can be treated as a constrained decod-
ing process, where only the oracle tree and its sub
trees can be constructed. In case the set of transla-
tion options cannot lead to the oracle tree, we ig-
nore the training instance.2 Although the ignored
training sentence pairs cannot be utilized for train-
ing the discriminative synthesizer, they are never-
theless used for building the phrase table and train-
ing the language model.

3 Experiments

We perform experiments on the IWSLT 2010
Chinese-English dataset, which consists of train-
ing sentence pairs from the dialog task (dialog)
and Basic Travel and Expression Corpus (BTEC).
The union of dialog and BTEC are taken as our
training set, which contains 30,033 sentence pairs.
For system tuning, we use the IWSLT 2004 test set
(also released as the second development test set
of IWSLT 2010), which contains 500 sentences.
For final test, we use the IWSLT 2003 test set (also
released as the first development test set of IWSLT
2010), which contains 506 sentences.

The Chinese sentences in the datasets are seg-
mented using NiuTrans3 (Xiao et al., 2012), while
POS-tagging of both English and Chinese is per-
formed using ZPar4 version 0.5 (Zhang and Clark,
2011). We train the English POS-tagger using the
WSJ sections of the Penn Treebank (Marcus et al.,
1993), turned into lower-case. For syntactic pars-
ing of both English and Chinese, we use the de-
fault models of ZPar 0.5.

We choose three baseline systems: a string-to-
tree (S2T) system, a tree-to-string (T2S) system
and a tree-to-tree (T2T) system (Koehn, 2010).
The Moses release 1.0 implementations of all
three systems are used, with default parameter set-
tings. IRSTLM5 release 5.80.03 (Federico et al.,
2008) is used to train a four-gram language models

2This led to the ignoring of over 40% of the training sen-
tence pairs. For future work, we will consider substitute or-
acles from reachable target derivations by using maximum
sentence level BLEU approximation (Nakov et al., 2012) or
METEOR (Denkowski and Lavie, 2011) as selection criteria.

3http://www.nlplab.com/NiuPlan/NiuTrans.ch.html
4http://sourceforge.net/projects/zpar/
5http://sourceforge.net/apps/mediawiki/irstlm

System T2S S2T T2T OURS

BLEU 32.65 36.07 28.46 34.24

Table 3: Final results.

SOURCE:我现在头痛的厉害。
REF: I have a terrible headache .
OURS: now , I have a headache .
SOURCE:我要带浴缸的双人房。
REF: I ’d like a twin room with a bath please .
OURS: a twin room , I ’ll find a room with a bath .
SOURCE:请把日元兑换成美元。
REF: can you change yen into dollars ?
OURS: please change yen into dollars .
SOURCE:请给我烤鸡 。
REF: roast chicken , please .
OURS: please have roast chicken .
SOURCE:请每次饭后吃两粒。
REF: take two tablets after every meal .
OURS: please eat after each meal .
SOURCE:请结帐。
REF: check , please .
OURS: I have to check - out , please .
SOURCE:对呀那是本店最拿手的菜啊。
REF: yes , well , that ’s our specialty .
OURS: ah , the food that ’s right .
SOURCE:空调坏了。
REF: my air conditioner is n’t working .
OURS: the air - conditioner does n’t work .

Table 4: Sample output sentences.

over the English training data, which is applied to
the baseline systems and our system. Kneser-Ney
smoothing is used to train the language model.

We use the tuning set to determine the optimal
number of training iterations. The translation op-
tion filter λ is set to 0.1; the phrase size limits is
set to 5 in order to verify the effectiveness of syn-
thesis; the number of expanded nodesL is set to
200; the chart factork is set to 16 for a balance be-
tween efficiency and accuracy; the goal parameter
β is set to 0.8.

The final scores of our system and the baselines
are shown in Table 3. Our system gives a BLEU
of 34.24, which is comparable to the baseline sys-
tems. Some example outputs are shown in Table 4.
Manual comparison does not show significant dif-
ferences in overall translation adequacy or fluency
between the outputs of the four systems. However,
an observation is that, while our system can pro-
duce more fluent outputs, the choice of translation
options can be more frequently incorrect. This
suggests that while the target synthesis component
is effective under the bilingual setting, a stronger
lexical selection component may be necessary for
better translation quality.
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4 Related work

As discussed in the introduction, our work is
closely related to previous studies on syntactic
MT, with the salient difference that we do not rely
on hard translation rules, but allow free target syn-
thesis. The contrast can be summarized as “trans-
lation by parsing” vs “translation by generation”.

There has been a line of research on genera-
tion for translation. Soricut and Marcu (2006) use
a form of weighted IDL-expressions (Nederhof
and Satta, 2004) for generation. Bangalore et al.
(2007) treats MT as a combination of global lex-
ical transfer and word ordering; their generation
component does not perform lexical selection, re-
lying on an n-gram language model to order target
words. Goto et al. (2012) use a monotonic phrase-
based system to perform target word selection, and
treats target ordering as a post-processing step.
More recently, Chen et al. (2014) translate source
dependencies arc-by-arc to generate pseudo target
dependencies, and generate the translation by re-
ordering of arcs. In contrast with these systems,
our system relies more heavily on a syntax-based
synthesis component, in order to study the useful-
ness of statistical NLG on SMT.

With respect to syntax-based word ordering,
Chang and Toutanova (2007) and He et al. (2009)
study a simplified word ordering problem by as-
suming that the un-ordered target dependency tree
is given. Wan et al. (2009) and Zhang and Clark
(2011) study the ordering of a bag of words, with-
out input syntax. Zhang et al. (2012), Zhang
(2013) and Song et al. (2014) further extended this
line of research by adding input syntax and allow-
ing joint inflection and ordering. de Gispert et al.
(2014) use a phrase-structure grammer for word
ordering. Our generation system is based on the
work of Zhang (2013), but further allows lexical
selection.

Our work is also in line with the work of Liang
et al. (2006), Blunsom et al. (2008), Flanigan et
al. (2013) and Yu et al. (2013) in that we build a
discriminative model for SMT.

5 Conclusion

We investigated a novel system for syntactic ma-
chine translation, treating MT as an unconstrained
generation task, solved by using a single discrim-
inative model with both monolingual syntax and
bilingual translation features. Syntactic corre-
spondence is captured by using soft features rather

than hard translation rules, which are used by most
syntax-based statistical methods in the literature.

Our results are preliminary in the sense that
the experiments were performed using a relatively
small dataset, and little engineering effort was
made on fine-tuning of parameters for the base-
line and proposed models. Our Python imple-
mentation gives the same level of BLEU scores
compared with baseline syntactic SMT systems,
but is an order of magnitude slower than Moses.
However, the results demonstrate the feasibility of
leveraging text generation techniques for machine
translation, directly connecting the two currently
rather separated research fields. The system is not
strongly dependent on the specific generation al-
gorithm, and one potential of the SMT architec-
ture is that it can directly benefit from advances in
statistical NLG technology.
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