
Maca — a configurable tool to integrate Polish morphological data∗

Adam Radziszewski
Institute of Informatics

Wrocław University of Technology
Wybrzeże Wyspiańskiego 27,

Wrocław, Poland
adam.radziszewski@pwr.wroc.pl

Tomasz Śniatowski
Institute of Informatics

Wrocław University of Technology
Wybrzeże Wyspiańskiego 27,

Wrocław, Poland
kailoran@gmail.com

Abstract

There are a number of morphological
analysers for Polish. Most of these,
however, are non-free resources. What
is more, different analysers employ dif-
ferent tagsets and tokenisation strate-
gies. This situation calls for a simple
and universal framework to join differ-
ent sources of morphological informa-
tion, including the existing resources as
well as user-provided dictionaries. We
present such a configurable framework
that allows to write simple configura-
tion files that define tokenisation strate-
gies and the behaviour of morpholog-
ical analysers, including simple tagset
conversion.

1 Introduction

In this paper we will focus on two tasks of Natural
Language Processing: tokenisation and morpho-
logical analysis. Both tasks usually precede the
application of a morpho-syntactic tagger and/or
some type of a parser. Tokenisation is the process
of dividing running text into parts correspond-
ing to words and word-like units (Grefenstette
and Tapanainen, 1994). Morphological analysis
consists of assigning a morphological description
to each of these tokens. Morphological analysis
does not take into account context, i.e. we per-
form a dictionary look-up without accounting for

∗Acknowledgement. This work is financed by In-
novative Economy Programme project POIG.01.01.02-14-
013/09.

the actual role of the token attributed by the con-
text of usage. These two tasks are tightly coupled:
the characteristics of the analysed language, an-
ticipated usage scenario and preferred grammati-
cal theory will influence the choice of how narrow
a stretch of text we will want to isolate and then,
account for by assigning a morphological descrip-
tion.

The employed types of morphological descrip-
tion may also differ. Typically this is a set of
lemma–tag pairs assigned to each token, where
lemma is the dictionary form of the token and tag
is a morpho-syntactic tag describing the gram-
matical class and possibly some inflectional and
syntactic properties. Throughout this paper we
will be using this interpretation. For instance,
the morphological dictionary of Morfologik 1.6
(Miłkowski, 2010) contains the following entries
for the Polish form maca (the second column con-
tains lemmas, the third one — tags):
maca mac subst:irreg
maca maca subst:sg:nom:f
maca macać verb:fin:sg:ter:imperf

There are two noun (subst) readings: the
first one, seemingly erroneous, could refer to a
Macintosh computer (mac) in the genitive case
(the proper tag would be subst:sg:f:m2), the
other one standing for the noun maca (matzo,
unleavened bread) in nominative case, singular
number. The last entry corresponds to a finite
verb macać (to palpate, to paw) in third person,
singular number and imperfective aspect. Having
taken a sentence with this token, we would ex-
pect a morpho-syntactic tagger to select only one
of these descriptions as contextually appropriate
(depending on the whole sentence).

F. Sánchez-Mart́ınez, J.A. Pérez-Ortiz (eds.)
Proceedings of the Second International Workshop on Free/Open-Source Rule-Based Machine Translation, p. 29–36
Barcelona, Spain, January 2011. http://hdl.handle.net/10609/5645



Several morphological analysers have been
created for Polish (Hajnicz and Kupść, 2001;
Woliński, 2006) but, to the best of our knowl-
edge, only one of them has been released under a
free licence (as of November 2010): Morfologik,
a part of the LanguageTool open source proof-
reading tool (Miłkowski, 2010). Morfologik per
se is not a piece of software but rather a single
tab-separated text file containing a morphological
dictionary. The dictionary is quite sizeable (Mor-
fologik 1.6 contains entries for nearly 3.5 mil-
lion forms) and is available under a dual licence:
GNU LGPL or Creative Commons Share Alike
(the user is free to choose).

Other analysers are at best free for scientific or
non-commercial purposes1. We will mention two
of them:

1. Morfeusz SIaT (Woliński, 2006), a dynamic
library with an embedded dictionary re-
leased under a restrictive licence (the dic-
tionary is not a separate data file and at-
tempts at extracting the data are explicitly
forbidden by the licence). Most importantly,
this is the only analyser compatible with
the free manually annotated corpus of Polish
— a part of the IPI PAN Corpus of Polish
(Przepiórkowski, 2004)2. This compatibility
lies in using the same tagset and sticking to
the same guidelines of tag usage. Another
advantage of Morfeusz is that its data is a
result of many years of work by recognised
Polish linguists. It is worth pointing out that
Morfeusz is not a typical morphological dic-
tionary: instead of the usual token-by-token
analysis, it outputs graph structures that can
account for segmentation ambiguities.

2. Polex/PMDBF morphological dictionary
(Vetulani, 2000) distributed with UAM Text
Tools package (Obrębski and Stolarski,
2006). The dictionary contains about 1 mil-
lion forms and is licensed under Creative

1Non-commercial licences are not really free, since they
forbid quite a number of basic usage scenarios, including
on-line advertising on a site that uses the licensed material.
What is more, they are incompatible with many free licences,
including the GNU GPL.

2This corpus is in fact a re-annotated version of the
corpus of the Frequency dictionary of contemporary Polish
(Ogrodniczuk, 2003). The corpus can be downloaded from
http://korpus.pl/index.php?page=download.

Commons Attribution Non-Commercial
Share Alike (CC BY-NC-SA). The main
advantage of the analyser is the format of its
data, a plain text file.

The aforementioned manually annotated cor-
pus is a precious resource, since it is the only free
data source that may be used to train a morpho-
syntactic tagger for Polish. The corpus has been
released under GNU GPL and contains 660 000
tokens. Although it can be used as a material to
extract morphological data, it is not large enough
to get a reasonable coverage for less frequent
forms. To amend this, external morphological
analysers must be used. A preferred solution
would assume combining available data sources
in a way that would allow:

• configuration of the multi-analyser system,

• selecting which analysers to use at the mo-
ment (e.g. being able to use Morfeusz but
with the possibility of not requiring it when
enough free data is available),

• setting up an analysis pipeline (when one
analyser fails to produce an analysis, another
might),

• overriding erroneous entries in existing dic-
tionaries (analysers),

• accounting for some differences in tagsets
and tokenisation strategies,

• tying different analysis pipelines to different
token types (e.g. some characters will any-
way be recognised as punctuation during to-
kenisation, why not use that information),

• handling large dictionaries with reasonable
memory load and processing efficiency.

In the rest of this paper we discuss some im-
portant details of the mentioned Polish language
resources and then present our solution that meets
the above requirements: the Maca system (Mor-
phological Analysis Converter and Aggregator).

2 Tagsets and tag representation

Each of the mentioned analysers has its own
tagset. The tagset of Morfeusz (and the whole IPI

30



PAN Corpus, henceforth IPIC tagset) has been
designed with specific criteria in mind, most no-
tably treating inflection as primary means of dis-
tinguishing grammatical classes (Przepiórkowski
and Woliński, 2003). This results in having a
rather fine-grained decomposition in comparison
with traditional parts-of-speech. What is more,
the tagset is positional — i.e. each tag contains
a grammatical class and zero or more values for
some attributes. Each grammatical class defines
a set of attributes whose values must be speci-
fied. The attributes with their values, and gram-
matical classes with valid/required attributes de-
fine a tagset. For instance, nouns require that
number, gender and case attributes are speci-
fied, and adverbs require the degree attribute.
Forms traditionally classified as adverbs but non-
gradable and not derived from adjectives are
treated as particle-adverbs. The only exception to
this rigour is that some less important attributes
are optional for some grammatical classes, e.g.
prepositions require that case is specified, but may
also contain the vocalicity attribute3. Technically,
these optional attributes must come after the re-
quired attributes.

Tags in the IPIC tagset are represented as
simple colon-separated strings always starting
with grammatical class. Dot and underscore
characters are used to represent multiple tags in
compact format — e.g. subst:_:nom.acc:f
stand for four tags: subst:sg:nom:f,
subst:sg:acc:f, subst:pl:nom:f,
subst:pl:acc:f (underscore stands for all
possible values of the attribute in this position
— in case of the subst class, number — while
the dot character separates possible values of one
attribute, in this instance the case attribute). Note
that this is merely a notation shorthand.

The tags appearing in the morphological dic-
tionary of Morfologik closely resemble the IPIC
tagset. According to the Readme file, this is in-
tended. Unfortunately, the tagset as such is hardly
defined. The Readme file enumerates grammat-

3Vocalicity accounts for some phonological variations of
the word form. In the case of prepositions, the variation
is manifested in in the vowel e added as a suffix when the
preposition occurs before certain consonants; e.g. nad nami
(over us) v. nade mną (over me). Tags for prepositions that
are not affected by the phenomenon, e.g. na (on), contain no
value of the attribute.

ical classes and values of some (unnamed) at-
tributes but it does not state which values apply
to which classes. In fact, it cannot be precisely
defined, as for most of the classes there exist sev-
eral variants, practically rendering most of the at-
tributes optional (cf. the example in the previous
section — some nouns are claimed to be “irregu-
lar” without providing any other details; the IPIC
tagset would require such forms to constitute a
separate grammatical class). The tags are rep-
resented in the same textual format as in Mor-
feusz; furthermore, many classes are described in
almost the same manner. Thus, by means of semi-
automatic conversion, a huge part of the mor-
phological dictionary could be converted into the
IPIC tagset.

The tagset of Polex/PMDBF is quite tradi-
tional. This is reflected by the choice of grammat-
ical classes quite literally being traditional parts-
of-speech. The assignment of attributes to gram-
matical classes, although not explicitly stated in
the manual, can easily be inferred from actual
tags. Textual representation is helpful in this re-
spect, as value abbreviations are prefixed with at-
tribute mnemonics — e.g. N/GfNsCn stands for
noun in feminine gender, singular number and
nominative case.

3 Segmentation issues

The IPIC tagset assumes quite a specific tokeni-
sation strategy. A strict rule is that a token can-
not contain any whitespace. On the other hand,
some forms are divided into several tokens. This
happens in case of so-called floating inflections,
which are treated as forms of the verb być (to be)
(Woliński, 2006). For instance, czytałem (I was
reading) is split into czytał (l-participle in sin-
gular masculine) and em (in first person, singu-
lar number). Similarly, czytałbym (the same form
in conjunctive mood) is split into czytał, by (con-
junctive particle) and m. Note that this splitting is
performed on the level of surface forms and each
of the isolated tokens is assigned a set of lemma–
tag pairs.

In some cases one form may be analysed in dif-
ferent ways, each calling for different tokenisa-
tion. Such cases are the reason why Morfeusz
always outputs directed acyclic graphs (DAGs)
Woliński (2006) instead of a plain sequence of to-

31



0

1

2

miał (mieć)
praet

miałem (miał)
subst

em (być)
aglt

Figure 1: Morfeusz output for the form miałem:
the upper path having a verb reading (I had), the
lower one — a noun (dust) in instrumental case,
singular. Lemmas are given in parentheses, tags
are abbreviated.

kens. For instance, the form miałem will be anal-
ysed as presented on Fig. 1. The verb interpreta-
tion is split into two tokens, while the other one is
a single token marked as a noun.

This behaviour of Morfeusz is actually both
a blessing and a curse: while getting the most
accurate description of the surface phenomena,
one cannot directly use many standard NLP tech-
niques where input is assumed to be sequential.
For instance, virtually all morpho-syntactic tag-
ging algorithms assume that the input is repre-
sented as a linear sequence of tokens, not a fancy
graph structure. What is more, the two other anal-
ysers use a more traditional tokenisation strategy,
which renders automatic conversion of verbs non-
trivial. This is also a reason why it was impossibly
to incorporate Morfeusz directly into an existing
framework for morphological analysis.

4 System architecture

Maca was devised as a way of combining mor-
phological data from various, not trivially com-
patible sources. The primary goals of the tech-
nical side of the project were to have the whole
functionality available as both a command-line
tool and a C or C++ library for use in other NLP
software such as taggers and parsers. The choice
of language was dictated by the need for per-
formance, reasonable abstraction level and rela-
tive ease of interoperation with C++ and Python.
The entire project was split into several libraries,
partly due to the desire to re-use some parts in
other projects without introducing one large de-
pendency.

The project has been released under
GNU GPL 3.0 and may be obtained from
http://nlp.pwr.wroc.pl/redmine/
projects/libpltagger.

4.1 Toki

The tokeniser, Toki, resides in a separate library
and does not deal with morphology at all, instead
offering a layered architecture for splitting tokens
according to configurable rules. More than just a
plain whitespace tokenisation is needed due to is-
sues such as punctuation, that we would prefer to
be split into separate tokens, and punctuation-rich
text entities that we would prefer not to split, such
as URLs. The rules, stored in a text (INI-like) for-
mat which can be easily modified, allow a reason-
ably quick way of trying out various approaches
like lists of affixes or regular expressions. Tokens
can be tagged with a token type, using a dictio-
nary or, again, a regular expression. These type
labels are useful both internally, allowing condi-
tional layer application, and externally, allowing
some initial token classification.

It is currently assumed that whitespace charac-
ters are always token separators. These characters
are discarded and each token is assigned a qualita-
tive desciption of the type and amount of whites-
pace that preceded it. Note that this is the only
information loss that happens to the input text —
this way it is guaranteed that a tokenised input
may be reverted to the original text with only mi-
nor changes in blanks. What follows is that nei-
ther Toki, nor Maca deal with multiword units.
The motivation for this decision was twofold: 1)
multiword unit recognition entails resolving am-
biguities, which seems too difficult for this pro-
cessing step and 2) this is compliant with the
segmentation policy coupled with the IPIC tagset
(Przepiórkowski and Woliński, 2003). Multiword
units can be accounted for on higher levels of pro-
cessing, e.g. a chunker or Named Entity tagger
could be used to group together expressions such
as San Francisco. Note that, however, this be-
haviour could be altered by enhancing Toki with
a simple token joining layer, or by enhancing Toki
with a simple token joining layer or by modyfying
the initial tokenisation module.

Additionally, Toki can perform sentence split-
ting using SRX (Segmentation Rules eXchange)

32



rules (Pooley and Raya, 2008). SRX is a stan-
dard for segment boundary detection, based on
regular expressions, with the important advan-
tage that there exist freely available sentence seg-
mentation rules for many languages, including a
LGPL-licensed set of rules for Polish (Miłkowski
and Lipski, 2009). SRX needs to be run on plain,
not tokenised text, and therefore has been imple-
mented as an (optional) first processing level in
Toki. Incidentally, the Toki SRX support seems to
be the first freely available C++ implementation
of the SRX standard, as all the libraries we could
find were in either Java or Python. We decided on
a new implementation in order to avoid having to
call a high-level, VM-based library at such a low
level in our processing pipeline — performance
seems to be on par with the Java SRX implemen-
tations we tested (Miłkowski and Lipski, 2009).

Toki also contains a simple utility for testing
rules called toki-app exposing most of the li-
brary’s features, including the SRX segmentation.

4.2 Corpus2

The basic data structures such as tags and to-
kens are the crucial part of morphological analy-
sis process. For clarity and simpler use in other
projects, these have been put in a separate li-
brary names Corpus2. Tags are assumed to be
positional and represented in the colon-separated
Morfeusz/Morfologik format with dot/underscore
shorthands (see Section 2). Internally, tags are
stored in a compact binary format. Corpus2 con-
tains methods of manipulating these, as well as
annotated token and sentence input and output
(e.g. in the IPI PAN Corpus variant of the XCES
format (Przepiórkowski, 2004)). Since tagsets
that define valid tags can be non-trivial, a helper
utility called tagset-tool has been created
that allows inspecting a tagset and validating tags.

4.3 Maca

The Maca library proper contains two major mod-
ules: analysis and conversion. The analysis
module uses morphological analysis sources such
as plain text files, compiled SFST transducers
(Schmid, 2005) or external libraries (currently
only Morfeusz). An SFST transducer can be
used either as a means of dictionary compres-
sion (we provide a convenience script to compile

plain text dictionaries) or to introduce generalisa-
tion / guessing (in this case the user must write
and compile a valid SFST program). Each anal-
ysis submodule interfaces with a particular mor-
phology source and new submodules can easily
be added to accomodate other libraries or trans-
ducer types, thanks to a simple plugin system.
Interfacing alone is not enough, however, since
there can be significant tagset differences or even
token segmentation approaches in different mor-
phological data sources. The conversion module
enables some limited methods of conversion be-
tween tagsets, both on a simple per-tag level, as
well as more complex rules operating on groups
of annotated tokens, able to join or split tokens. In
particular, with a slight tagset modification some
of the segmentation ambiguities in Morfeusz can
be folded into simple tag ambiguities.

Maca is configurable in a similar fashion to
Toki, with simple text (INI-like) files. The used
analysers can be grouped and applied in turn so
that if one analyser fails to produce an analysis,
another one will be used. This allows simple
patching of known incorrect analyses in a large
analyser by a small “patch” analyser. Further-
more, different groups of analysers can be used
depending on the Toki-assigned token label. Sup-
port files such as tagsets or conversion rules are
plain text files as well.

Two command-line utilities are available with
Maca: maca-analyse and maca-convert.
The former is used to process plain text, it uses
Toki to tokenise the file and then analyse the to-
kens. maca-convert reads annotated tokens
from one file and passes them through a tagset
converter. In both cases the output is a sequence
of tokens that can be written in any of the sup-
ported formats, e.g. XCES.

Internally Maca and its supporting libraries use
ICU Unicode facilities for consistent treatment of
Unicode data in the input texts. ICU also allows
referring to convenient Unicode Properties, e.g.
specifying \p{Lu} for upper-case letters of any
script or \p{Ps} for opening punctuation, and
efficient Unicode-aware regular expressions.

Maca does not directly depend on any non-
free or component or any specific linguistic data.
Morfeusz support is available as a plug-in that
can be removed altogether, although it is used

33



in some default configurations. Thanks to the
extendible architecture, more and more free re-
sources can be integrated into the whole morpho-
syntactic pipeline, which should eventually allow
a completely free, high-quality analyser for Pol-
ish.

What is more, although targeted at Polish,
these tools are actually quite universal. The
only language-specific features are related to
tag representation (the colon-separated positional
format) and the choice of input/output formats
(besides plain text, only XCES “morph” and
“pre_morph” formats are currently supported).

5 Usage scenarios

In this section we describe some typical usage
scenarios of our solution and provide some re-
lated details.

5.1 Compiling a simple analyser from
existing data

This is the simplest scenario, where we have a
morphological dictionary and we want to put this
resource into a working processing pipeline. This
can be achieved by the following steps:

1. using one of the provided Toki configura-
tions or preparing one tailored to the re-
quired segmentation strategy,

2. compiling the morphological dictionaries
into transducers with SFST (a convenience
script is provided with Maca),

3. writing a simple Maca configuration that at-
taches fixed tags to punctuation and digits
and the transducer to the rest of token types.

The configuration file may also be extended
with some additional morphology sources, e.g.
attaching multiple dictionaries that are consulted
in the given order. What is more, some spe-
cific token types recognised by Toki may be at-
tached completely different dictionaries. For in-
stance, Polish acronyms may appear with inflec-
tional endings after a hyphen (e.g. SQL-a stands
for SQL in genitive case). It makes sense to treat
such forms as whole tokens while splitting other
hyphenated material. It is convenient to have Toki
label such inflected acronyms with a specific to-
ken type and then use this information in Maca.

5.2 Using and patching Morfeusz

As noted above, Morfeusz is a non-free analyser
with high-quality data for Polish. Nevertheless, it
contains some erroneous entries, which cannot be
corrected as the dictionary is closed. Maca allows
to patch these errors by creating a list of correct
forms that will supersede Morfeusz data.

What is more, Morfeusz is provided as a shared
library with a rudimentary utility to pose queries.
Maca compiled with Morfeusz plug-in allows to
use the analyser as a convenient tool that produces
XCES-compliant corpora from plain text or sim-
ple XML-based documents (“pre_morph”).

As noted in Section 3, Morfeusz outputs DAG
structures. Morfeusz plug-in is equipped with
simple heuristics that when faced with segmenta-
tion ambiguity, chooses the shortest path (by de-
fault, warnings are issued when this happens).

5.3 Simple tag conversions

While a serious tagset conversion should arguably
be performed off-line (e.g. conversion from Mor-
fologik to the IPIC tagset), it is convenient to
have simple tag conversions done on the fly. An
example of such a usage scenario is related to
the differences between the actual tagset of Mor-
feusz and the tagset of the IPI PAN corpus. The
former contains some additional values of the
gender attribute that are not present in the cor-
pus; cf. the variants of the IPIC tagset as defined
in Przepiórkowski (2004) and Przepiórkowski
(2003). Maca allows to solve the problem by
defining several tagsets and writing conversion
routines (configuration files) that contain the nec-
essary value mapping rules (such routines are in-
cluded in the package).

Other simple usage of the on-the-fly tag con-
version is reducing tags to contain grammatical
class only (or some limited choice of attributes).
This may be useful to test performance of some
tagger or parser on reduced tags.

Some of the aforementioned segmentation am-
biguities may be avoided by introducing a differ-
ent segmentation strategy coupled with a modi-
fied tagset. If we choose to join the verb forms
that in the IPIC tagset are split into several to-
kens (as discussed in Section 3), we are able to
account for the whole ambiguity in the usual man-
ner: by providing alternative interpretations of the

34



same token. The conversion module is able to
perform limited joining and splitting of tokens if
some required conditions hold. The affected to-
kens may be re-tagged by applying provided post-
conditions. What is more, the Morfeusz plug-in
allows for insertion of a conversion routine, which
allows to process each graph path separately. If
each of the converted paths consists of the same
number of tokens and each token at respective po-
sition corresponds to the same string, the paths are
folded. This results in linear sequence of tokens
that may be output as such with no information
loss. If the converted graph still contains segmen-
tation ambiguity, the shortest path is selected.

We have prepared a configuration that allows
to join the discussed verbs together and assign
meaningful tags to them — an intermediate
tagset. For instance, the form miałem whose
Morfeusz analysis is depicted on Figure 1, in our
tagset and configuration is analysed as one token
with two interpretations: the noun interpretation
(subst class) unchanged and the verb interpre-
tation (praet and aglt tokens) joined together
to form a finite for marked for preterite tense
(fin:sg:pri:imperf:prt:m1.m2.m3).
This is useful: if we run a morpho-syntactic
tagger on input in the intermediate tagset, it will
select one of these interpretations. The tagged
file may be safely converted back to the original
IPIC tagset as it contains no ambiguity now (the
other interpretation should have been discarded).

6 Future work

The presented solution is already a practical sys-
tem for processing Polish text. We plan to en-
hance the capabilities of the framework by in-
troducing support for additional input/output for-
mats. Another task is to provide Python wrap-
pers for the basic functionality, making it easier
to create fast prototypes of morpho-syntactic tag-
gers while getting the full functionality of Maca.

However, most of the work will be devoted
to gather more free morphological data by inte-
grating the available resources and investigating
tagset differences. The other planned projects as-
sume the usage of Corpus2 and Maca APIs in the
NLP software being built at our institute.

It would also be interesting to employ Maca for
other languages.

References

Grefenstette, G. and Tapanainen, P. (1994). What
is a word, what is a sentence? problems of to-
kenization. In Proceedings of COMPLEX’94,
Budapest.

Hajnicz, E. and Kupść, A. (2001). Przegląd
analizatorów morfologicznych dla języka pol-
skiego. Technical Report 937, IPI PAN.

Miłkowski, M. (2010). Developing an open-
source, rule-based proofreading tool. Software:
Practice and Experience, 40:543–566.

Miłkowski, M. and Lipski, J. (2009). Using SRX
standard for sentence segmentation in Lan-
guageTool. In Vetulani, Z., editor, Human Lan-
guage Technologies as a Challenge for Com-
puter Science and Linguistics, pages 556–560,
Poznań. Wydawnictwo Poznańskie, Fundacja
Uniwersytetu im. A. Mickiewicza.

Obrębski, T. and Stolarski, M. (2006). UAM Text
Tools v0.90.

Ogrodniczuk, M. (2003). Nowa edycja wzbo-
gaconego korpusu słownika frekwencyjnego.
In Językoznawstwo w Polsce. Stan i perspek-
tywy, pages 181–190. Polska Akademia Nauk,
Komitet Językoznawstwa, Uniwersytet Opol-
ski, Instytut Filologii Polskiej, Opole.

Pooley, D. and Raya, R. M. (2008). Srx 2.0 spec-
ification.

Przepiórkowski, A. (2003). Składniowe
uwarunkowania znakowania morfosyntak-
tycznego w korpusie IPI PAN. Polonica,
XXII–XXIII:57–76.

Przepiórkowski, A. (2004). The IPI PAN Corpus:
Preliminary version. Institute of Computer Sci-
ence, Polish Academy of Sciences, Warsaw.

Przepiórkowski, A. and Woliński, M. (2003).
A flexemic tagset for Polish. In Proceedings
of Morphological Processing of Slavic Lan-
guages, EACL 2003.

Schmid, H. (2005). A programming language for
finite state transducers. In Proceedings of the
FSMNLP 2005.

Vetulani, Z. (2000). Electronic language re-
sources for Polish: POLEX, CEGLEX and
GRAMLEX. In Gavrilidou, M., Carayannis,

35



G., Markantonatou, S., Piperidis, S., and Stain-
haouer, G., editors, LREC2000 Proceedings,
pages 367–374, Paris. ELRA.

Woliński, M. (2006). Morfeusz — a practi-
cal tool for the morphological analysis of Pol-
ish. In Kłopotek, M. A., Wierzchoń, S. T.,
and Trojanowski, K., editors, Proceedings of
IIPWM’06, pages 511–520, Ustroń, Poland.
Springer-Verlag, Berlin.

36


