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Abstract

We present a minimalist, unsupervised
learning model that induces relatively
clean phrasal inversion transduction gram-
mars by employing the minimum descrip-
tion length principle to drive search over
a space defined by two opposing ex-
treme types of ITGs. In comparison to
most current SMT approaches, the model
learns a very parsimonious phrase trans-
lation lexicons that provide an obvious
basis for generalization to abstract trans-
lation schemas. To do this, the model
maintains internal consistency by avoid-
ing use of mismatched or unrelated mod-
els, such as word alignments or probabil-
ities from IBM models. The model in-
troduces a novel strategy for avoiding the
pitfalls of premature pruning in chunking
approaches, by incrementally splitting an
ITGwhile using a second ITG to guide this
search.

1 Introduction

We introduce an unsupervised approach to induc-
ing parsimonious, relatively clean phrasal inver-
sion transduction grammars or ITGs (Wu, 1997)
that employs a theoretically well-founded mini-
mum description length (MDL) objective to ex-
plicitly drive two opposing, extreme ITGs to-
wards one minimal ITG. This represents a new
attack on the problem suffered by most current
SMT approaches of learning phrase translations
that require enormous amounts of run-time mem-
ory, contain a high degree of redundancy, and fails
to provide an obvious basis for generalization to
abstract translation schemas. In particular, phrasal
SMT models such as Koehn et al. (2003) and Chi-
ang (2005) often search for candidate translation
segments and transduction rules by committing

to a word alignment based on very different as-
sumptions (Brown et al., 1993; Vogel et al., 1996),
and heuristically derive lexical segment transla-
tions (Och and Ney, 2003). In fact, it is possible
to improve the performance by tossing away most
of the learned segmental translations (Johnson et
al., 2007). In addition to preventing such waste-
fulness, our work aims to also provide an obvi-
ous basis for generalization to abstract translation
schemas by driving the search for phrasal rules by
simultaneously using two opposing types of ITG
constraints that have both individually been empir-
ically proven to match phrase reordering patterns
across translations well.
We adopt a more “pure” methodology for eval-

uating transduction grammar induction than typ-
ical system building papers. Instead of embed-
ding our learned ITG in the midst of many other
heuristic components for the sake of a short term
boost in BLEU, we focus on scientifically under-
standing the behavior of pure MDL-based search
for phrasal translations, divorced from the effect
of other variables, even though BLEU is naturally
much lower this way. The common practice of
plugging some aspect of a learned ITG into ei-
ther (a) a long pipeline of training heuristics and/or
(b) an existing decoder that has been patched up
to compensate for earlier modeling mistakes, as
we and others have done before—see for example
Cherry and Lin (2007); Zhang et al. (2008); Blun-
som et al. (2008, 2009); Haghighi et al. (2009);
Saers and Wu (2009, 2011); Blunsom and Cohn
(2010); Burkett et al. (2010); Riesa and Marcu
(2010); Saers et al. (2010); Neubig et al. (2011,
2012)—obscures the specific traits of the induced
grammar. Instead, we directly use our learned
ITG in translation mode (any transduction gram-
mar also represents a decoder when parsing with
the input sentence as a hard constraint) which al-
lows us to see exactly which aspects of correct
translation the transduction rules have captured.
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When the structure of an ITG is induced without
supervision, it has so far been assumed that smaller
rules get clumped together into larger rules. This
is a natural way to search, since maximum like-
lihood (ML) tends to improve with longer rules,
which is typically balanced with Bayesian priors
(Zhang et al., 2008). Bayesian priors are also used
in Gibbs sampling (Blunsom et al., 2008, 2009;
Blunsom and Cohn, 2010), as well as other non-
parametric learning methods (Neubig et al., 2011,
2012). All of the above evaluate their models by
feeding them into mismatched decoders, making it
hard to evaluate how accurate the learned models
themselves were. In this work we take a radically
different approach, and start with the longest rules
possible and attempt to segment them into shorter
rules iteratively. This makes ML useless, since our
initial model maximizes it. Instead, we balance the
ML objective with a minimum description length
(MDL) objective, which let us escape the initial
ML optimum by rewarding model parsimony.
Transduction grammars can also be induced

with supervision from treebanks, which cuts down
the search space by enforcing external constraints
(Galley et al., 2006). This complicates the learn-
ing process by adding external constraints that are
bound to match the translation model poorly. It
does, however, constitute a way to borrow nonter-
minal categories that help the translation model.
MDL has been used before in monolingual

grammar induction (Grünwald, 1996; Stolcke and
Omohundro, 1994), as well as to interpret visual
scenes (Si et al., 2011). Our work is markedly dif-
ferent in that we (a) induce an ITG rather than a
monolingual grammar, and (b) focus on learning
the terminal segments rather than the nonterminal
categories. Iterative segmentation has also been
used before, but only to derive a word alignment
as part of a larger pipeline (Vilar and Vidal, 2005).
The paper is structured as follows: we start by

describing theMDL principle (Section 2). We then
describe the initial ITGs (Section 3), followed by
the algorithm that induces an MDL-optimal ITG
from them (Section 4). After that we describe the
experiments (Section 5), and the results (Section
6). Finally, we offer some conclusions (Section 7).

2 Minimum description length

The minimum description length principle is about
finding the optimal balance between the size of a
model and the size of some data given the model

(Solomonoff, 1959; Rissanen, 1983). Consider the
information theoretical problem of encoding some
data with a model, and then sending both the en-
coded data and the information needed to decode
the data (the model) over a channel; the minimum
description length is the minimum number of bits
sent over the channel. The encoded data can be in-
terpreted as carrying the information necessary to
disambiguate the uncertainties that the model has
about the data. The model can grow in size and be-
comemore certain about the data, and it can shrink
in size and become more uncertain about the data.
Formally, description length (DL) is:

DL (Φ, D) = DL (D|Φ) + DL (Φ)

where Φ is the model and D is the data.
In practice, we rarely have complete data to train

on, so we need our models to generalize to unseen
data. Amodel that is very certain about the training
data runs the risk of not being able to generalize to
new data: it is over-fitting. It is bad enough when
estimating the parameters of a transduction gram-
mar, and catastrophic when inducing the structure.
The information-theoretic view of the problem

gives a hint at the operationalization of descrip-
tion length of a corpus given a grammar. Shannon
(1948) stipulates that we can get a lower bound on
the number of bits required to encode a specific
outcome of a random variable. We thus define de-
scription length of the corpus given the grammar
to be: DL (D|Φ) = −lgP (D|Φ)
Information theory is also useful for the descrip-

tion length of the grammar: if we can find a way
to serialize the grammar into a sequence of tokens,
we can figure out how that sequence can be opti-
mally encoded. To serialize an ITG, we first need
to determine the alphabet that the message will be
written in. We need one symbol for every nonter-
minal, L0- and L1-terminal. We will also make
the assumption that all these symbols are used in
at least one rule, so that it is sufficient to serial-
ize the rules in order to express the entire ITG.
We serialize a rule with a type marker, followed
by the left-hand side nonterminal, followed by all
the right-hand side symbols. The type marker is
either [] denoting the start of a straight rule, or
⟨⟩ denoting the start of an inverted rule. Unary
rules are considered to be straight. We serialize
the ITG by concatenating the serialized form of all
the rules, assuming that each symbol can be serial-
ized into−lgc bits where c is the symbol’s relative
frequency in the serialized form of the ITG.
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3 Initial ITGs

To tackle the exponential problem of searching for
an ITG that minimizes description length, it is use-
ful to contrast two extreme forms of ITGs. De-
scription length has two components, model length
and data length. We call an ITG that minimizes
the data at the expense of the model a long ITG;
we call an ITG that minimizes the model at the ex-
pense of the data a short ITG.1 The long ITG sim-
ply has all the sentence pairs as biterminals:

S → A

A → e0..T0/f0..V0

A → e0..T1/f0..V1

...

A → e0..TN
/f0..VN

where S is the start symbol, A is the nonterminal,
N is the number of sentence pairs, Ti is the length
of the ith output sentence (making e0..Ti the ith out-
put sentence), and Vi is the length of the ith input
sentence (making f0..Vi the ith input sentence). The
short ITG is a token-based bracketing ITG:

S → A, A→ [AA] , A→ ⟨AA⟩,
A→ e/f, A→ e/ϵ, A→ ϵ/f

where, S is the start symbol, A is the nonterminal
symbol, e is an L0-token, f is an L1-token, and ϵ
is the empty sequence of tokens.

4 Shortening the long ITG

To shorten the long ITG,wewill identify good split
candidates in the terminal rules by parsing them
with the short ITG, and commit to split candidates
that give a net gain. A split candidate is an exist-
ing long terminal rule, information about where to
split its right-hand side, and whether to invert the
resulting two rules or not. Consider the terminal
rule A → es..t/fu..v; it can be split at any point S
in L0 and any point U in L1, giving the three rules
A → [AA], A → es..S/fu..U and A → eS..t/fU..v

when it is split in straight order, and the three rules
A→ ⟨AA⟩, A→ es..S/fU..v and A→ eS..t/fu..U

when it is split in inverted order. We will refer to
the original long rule as r0, and the resulting three
rules as r1, r2 and r3.
To identify the split candidates and to figure out

how the probability mass of r0 is to be distributed
1Long and short ITGs correspond well to ad-hoc and

promiscuous grammars in Grünwald (1996).

Algorithm 1 Rule shortening.
Gl ▷ The long ITG
Gs ▷ The short ITG
repeat

cands← collect_candidates(Gl, Gs)
δ ← 0
removed← {}
repeat

score(cands)
sort_by_delta(cands)
for all c ∈ cands do

r ← original_rule(c)
if r /∈ removed and δc ≤ 0 then

Gl ← update_grammar(Gl, c)
removed← {r} ∪ removed
δ ← δ + δc

end if
end for

until δ ≥ 0
until δ ≥ 0
return Gl

to the new rules, we use the short ITG to biparse the
right-hand side of r0. The distribution is derived
from the inside probability of the bispans that the
new rules are covering in the chart, and we refer
to them as λ1, λ2 and λ3, where the index indi-
cates which new rule they apply to. This has the
effect of preferring to split a rule into parts that are
roughly equally probable, as the size of the data is
minimized when the weights are equal.
To choose which split candidates to commit to,

we need a way to estimate their impact on the to-
tal MDL score of the model. This breaks down
into two parts: the difference in description length
of the grammar: DL (Φ′) − DL (Φ) (where Φ′ is
Φ after committing to the split candidate), and the
difference in description length of the corpus given
the grammar: DL (D|Φ′) − DL (D|Φ). The two
are added up to get the total change in description
length.The difference in grammar length is calcu-
lated as described in Section 2. The difference in
description length of the corpus given the grammar
can be calculated by biparsing the corpus, since
DL (D|Φ′) = −lgP (D|p′) and DL (D|Φ) =
−lgP (D|p) where p′ and p are the rule probabil-
ity functions of Φ′ and Φ respectively. Bipars-
ing is, however, a very costly process that we do
not want to carry out for every candidate. Instead,
we assume that we have the original corpus proba-
bility (through biparsing when generating the can-
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Table 1: The results of decoding. NIST and BLEU are the translation scores at each iteration, followed
by the number of rules in the grammar, followed by the average (as measured by mean and mode) number
of English tokens in the rules.

Iteration NIST BLEU Rules Mean Mode
1 2.7015 11.97 43,704 7.20 6
2 4.0116 14.04 42,823 6.30 6
3 4.1654 16.58 41,867 5.68 2
4 4.3723 17.43 40,953 5.23 1
5 4.2032 18.78 40,217 4.97 1
6 4.1329 17.28 39,799 4.84 1
7 4.0710 17.31 39,587 4.79 1
8 4.0437 17.10 39,470 4.75 1

didates), and estimate the new corpus probability
from it (in closed form). The new rule probability
function p′ is identical to p, except that:

p′ (r0) = 0

p′ (r1) = p (r1) + λ1p (r0)

p′ (r2) = p (r2) + λ2p (r0)

p′ (r3) = p (r3) + λ3p (r0)

We assume the probability of the corpus given this
new rule probability function to be:

P
(
D|p′) = P (D|p)

p′ (r1) p′ (r2) p′ (r3)

p (r0)

This gives the following description length differ-
ence:

DL (D|Φ′)− DL (D|Φ) =

−lgp′(r1)p′(r2)p′(r3)
p(r0)

We will commit to all split candidates that are es-
timated to lower the DL, restricting it so that any
original rule is split only in the best way (Algo-
rithm 1).

5 Experimental setup

To test whether minimum description length is a
good driver for unsupervised inversion transduc-
tion induction, we implemented and executed the
method described above. We start by initializing
one long and one short ITG. The parameters of the
long ITG cannot be adjusted to fit the data better,
but the parameters of the short ITG can be tuned to
the right-hand sides of the long ITG.We do so with
an implementation of the cubic time algorithm de-
scribed in Saers et al. (2009), with a beam width
of 100. We then run the introduced algorithm.
As training data, we use the IWSLT07 Chinese–

English data set (Fordyce, 2007), which contains

46,867 sentence pairs of training data, and 489
Chinese sentences with 6 English reference trans-
lations each as test data; all the sentences are taken
from the traveling domain. Since the Chinese is
written without whitespace, we use a tool that tries
to clump characters together into more “word like”
sequences (Wu, 1999).
After each iteration, we use the long ITG to

translate the held out test set with our in-house ITG
decoder. The decoder uses a CKY-style parsing
algorithm (Cocke, 1969; Kasami, 1965; Younger,
1967) and cube pruning (Chiang, 2007) to inte-
grate the language model scores. The decoder
builds an efficient hypergraph structure which is
scored using both the induced grammar and a lan-
guage model. We use SRILM (Stolcke, 2002) for
training a trigram language model on the English
side of the training corpus. To evaluate the re-
sulting translations, we use BLEU (Papineni et al.,
2002) and NIST (Doddington, 2002).
We also perform a combination experiment,

where the grammar at different stages of the learn-
ing process (iterations) are interpolated with each
other. This is a straight-forward linear interpola-
tion, where the probabilities of the rules are added
up and the grammar is renormalized. Although
it makes little sense from an MDL point of view
to increase the size of the grammar so indiscrim-
inately, it does make sense from an engineering
point of view, since more rules typically means
better coverage, which in turn typically means bet-
ter translations of unknown data.

6 Results

As discussed at the outset, rather than burying our
learned ITG in many layers of unrelated heuristics
just to push up the BLEU score, we think it is more
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Table 2: The results of decoding with combined grammars. NIST and BLEU are the translation scores for
each combination, followed by the number of rules in the grammar, followed by the average (as measured
by mean and mode) number of English tokens in the rules.

Combination NIST BLEU Rules Mean Mode
1–2 (2 grammars) 4.2426 15.28 74,969 6.69 6
3–4 (2 grammars) 4.5087 18.75 54,533 5.41 3
5–6 (2 grammars) 4.1897 18.19 44,264 4.86 1
7–8 (2 grammars) 4.0953 17.40 40,785 4.79 1
1–4 (4 grammars) 4.9234 19.98 109,183 6.19 5
5–8 (4 grammars) 4.1089 17.86 47,504 4.84 1
1–8 (8 grammars) 4.8649 20.41 124,423 5.92 3

important to illuminate scientific understanding of
the behavior of pure MDL-driven rule induction
without interference from other variables. Directly
evaluating solely the ITG in translation mode—
instead of (a) deriving word alignments from it by
committing to only the one-best parse, but then dis-
carding any trace of structure and/or (b) evaluating
it through a decoder that has been patched up to
compensate for deficiencies in disparate aspects of
translation—allows us to see exactly how accurate
the learned transduction rules are.
The results from the individual iterations (Table

1) show that we learn very parsimonious models
that far outperforms the only other result we are
aware of where an ITG is tested exactly as it was
learned without altering the model itself: Saers et
al. (2012) induce a pure ITG by iteratively chunk-
ing rules, but they report significantly lower trans-
lation quality (8.30 BLEU and 0.8554 NIST) de-
spite a significantly larger ITG (251,947 rules).
The average rule length also decreases as smaller
reusable spans are found. The English side of the
training data has amean of 8.45 and amode of 7 to-
kens per sentence, and these averages drop steadily
during training. It is very encouraging to see the
mode drop to one so quickly, as this indicates that
the learning algorithm finds translations of individ-
ual English words. Not only are the rules getting
fewer, but they are also getting shorter.
The results from the combination experiments

(Table 2) corroborate the engineering intuition that
more rules give better translations at the expense of
a larger model. Using all eight grammars gives a
BLEU score of 20.41, at the expense of approxi-
mately tripling the size of the grammar. All indi-
vidual iterations benefit from being combined with
other iterations—but for the very best iterations
more additional data is needed to get this improve-

ment; the fifth iteration, which excelled at BLEU
score needs to be combinedwith all other iterations
to see an improvement, whereas the first and sec-
ond iterations only need each other to see an im-
provement.

7 Conclusions

We have presented a minimalist, unsupervised
learning model that induces relatively clean
phrasal ITGs by iteratively splitting existing rules
into smaller rules using a theoretically well-
founded minimum description length objective.
The resulting translation model is very parsimo-
nious and provide an obvious foundation for gen-
eralization tomore abstract transduction grammars
with informative nonterminals.
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