
Proceedings of the 5th International Joint Conference on Natural Language Processing, pages 974–982,
Chiang Mai, Thailand, November 8 – 13, 2011. c©2011 AFNLP

A Character-Level Machine Translation Approach for Normalization
of SMS Abbreviations

Deana L. Pennell
The University of Texas at Dallas

800 W. Campbell Road
Richardson, TX 75080

deana@hlt.utdallas.edu

Yang Liu
The University of Texas at Dallas

800 W. Campbell Road
Richardson, TX 75080

yangl@hlt.utdallas.edu

Abstract

This paper describes a two-phase method
for expanding abbreviations found in in-
formal text (e.g., email, text messages,
chat room conversations) using a machine
translation system trained at the charac-
ter level during the first phase. In this
way, the system learns mappings between
character-level “phrases” and is much
more robust to new abbreviations than a
word-level system. We generate transla-
tion models that are independent of the
way in which the abbreviations are formed
and show that the results show little degra-
dation compared to when type-dependent
models are trained. Our experiments on
a large data set show our proposed system
performs well when tested both on isolated
abbreviations and, with the incorporation
of a second phase utilizing an in-domain
language model, in the context of neigh-
boring words.

1 Introduction

Text messaging (SMS) is a rapidly growing form
of alternative communication for cell phones. This
popularity has caused safety concerns leading
many US states to pass laws prohibiting texting
while driving. The technology is also difficult for
users with visual impairments or physical hand-
icaps to use. We believe a text-to-speech (TTS)
system for cell phones can decrease these prob-
lems to promote safe travel and ease of use for all.

Text normalization is the usual first step for
TTS. Text message lingo is also similar to the chat-
speak that is prolific on forums, blogs and chat-
rooms. Screen readers will thus benefit from such
technology, enabling visually impaired users to
take part in internet culture. In addition, normal-
izing informal text is important for various lan-

guage processing tasks, such as information re-
trieval, summarization, and keyword, topic, sen-
timent and emotion detection, which are currently
receiving a lot of attention for informal domains.

Normalization of informal text is complicated
by the large number of abbreviations used. Some
previous work on this problem used phrase-based
machine translation (MT) for SMS normalization;
however, a large annotated corpus is required for
such a supervised learning method since the learn-
ing is performed at the word level. By definition,
this method cannot make a hypothesis for an ab-
breviation it did not see in training. This is a se-
rious limitation in a domain where new words are
created frequently and irregularly.

We propose a two-phase approach. In the first
phase, an MT model is trained at the character-
level rather than the word- or phrase-level, allow-
ing recognition of common abbreviation patterns
regardless of the words in which they appear. We
decode the hypotheses in the second phase using a
language model for the final prediction.

2 Related Work

Text normalization is an important first step
for any text-to-speech (TTS) system and has
been widely studied in many formal domains.
Sproat et al. (2001) provides a good resource for
text normalization and its associated problems.
Spell-checking algorithms are mostly ineffective
on this type of data because they do not account for
the phenomena in informal text. Some prior work
instead focused on single typographic errors using
edit distance (Kukich, 1992), perhaps combined
with pronunciation modeling, such as (Toutanova
and Moore, 2002).

One line of research views normalization as a
noisy channel problem. Choudhury et al. (2007)
describe a supervised noisy channel model using
HMMs for SMS normalization. Cook and Steven-
son (2009) extend this work to create an unsuper-

974

vised noisy channel approach using probabilistic
models for common abbreviation types and choos-
ing the English word with the highest probability
after combining the models. Deletion-based ab-
breviations were addressed in our past work using
statistical models (maximum entropy and condi-
tional random fields) combined with an in-domain
language model (LM) (Pennell and Liu, 2010;
Pennell and Liu, 2011). Liu et al. (2011) extend
the statistical model to be independent of abbrevi-
ation type with good results.

Whitelaw et al. (2009) used a noisy channel
model based on orthographic edit distance using
the web to generate a large set of automatically
generated (noisy) pairs to be used for training and
for spelling suggestions. Although they use the
web for collection, they do not focus on informal
text but rather on unintentional spelling mistakes.
Beaufort et al. (2010) combine a noisy channel
model with a rule-based finite-state transducer and
got reasonable results on French SMS, but have
not tried their method on English text. Han and
Baldwin (2011) first determine whether a given
out-of-vocabulary (OOV) word needs to be ex-
panded or is some other type of properly-formed
OOV. For those predicted to be ill-formed, a con-
fusion set of possible candidate words is generated
based on a combination of lexical and phonetic
edit distance and the top word is chosen in con-
text using LM and dependency parse information.

Machine translation (MT) techniques trained at
the word- or phrase-level are also common. Trans-
lation of SMS from one language to another led
Bangalore et al. (2002) to use consensus trans-
lations to bootstrap a translation system for in-
stant messages and chat rooms where abbrevia-
tions are common. Aw et al. (2006) view SMS
lingo as if it were another language with its own
words and grammar to produce grammatically cor-
rect English sentences using MT. Q. and H. (2009)
trained an MT system using three on-line SMS
dictionaries for normalizing chat-like messages on
Twitter. Kobus et al. (2008) incorporate a sec-
ond phase in the translation model that maps char-
acters in the texting abbreviation to phonemes,
which are viewed as the output of an automatic
speech recognition (ASR) system. They use a non-
deterministic phonemic transducer to decode the
phonemes into English words. The technical paper
of Raghunathan and Krawczyk (2009) details an
explicit study varying language model orders, dis-

tortion limit and maximum phrase length allowed
by the MT system during decoding. Contractor et
al. (2010) also uses an SMT model; however, in
an attempt to get around the problem of collecting
and annotating a large parallel corpus, they auto-
matically create a noisy list of word-abbreviation
pairs for training using some heuristics. As far as
we know, we are the first to use an MT system at
the character-level for this task.

3 Data

Due to the lack of a large parallel corpus suitable
for our study, we are building a corpus using status
updates from twitter.com. Twitter allows users to
update status messages by sending an SMS mes-
sage to a number designated for the Twitter ser-
vice. To ensure that our corpus is representative
of the domain we are modeling, we use Twitter’s
meta-data to collect only messages sent via SMS.
Some examples of highly abbreviated messages
from our corpus are shown below.
(a) Aye.oops,dat was spose to be a

txt

(b) Rndm fct bout wife: n the
past 10 yrs I can cnt on one
hand the num Xs she’s 4gotn to
unlock my car door

(c) OMG I LOVE YOU GUYS. You pwn
:) !!!

(d) i need to qo to bedd qotta
wakee up at 7am for school....

(e) heard it again! xD 3 TIMES.a
sng i nvr hear!

3.1 Choosing Messages for Annotation
An annotator’s time is wasted if he is presented
with many messages containing no abbreviations,
or with sentences all containing the same, very
common abbreviations. A scoring system was
thus devised using the following metrics:

1. Word Count Index. A low word count index
indicates that a message is close to the mean
message length. Messages with fewer than
five words are removed from consideration.
We calculate the index as |N−E(N)|/σ(N),
where N is the number of words in the mes-
sage and mean and standard deviation are cal-
culated over the entire corpus.

2. Perplexity Scores. Two perplexity scores are
calculated against character-level language

975

models. A low perplexity of the message
compared to standard English text indicates
that the message is less likely to be in a for-
eign language or jibberish. Similarly, a low
perplexity of the message compared to our
corpus indicates that the message is more rep-
resentative of the domain. A sentence is re-
moved if in either case the perplexity value is
greater than a threshold (1000 in our study).

3. OOV Count. This is a simple count of the
number of out of vocabulary (OOV) words in
the message compared to an English dictio-
nary, which we denote NOOV . This metric
helps guarantee that we select messages con-
taining many OOV words. We remove the
sentence completely when NOOV = 0.

4. OOV Percentages. This metric consists of
two scores: the first is NOOV /N ; the second
is a non-duplicate OOV percentage, where
we remove all repeated words and then re-
calculate the percentage. If the first score is
greater than 0.5 but the second is not, we re-
move the message from consideration.

5. OOV Frequency Scores. For each OOV to-
ken (including emoticons) we find the fre-
quency of the token across the entire corpus.
This ensures that we annotate those abbrevi-
ations that are commonly used.

A sorted list is generated for each metric. The
final score for each sentence is a weighted aver-
age of its position in each list, with more weight
given to the non-duplicate OOV percentage and
less weight given to the OOV frequency scores.
The sentences are ranked in a penultimate list
based on this final score. Finally, a post process-
ing step iterates through the list to remove sen-
tences introducing no new OOV words compared
to higher-ranked sentences. Messages were anno-
tated in the order of rank.

3.2 Annotation
Five undergraduate students were hired for the an-
notation task. In total, 4661 twitter status mes-
sages were annotated. Of these, 74 were given to
multiple annotators so that we can calculate inter-
annotator agreement. All 74 of these messages
were also annotated by the first author as a stan-
dard for comparison. There were 7769 tokens an-
notated as an abbreviation by at least one annotator
with 3761 (48%) unique to a single annotator.

We calculate pairwise agreement for whether or
not a token is an abbreviation for all tokens given
to each pair, including those that both agreed were
not abbreviations. The Fleiss’ Kappa κ = 0.891
for these pairwise values is quite high so the num-
ber of annotators can be reduced without negative
effects to the project as long as they are familiar
with the domain.

4 Normalization Approach

We describe a two-phase approach for SMS nor-
malization. The first phase uses a character-level
MT system to generate possible hypotheses for
each abbreviation. The second uses a language
model (LM) to choose a hypothesis in context.

Typically, an SMT system translates a sentence
from one language to another. An alignment step
learns a mapping of words and phrases between
the two languages using a training corpus of paral-
lel sentences. During testing, this mapping is used
along with LMs to translate a sentence from one
language to another. While researchers have used
this method to normalize abbreviations (Bangalore
et al., 2002; Aw et al., 2006; Kobus et al., 2008; Q.
and H., 2009; Contractor et al., 2010), it is not ro-
bust to new words and leads to poor accuracy in
this domain where new terms are used frequently
and inconsistently.

Our system differs in that we train the MT
model at the character-level during the first phase;
that is, rather than learning mappings between
words and phrases we instead map characters to
other characters in what can be a many-to-many
mapping. For example, the ending “-er” (as in
“teacher” or “brother”) is often abbreviated with
the single character ‘a’. Characters may also be
mapped to symbols (“@” for “at”), numbers (“8”
for “ate”) or nothing at all (deletions).

Formally, for an abbreviation a :
c1(a), c2(a), ..., cm(a) (where ci(a) is the ith

character in the abbreviation), we use an MT
system to find the proper word hypothesis:

ŵ = argmax p(w|a) (1)

= argmax p(w)p(a|w)
= argmax p(c1(w), ...cn(w))

×p(c1(a), ..., cm(a)|c1(w), ...cn(w))
where ci(w) is a character in the English word
w, p(c1(w), ...cn(w)) is obtained using a charac-
ter LM, and p(c1(a), ..., cm(a)|c1(w), ...cn(w)) is
based on the learned phrase translation table.

976

Pairs of words from our annotated data are used
for training: the original token (which may or may
not be an abbreviation) and its corresponding En-
glish word. We removed tokens which the annota-
tors were unable to translate and those marked as
sound effects (e.g., ahhhhh, zzzzz, blech, hrmpf,
etc.). Punctuation was removed from the remain-
ing data, excluding that found in emoticons (which
we treat as words) and apostrophes in common
contractions and possessive forms. To facilitate
character-level training, we insert a space between
each character and replace any spaces with the un-
derscore character.

Because training is done at the character-level,
each hypothesis (w) for an abbreviation (a) is a
sequence of characters, which may or may not be
a valid word. To see why, examine the partial
phrase-table shown in Figure 11; using this table,
“hab” could be translated to “hib”, “habulary” or
“habou” as well as the word “have”. It is also very
likely that a hypothesis will appear many times
in the hypothesis list due to different segmenta-
tion (two characters may be generated by a sin-
gle phrase mapping or by two different mappings,
one for each character). We generate 20 distinct
hypotheses for each token and then eliminate hy-
potheses that do not occur in the CMU Lexicon.

Until this point, we have only normalized a sin-
gle abbreviation without context. In a realistic
setting contextual information is available to help
with translation. We thus introduce a second phase
using a word-level LM to disambiguate hypothe-
ses when context is available. This is the typical
noisy channel model used for speech recognition
or MT decoding and is comparable to equation 1.

Determining the standard English sentence,
W = w1w2...wn, from a given informal sentence,

1Aside from the possible translations, the phrase table
also shows five values for each word. They correspond to
the inverse phrase translation probability φ(f |e), the inverse
lexical weighting lex(f |e), the direct phrase translation prob-
ability φ(e|f), the direct lexical weighting lex(e|f) and the
phrase penalty (always exp(1) = 2.718), where e and f are
the English and foreign phrases, respectively. We do not cur-
rently make use of these values.

A = a1a2...an, can be formally described as:

Ŵ = argmaxP (W |A) (2)

= argmaxP (W)P (A|W)

≈ argmax
∏

P (wi|wi−n+1...wi−1)

×
∏

P (ai|wi)

= argmax(
∑

logP (wi|wi−n+1...wi−1)

+
∑

logP (ai|wi))

where the approximation is based on the assump-
tion that each abbreviation depends only on the
corresponding word (we are not considering one-
to-many mappings in this study), and a word is
dependent on its previous (n− 1) words. In other
words, this probability is represented by a tradi-
tional n-gram LM.

The abbreviation score in Equation 2, P (ai|wi),
represents the likelihood that abbreviation ai is de-
rived from word wi, and can be obtained from:

p(ai|wi) ∝
p(wi|ai)
p(wi)

(3)

where p(wi|ai) is the abbreviation model (AM)
score from the character-level MT system, and
p(wi) is from the character LM we used in MT
decoding. In this study, we just use the score from
the MT system as the likelihood score, without
dividing by the character-level LM contribution.
This is equivalent to using both character- and a
word-level LMs during decoding.

Equation 2 assumes that the AM and LM should
be weighted equally, but in actuality one model
may prove to be more helpful than the other. For
this reason, we allow the terms from equation 2 to
be weighted differently, yielding the final equation

Ŵ = argmax(α
∑

logP (wi|wi−n+1...wi−1)

+β
∑

logP (ai|wi)) (4)

where α and β are determined empirically.

5 Experiment 1: Evaluation on Isolated
Abbreviations

We use the Moses MT system (Koehn et al., 2007)
in all our experiments, including Giza++ for align-
ment. The score assigned to a translation is de-
rived from four models: the phrase translation ta-
ble, the language model, the reordering model,

977

Figure 1: An excerpt from a phrase table showing possible translations when the character sequence “ab”
is found in a message.

and a word length penalty. We use Moses’ de-
fault weights for these models, but plan to ad-
just the weights in the future to determine each
model’s contribution to a good translation. For
each abbreviation we generate 20 distinct hypothe-
ses. We finally remove non-word hypotheses us-
ing the CMU lexicon. Note that occasionally
Moses generates a positive score (impossible for
a real log-probability). When this occurs, we use
the value -0.1 instead, indicating that this pair is
very likely.

Note that our accuracy is bounded from above
by the percentage of pairs in testing that appear in
the 20-best hypotheses generated by Moses. For
this reason, we first wish to find a setup to maxi-
mize the upper bound on our performance.

5.1 Experimental Variations

There are different factors that may affect the per-
formance of our system for individual words: the
character-level LM used for decoding, the way the
models are trained, and the data used to train those
models. We thus evaluate different experimental
variations, described below.

Training/Testing Configuration
To test the effect of using more specific versus
more general data when training the MT system,
we used the following training sets:

1. General Setup: Training and testing are both

Formation Method Example
Deletions ppl (people)

Substitutions 2nite (tonight)
Repetitions yeeeeesssss (yes)

Swaps tounge (tongue)
Insertions borded (bored)

Table 1: Examples of major abbreviation types.

done using all of the annotated data, includ-
ing words that are already in standard form in
the message.

2. Single-word Abbreviation Setup: In train-
ing, we remove those abbreviations corre-
sponding to multiple words (for example,
“brb” representing “be right back”) and those
words already in standard form. Again we
test the system using all of the annotated data.

3. Type-dependent Setup: We train a separate
model for each major abbreviation type (see
Table 1) except insertions. The type of each
abbreviation in the test set has been annotated
so we use its respective model for testing.
We assumed that knowledge about the ab-
breviation formation method would increase
the model’s ability to translate the abbrevia-
tion. Currently there is no known procedure
for automatically determining the abbrevia-
tion type without having prior knowledge of
its translation, so this setup is just for compar-
ison purpose to evaluate how well the more
general methods are performing.

Language Model (LM) Order
We wanted to determine how the order of the
character-level LM used by Moses affected per-
formance. A smaller order model may not capture
larger phrases or long distance dependencies, but
the smaller model may generalize better due to the
sparseness of many high-order phrases.

We explore different character LMs used in de-
coding to generate word hypotheses, including
character-based 3-, 5-, and 7-gram LMs. These
are trained on a subset of 16,543,813 messages
from the Edinburgh Twitter corpus (Petrovic et
al., 2010) containing no OOV words compared to
an English dictionary. Each model is used in the
above training/testing configurations.

978

Order 3 Order 5 Order 7
Top-1 Top-20 Top-1 Top-20 Top-1 Top-20

All (14611) 59.30 81.32 62.62 81.49 63.30 81.95
Abbreviations (2842) 11.75 53.24 30.33 62.95 33.04 63.83
Standard Form (10629) 76.89 94.39 75.86 91.55 75.91 91.81
Deletions (1406) 8.68 52.63 31.58 62.87 34.71 63.51
Substitutions (620) 9.35 37.91 22.58 51.94 25.32 52.58
Repetitions (510) 23.14 81.37 32.55 79.02 34.90 79.80
Swaps (106) 33.02 70.75 69.81 86.79 66.04 90.57
Insertions (55) 0.00 27.27 14.55 49.09 20.00 56.36
Combination (140) 0.71 23.57 21.43 43.57 25.00 43.57

Table 2: Accuracy using the General setup (%).

Order 3 Order 5 Order 7
Top-1 Top-20 Top-1 Top-20 Top-1 Top-20

All (14611) 75.97 91.23 75.75 92.50 75.57 92.53
Abbreviations (2842) 14.53 63.16 36.45 72.31 37.40 72.38
Standard Form (10629) 92.47 98.79 86.31 97.93 85.84 97.95
Deletions (1406) 11.38 64.15 39.90 74.04 40.61 74.11
Substitutions (620) 11.13 48.23 25.48 60.80 27.42 61.45
Repetitions (510) 28.24 84.31 37.45 82.75 38.24 82.55
Swaps (106) 35.85 91.51 76.42 96.23 73.58 95.28
Insertions (55) 0.00 36.36 18.18 54.55 20.00 58.18
Combination (140) 1.43 33.57 25.00 59.29 27.14 57.14

Table 3: Accuracy using the Single-word setup (%).

5.2 Results

The results from different training/testing config-
urations and LM orders are shown in Tables 2, 3
and 4. We use a cross-validation setup where we
train the MT system using the annotations from
four annotators and test on the data from the fifth.
The mean score from the five runs is reported here.
In all three tables, we show top-1 and top-20 accu-
racy. For top-1 accuracy, the system is considered
correct if and only if the top hypothesis given by
Moses exactly matches the standard English form.
If the correct standard English form is listed any-
where in the 20 hypotheses generated by Moses,
we count it correct in top-20 accuracy. The top
20-accuracy represents the possible gain we can
achieve by re-ranking the lists using context.

We break down the results by abbreviation type
to determine any performance difference. The top
portion of Tables 2 and 3 shows results for all
14611 unique pairs in the annotated data, includ-
ing words already in standard form and abbrevi-
ations corresponding to multiple words. The fol-
lowing two rows show results on abbreviations of

single words and words already in standard form,
respectively. The lower portion breaks down the
results by abbreviation type. The rows listing spe-
cific types include those abbreviations using only
that abbreviation method. The final row lists re-
sults for those abbreviations formed using multi-
ple methods. The type-dependent setup (Table 4)
reports results for each type when using the model
trained for that specific type.2

Removing multi-word abbreviations and words
already in standard form from training generally
increases accuracy. The type-dependent model
usually outperforms the single-word model, as ex-
pected. Comparing Tables 3 and 4 shows that
performance decrease using the type-independent
single-word model is usually small, helping avoid
costly human annotation of types in the future.
Contrary to expectations, the type-independent

2We do not train a separate model for the insertions due
to the small number of abbreviations of that type in our data.
Looking at those marked as insertions, most of them appear
to be typographical errors caused by “fat fingering” a keypad
(e.g. “jusyt” for “just”), although a few appear stylistic in
nature, e.g.,“confrused” for “confused”.

979

Order 3 Order 5 Order 7
Top-1 Top-20 Top-1 Top-20 Top-1 Top-20

Deletions (1406) 11.45 64.08 38.98 73.33 40.11 73.47
Substitutions (620) 12.26 55.48 27.58 62.58 27.74 63.06
Repetitions (510) 28.63 84.51 39.02 83.33 39.61 83.53
Swaps (106) 35.85 97.17 77.36 97.17 77.36 97.17

Table 4: Accuracy using the type-dependent training and testing (%).

model outperformed the type-dependent model for
the deletion type. Examining the abbreviations
formed by combining at least two methods helps
explain why this occurs. Of the 140 abbreviations
combining abbreviation types, 102 contain at least
one deletion. Adding these abbreviations in train-
ing yields additional examples for the model to
learn from.

There is a large increase in accuracy between
using a 3-gram versus a 5-gram model. How-
ever, the jump from 5-gram to 7-gram is much
smaller, and in some cases it even decreases per-
formance. We thus recommend using a 5-gram
character model and training using only single-
word abbreviations.

6 Experiment 2: Incorporation of
Contextual Information

In many cases, there are many word hypotheses
for a given abbreviation. Without contextual infor-
mation the top hypothesis is static. In some cases
the system can use contextual information to sug-
gest the correct word even when it may not be the
most likely choice using the AM alone. To evalu-
ate the effect of context on normalization, we cre-
ate a test set containing trigrams using one word
of context on either side of each abbreviation. If
an abbreviation falls at the beginning or end of
a message we use <s> and </s> for the left or
right context, respectively. We replace OOV con-
text words with their annotated standard forms.

The top performing setup from Section 5 is used
to build the AM, which is then combined with a
bigram LM for decoding using equation 2. The
LM uses Kneser-Ney smoothing and was trained
on the same portion of the Edinburgh corpus as
used for the character-level models. We do not
include the <unk> token in the LM because its
probability is quite high and preliminary tests (not
included here) show a degradation in performance
when it is utilized. Instead, we use a log probabil-
ity of -99 for all unknown terms seen in testing.

LM-only Full Partial Section 5.23

13.5 69.7 69.3 36.45

Table 5: Accuracy on tests using context (%).

We performed three types of tests in order to de-
termine the best setup for decoding using context.

1. LM-only. This system serves as a baseline
for comparison. We eliminate the abbrevia-
tion model completely and use only the LM
for decoding. In this case, all unigrams in the
LM are considered to be possible candidates
for each abbreviation.

2. Full. We use the LM in combination with
the abbreviation model using equation 2 with
α = 1.0 and β = 0.1 (found empirically).

3. Partial. Due to the small weight found for
the abbreviation model in the previous setup,
we wish to show that the abbreviation score
is helpful for decoding. We use the abbrevi-
ation model to generate the candidate words
for each abbreviation, but we do not use the
abbreviation score in decoding.4

We again performed cross validation by first
training an AM using the data from four of the an-
notators and then testing on the trigrams formed
from the final annotator’s data. In total there were
4415 context trigrams used in testing. This is
larger than the 2842 abbreviations shown in the
previous section because the previous tests used
unique abbreviations, which may in reality corre-
spond to multiple words and unique contexts. Ta-
ble 5 shows the normalization results. As a ba-
sis of comparison, the state-of-the-art Jazzy spell-

3Using single-word training and 5-gram character LM.
4We eliminate the AM term from equation 4, yielding

Ŵ = argmaxwi∈S(
∑

logP (wi|wi−n+1...wi−1) where
the candidate set S is generated by the MT system. Equiv-
alently, we set β = 0.

980

Top-1 Top-3 Top-10 Top-20
Jazzy (Idzelis, 2005) 49.86 53.13 54.78 55.44

(Choudhury et al., 2007) 59.9 – 84.3 88.7
(Cook and Stevenson, 2009) 59.4 – 83.8 87.8

(Liu et al., 2011)a 58.09 70.96 – –
(Liu et al., 2011)b 62.05 75.91 – –

This Work 60.39 74.58 75.57 75.57

Table 6: System comparison on the 303-term test set from (Choudhury et al., 2007).
aLetterTran.
bLetterTran + Jazzy.

checker (Idzelis, 2005) achieves 38% accuracy on
this dataset.

It is clear that the LM-only setup is not suf-
ficient for this task and that our AM is neces-
sary. The Full and Partial setups perform simi-
larly; while the Full model consistently performs
slightly better for all annotators, it is probably not
a significant difference. We hope that by optimiz-
ing Moses’ parameters we can obtain higher per-
formance from the AM.

Compared to the 1-best results from Section 5.2
we see that incorporating contextual informa-
tion yields significant gain. Our performance is
bounded from above by the percentage of correct
solutions that appear in our candidate lists. For the
contextual task, 77.2% of the correct words appear
in the lookup lists after the AM is applied, show-
ing that we can still improve the decoding pro-
cess. Fully 91.7% of the correct words appear in
the LM, meaning that the AM is still eliminating
many correct answers from consideration. We are
investigating methods to address these shortcom-
ings for our future work.

7 Comparison to Past Work

Although there has been very little work on this
task until quite recently, multiple studies have
been done using the small 303-term dataset first
used by (Choudhury et al., 2007). For this
reason, we run our system on this small data
set. We also use the state-of-the-art Jazzy spell-
checker (Idzelis, 2005) as a baseline.

System comparisons are shown in Table 6. The
results shown for other systems (except Jazzy) are
those reported in their respective papers; we did
not re-implement their systems. Our system per-
forms comparably to the work of (Liu et al., 2011)
on this dataset. Although we outperform both
(Choudhury et al., 2007) and (Cook and Steven-

son, 2009) in top-1, they outperform our system at
top-10 and top-20. With better re-ranking, their
systems have the potential to outperform ours.
One of our goals is thus to obtain better coverage.

8 Conclusions and Future Work

In this paper we presented a two-phase approach
using character-level machine translation for in-
formal text normalization. When combined with
contextual information at the word level, our re-
sults are state-of-the art, but there is still some
room for improvement.

Although they are far more common, ab-
breviations formed by deletion and substitution
method have worse performance compared to
those formed by repetition or swap. It may be
useful to create systems specific to those forma-
tion types, such as the deletion system from (Pen-
nell and Liu, 2010). Provided that these sys-
tems are not trained using the MT approach, it
is likely that they contain complementary (rather
than redundant) information. Combining hypothe-
ses from multiple sources may increase perfor-
mance on these abbreviation types.

Although we incorporate contextual informa-
tion in Section 6, the setup is not entirely real-
istic. We test only on abbreviations, assuming
that we know which words are abbreviations and
which are not. A simple heuristic of only ap-
plying our system to OOV words (compared to a
dictionary) may not perform well. Proper nouns
are often OOV and should not be expanded, but
we would like to expand “off” (“office”) or “cat”
(“category”), which are also dictionary words. We
also assume there are not other abbreviations to
be expanded in the context. In reality, many users
write highly abbreviated messages, posing greater
difficulties for sentence-level decoding. We will
address sentence-level decoding in future work.

981

References
AiTi Aw, Min Zhang, Juan Xian, and Jian Su. 2006.

A phrase-based statistical model for SMS text nor-
malization. In COLING/ACL, pages 33–40, Sydney,
Australia.

Srinivas Bangalore, Vanessa Murdock, and Giuseppe
Riccardi. 2002. Bootstrapping bilingual data using
consensus translation for a multilingual instant mes-
saging system. In 19th International Conference on
Computational Linguistics, pages 1–7, Taipei, Tai-
wan.

R. Beaufort, S. Roekhaut, L.A. Cougnon, and C. Fa-
iron. 2010. A hybrid rule/model-based finite-state
framework for normalizing SMS messages. In Pro-
ceedings of the 48th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 770–
779, Uppsala, Sweden. Association for Computa-
tional Linguistics.

Monojit Choudhury, Rahul Saraf, Vijit Jain, Animesh
Mukherjee, Sudeshna Sarkar, and Anupam Basu.
2007. Investigation and modeling of the structure
of texting language. International Journal of Docu-
ment Analysis and Recognition, 10:157–174.

Danish Contractor, Tanveer A. Faruquie, and
L. Venkata Subramaniam. 2010. Unsuper-
vised cleansing of noisy text. In Proceedings of
the 23rd International Conference on Computa-
tional Linguistics: Posters, COLING ’10, pages
189–196, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Paul Cook and Suzanne Stevenson. 2009. An
unsupervised model for text message normaliza-
tion. In NAACL HLT Workshop on Computational
Approaches to Linguistic Creativity, pages 71–78,
Boulder, CO.

B. Han and T. Baldwin. 2011. Lexical normalisation
of short text messages: Makn sens a# twitter. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics.

Mindaugas Idzelis. 2005. Jazzy: The java open source
spell checker.

Catherine Kobus, François Yvon, and Géraldine
Damnati. 2008. Normalizing SMS: Are two
metaphors better than one? In 22nd International
Conference on Computational Linguistics, pages
441–448, Manchester, UK.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the ACL
on Interactive Poster and Demonstration Sessions,

ACL ’07, pages 177–180, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Karen Kukich. 1992. Technique for automatically
correcting words in text. ACM Computing Surveys,
24(4):377–439.

F. Liu, F. Weng, B. Wang, and Y. Liu. 2011. Insertion,
deletion, or substitution? normalizing text messages
without pre-categorization nor supervision. Proc. of
ACL-HLT.

Deana Pennell and Yang Liu. 2010. Normalization of
text messages for text-to-speech. In ICASSP, pages
4842–4845, Dallas, Texas, USA.

Deana Pennell and Yang Liu. 2011. Toward text mes-
sage normalization: Modeling abbreviation genera-
tion. In ICASSP, Prague, Czech Republic, May.

Saša Petrovic, Miles Osborne, and Victor Lavrenko.
2010. The edinburgh twitter corpus. In NAACL-
HLT Workshop on Computational Linguistics in a
World of Social Media, pages 25–26, Los Angeles,
California, USA.

Carlos A. Henrı́quez Q. and Adolfo Hernández H.
2009. A ngram-based statistical machine translation
approach for text normalization on chat-speak style
communications. In Content Analysis for the Web
2.0 (CAW2.0 2009), Madrid, Spain.

K. Raghunathan and S. Krawczyk. 2009. Cs224n: In-
vestigating sms text normalization using statistical
machine translation.

Richard Sproat, Alan Black, Stanley Chen, Shankar
Kumar, Mari Ostendorf, and Christopher Richards.
2001. Normalization of non-standard words. Com-
puter Speech and Language, 15(3):287–333.

Kristina Toutanova and Robert C. Moore. 2002. Pro-
nunciation modeling for improved spelling correc-
tion. In ACL, pages 144–151, Philadelphia, Penn-
sylvania.

C. Whitelaw, B. Hutchinson, G.Y. Chung, and G. El-
lis. 2009. Using the web for language independent
spellchecking and autocorrection. In Proceedings
of the 2009 Conference on Empirical Methods in
Natural Language Processing: Volume 2-Volume 2,
pages 890–899. Association for Computational Lin-
guistics.

982

