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Abstract
Cognates are words in different languages
that are associated with each other by lan-
guage learners. Thus, cognates are im-
portant indicators for the prediction of the
perceived difficulty of a text. We in-
troduce a method for automatic cognate
production using character-based machine
translation. We show that our approach
is able to learn production patterns from
noisy training data and that it works for
a wide range of language pairs. It even
works across different alphabets, e.g. we
obtain good results on the tested language
pairs English-Russian, English-Greek, and
English-Farsi. Our method performs sig-
nificantly better than similarity measures
used in previous work on cognates.

1 Introduction

In order to improve comprehension of a text in a
foreign language, learners use all possible infor-
mation to make sense of an unknown word. This
includes context and domain knowledge, but also
knowledge from the mother tongue or any other
previously acquired language. Thus, a student is
more likely to understand a word if there is a sim-
ilar word in a language she already knows (Ring-
bom, 1992). For example, consider the following
German sentence:

Die internationale Konferenz zu kritischen
Infrastrukturen im Februar ist eine Top-
Adresse für Journalisten.

Everybody who knows English might grasp the
gist of the sentence with the help of associ-
ated words like Konferenz-conference or Februar-
February. Such pairs of associated words are
called cognates.

A strict definition only considers two words as
cognates, if they have the same etymological ori-
gin, i.e. they are genetic cognates (Crystal, 2011).
Language learners usually lack the linguistic back-
ground to make this distinction and will use all
similar words to facilitate comprehension regard-
less of the linguistic derivation. For example, the
English word strange has the Italian correspondent
strano. The two words have different roots and are
therefore genetically unrelated. However, for lan-
guage learners the similarity is more evident than
for example the English-Italian genetic cognate
father-padre. Therefore, we aim at identifying all
words that are sufficiently similar to be associated
by a language learner no matter whether they are
genetic cognates. As words which are borrowed
from another language without any modification
(such as cappuccino) can be easily identified by
direct string comparison, we focus on word pairs
that do not have identical spelling.

If the two associated words have the same or
a closely related meaning, they are true cognates,
while they are called false cognates or false friends
in case they have a different meaning. On the one
hand, true cognates are instrumental in construct-
ing easily understandable foreign language exam-
ples, especially in early stages of language learn-
ing. On the other hand, false friends are known
to be a source of errors and severe confusion for
learners (Carroll, 1992) and need to be practiced
more frequently. For these reasons, both types
need to be considered when constructing teaching
materials. However, existing lists of cognates are
usually limited in size and only available for very
few language pairs. In order to improve language
learning support, we aim at automatically creating
lists of related words between two languages, con-
taining both, true and false cognates.
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In order to construct such cognate lists, we need
to decide whether a word in a source language
has a cognate in a target language. If we already
have candidate pairs, string similarity measures
can be used to distinguish cognates and unrelated
pairs (Montalvo et al., 2012; Sepúlveda Torres
and Aluisio, 2011; Inkpen et al., 2005; Kondrak
and Dorr, 2004). However, these measures do not
take the regular production processes into account
that can be found for most cognates, e.g. the En-
glish suffix ~tion becomes ~ción in Spanish like in
nation-nación or addition-adición. Thus, an alter-
native approach is to manually extract or learn pro-
duction rules that reflect the regularities (Gomes
and Pereira Lopes, 2011; Schulz et al., 2004).

All these methods are based on string align-
ment and thus cannot be directly applied to lan-
guage pairs with different alphabets. A possible
workaround would be to first transliterate foreign
alphabets into Latin, but unambiguous translitera-
tion is only possible for some languages. Methods
that rely on the phonetic similarity of words (Kon-
drak, 2000) require a phonetic transcription that is
not always available. Thus, we propose a novel
production approach using statistical character-
based machine translation in order to directly pro-
duce cognates. We argue that this has the follow-
ing advantages: (i) it captures complex patterns in
the same way machine translation captures com-
plex rephrasing of sentences, (ii) it performs bet-
ter than similarity measures from previous work
on cognates, and (iii) it also works for language
pairs with different alphabets.

2 Character-Based Machine Translation

Our approach relies on statistical phrase-based
machine translation (MT). As we are not inter-
ested in the translation of phrases, but in the trans-
formation of character sequences from one lan-
guage into the other, we use words instead of sen-
tences and characters instead of words, as shown
in Figure 1. In the example, the English charac-
ter sequence cc is mapped to a single c in Spanish
and the final e becomes ar. It is important to note
that these mappings only apply in certain contexts.
For example, accident becomes accidente with a
double c in Spanish and not every word-final e is
changed into ar. In statistical MT, the training pro-
cess generates a phrase table with transformation
probabilities. This information is combined with
language model probabilities and a search algo-

Figure 1: Character-based machine translation

rithm selects the best combination of sequences.
The transformation is thus not performed on iso-
lated characters, it also considers the surrounding
sequences and can account for context-dependent
phenomena. The goal of the approach is to directly
produce a cognate in the target language from an
input word in another language. Consequently, in
the remainder of the paper, we refer to our method
as COP (COgnate Production).

Exploiting the orthographic similarity of cog-
nates to improve the alignment of words has al-
ready been analyzed as a useful preparation for
MT (Tiedemann, 2009; Koehn and Knight, 2002;
Ribeiro et al., 2001). As explained above, we ap-
proach the phenomenon from the opposite direc-
tion and use statistical MT for cognate production.

Previous experiments with character-based MT
have been performed for different purposes. Pen-
nell and Liu (2011) expand text message abbre-
viations into proper English. In Stymne (2011),
character-based MT is used for the identification
of common spelling errors. Several other ap-
proaches also apply MT algorithms for translit-
eration of named entities to increase the vocabu-
lary coverage (Rama and Gali, 2009; Finch and
Sumita, 2008). For transliteration, characters from
one alphabet are mapped onto corresponding let-
ters in another alphabet. Cognates follow more
complex production patterns. Nakov and Tiede-
mann (2012) aim at improving MT quality using
cognates detected by character-based alignment.
They focus on the language pair Macedonian-
Bulgarian and use English as a bridge language.
As they use cognate identification only as an in-
termediary step and do not provide evaluation re-
sults, we cannot directly compare with their work.
To the best of our knowledge, we are the first to
use statistical character-based MT for the goal of
directly producing cognates.

3 Experimental Setup

Figure 2 gives an overview of the COP architec-
ture. We use the existing statistical MT engine
Moses (Koehn et al., 2007). The main difference
of character-based MT to standard MT is the lim-
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Figure 2: Architecture of our Cognate Production (COP) approach

ited lexicon. Our tokens are character n-grams in-
stead of words, therefore we need much less train-
ing data. Additionally, distortion effects can be
neglected as reordering of ngrams is not a regu-
lar morphological process for cognates.1 Thus, we
deal with less variation than standard MT.

Training As training data, we use existing lists
of cognates or lists of closely related words and
perform some preprocessing steps. All duplicates,
multiwords, conjugated forms and all word pairs
that are identical in source and target are removed.
We lowercase the remaining words and introduce
# as start symbol and $ as end symbol of a word.
Then all characters are divided by blanks. Moses
additionally requires a language model. We build
an SRILM language model (Stolcke, 2002) from a
list of words in the target language converted into
the right format described above. On the basis of
the input data, the Moses training process builds
up a phrase table consisting of character sequences
in our case. As a result of the training process,
we receive a cognate model that can be used to
produce cognates in the target language from a list
of input test words.

Cognate Production Using the learned cognate
model, Moses returns a ranked n-best list contain-
ing the n most probable transformations of each
input word. In order to eliminate non-words, we
check the n-best list against a lexicon list of the
target language. The filtered list then represents
our set of produced cognates. Note that, as dis-
cussed in Section 1, the list will contain true and
false cognates. The distinction can be performed
using a bilingual dictionary (if available) or with
statistical and semantic measures for the identifi-
cation of false friends (Mitkov et al., 2008; Nakov
et al., 2007). For language learning, we need both

1We use these parameters: -weight-l 1 -weight-d 0
-weight-w -1 -dl 0 -weight-t 0.2 0.2 0.2 0.2 0.2

types of cognates as foreign words also trigger
wrong associations in learners (see Section 5.4).

Evaluation Metrics In order to estimate the
cognate production quality without having to rely
on repeated human judgment, we evaluate COP
against a list of known cognates. Existing cog-
nate lists only contain pairs of true cognates, but
a word might have several true cognates. For ex-
ample, the Spanish word música has at least three
English cognates: music, musical, and musician.
Therefore, not even a perfect cognate production
process will be able to always rank the right true
cognate on the top position. In order to account for
the issue, we evaluate the coverage using a relaxed
metric that counts a positive match if the gold stan-
dard cognate is found in the n-best list of cognate
productions. We determined n = 5 to provide a
reasonable approximation of the overall coverage.

We additionally calculate the mean reciprocal
rank (MRR) as

MRR =
1

|C|

|C|∑
i=1

1

ranki

where C is the set of input words and ranki the
rank of the correct cognate production. For exam-
ple, if the target cognate is always ranked second-
best, then the MRR would be 0.5.2

Note that in our language learning scenario, we
are also interested in words that might be asso-
ciated with the foreign word by learners, but are
actually not true cognates (e.g. the English word
muse might also be mistakenly associated with
música by language learners). Unfortunately, an
evaluation of the false cognates produced by COP
is not covered by those metrics and thus left to a
qualitative analysis as performed in section 5.4.

2BLEU (Papineni et al., 2002) is the common evaluation
metric for MT, but would be misleading in our setting.
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4 Experiments & Results

We conducted a set of experiments that cover dif-
ferent aspects of the cognate production process.
First, we test whether the approach is able to learn
simple production rules. We select optimal param-
eters and test the influence of the size and quality
of the available training data. We then compare
our best model to previous work. For these exper-
iments, we use the language pair English-Spanish,
as a large manually collected list of cognates is
available for training and evaluation.

4.1 Ability to Learn Production Rules

We train COP on a list of just ten cognates all fol-
lowing the same production process in order to test
whether COP can generally learn cognate produc-
tion rules. We test two different processes: i) the
pattern (~tion→~ción), as in tradition-tradición
ii) the pattern (~ance→~ancia) as in elegance-
elegancia. The experiment shows that COP cor-
rectly produces the respective target cognates for
new input words with the same pattern. We can
conclude that COP succeeds in learning the nec-
essary patterns for cognate production. In the fol-
lowing, we investigate whether our approach can
also be applied to noisy training data containing a
mixture of many different production processes.

4.2 Parameter Selection

We vary the following COP parameters: the char-
acter n-gram size used for tokenization, the order
of the language model, the lexicon used for filter-
ing, and tuning of Moses parameters. We collected
a list of 3,403 English-Spanish cognates and split
it into training set (2,403), development set (673),
and test set (327).3 Table 1 shows the coverage
in the 5 best productions and the MRR for each
parameter.

N-gram Size We start with the n-gram size pa-
rameter that determines the tokenization of the in-
put, the respective format for unigrams, bigrams,
and trigrams for the word banc looks as follows:
# b a n c $ / #b ba an nc c$ / #ba ban anc nc$
Higher order n-grams in general increase the vo-
cabulary and thus lead to better alignment. How-
ever, they also require a larger amount of training
data, otherwise the number of unseen instances is

3The cognates have been retrieved from several web re-
sources and merged with the set used by Montalvo et al.
(2012). All test cognate list can be found at:
http://www.ukp.tu-darmstadt.de/data

Cov. (n=5) MRR

1)
Unigram .63 .43
Bigram .65 .49
Trigram .51 .40

2) LM-order 5 .68 .48
LM-order 10 .65 .49

3) Web1T-Filter .68 .52
Wordlist-Filter .65 .54

4) Moses Tuning .66 .54

Table 1: Parameter selection for COP. The settings
in bold are used for the subsequent experiments.

too high. We find that bigrams produce slightly
better results than unigrams and trigrams, this is
in line with findings by Nakov and Tiedemann
(2012). Thus, in the following experiments, we
use character bigrams.

Language Model The next parameter is the lan-
guage model which determines the probability of
a sequence in the target language, e.g. a model of
order 5 considers sequences of character n-grams
up to a maximum length of 5. Order 5 seems to be
already sufficient for capturing the regular charac-
ter sequences in a language. However, the ranks
for the order-10 model are slightly better and as
our “vocabulary” is very limited, we can savely
decide for the language model of order 10.

Lexicon Filter For filtering the n-best cognate
productions, we tried two different lexicon filter
lists. A relatively broad one extracted from the
English Web1T (Brants and Franz, 2006) word
counts, and a more restrictive corpus-based list.
The more restrictive filter decreases the coverage
as it also eliminates some correct solutions, but it
improves the MRR as non-words are deleted from
the n-best list and the ranking is adjusted accord-
ingly. The choice of the filter adjusts the trade-off
between cognate coverage and the quality of the
n-best list. For our language learning scenario, we
decide to use the more restrictive filter in order to
assure high quality results.

Moses Parameters Finally, we tune the Moses
parameter weights by applying minimum error
rate training (Och and Ney, 2003) using the devel-
opment set, but it makes almost no difference in
this setting. Tuning optimizes the model with re-
spect to the BLEU score. For our data, the BLEU
score is quite high for all produced cognate candi-
dates, but it is not indicative of the usefulness of
the transformation. A word containing one wrong
character is not necessarily better than a word con-
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Figure 3: COP learning curve

taining two wrong characters. This explains why
tuning has little effect.

Generally, COP reaches a coverage of about
65%. If we consider an n-best list with the 100
best translations (instead of only 5), the coverage
increases only by less than 1% on average, i.e. the
majority of the correct cognates can be found in
the top 5. This is also reflected by the high MRR.
In the following experiments, we use the optimal
parameter setting (highlighted in Table 1).

4.3 Training Data Size & Quality

As we have seen in the experiments in Section 4.1,
COP is able to learn a production rule from only
few training instances. However, the test dataset
contains a variety of cognates following many dif-
ferent production processes. Thus, we evaluate the
effect of the size of the training data on COP. The
learning curve in Figure 3 shows the results. As
expected, both coverage and MRR improve with
increasing size of the training data, but we do not
see much improvement after about 1,000 training
instances. Thus, COP is able to learn stable pat-
terns from relatively few training instances.

However, even a list of 1,000 cognates is a hard
constraint for some language pairs. Thus, we test
if we can also produce satisfactory results with
lower quality sets of training pairs that might be
easier to obtain than a list of cognates.

We use word pairs extracted from the freely
available multilingual resources UBY (Gurevych
et al., 2012) and Universal WordNet (UWN) (de
Melo and Weikum, 2009). UBY combines several
lexical-semantic resources, we use translations
which were extracted from Wiktionary. UWN is
based on WordNet and Wikipedia and provides
automatically extracted translations for over 200
languages that are a bit noisier compared to UBY
translations. Additionally, we queried the Mi-
crosoft Bing translation API using all words from

Training Size Cov. (n=5) MRR

Cognates 1,000 / 2,403 .57/ .65 .48 /.54

Transl.
UBY 1,000 / 6,048 .53 /.69 .47 /.56
UWN 1,000 /10,531 .50 /.69 .43 /.54
Bing 1,000 / 5,567 .51 /.64 .44 /.54

Knowledge-free 1,000 /34,019 .21 /.47 .18 /.33

Table 2: Influence of data size and quality

an English word list as query words.4 We also test
a knowledge-free approach by pairing all words
from the English and Spanish Web1T corpus.5

While the translation pairs always share the same
meaning, this is not the case for the Web1T pairs,
where the majority of pairs will be unrelated.

In order to increase the ratio of possible cog-
nates in the training data, we apply a string similar-
ity filter using the XDICE-measure with a thresh-
old of 0.4256 on the translation pairs, For the
knowledge-free pairs, we use a stricter threshold
of 0.6 in order to account for the lower quality.

For a fair quality comparison, we first limit the
number of training instances to 1,000, where (as
shown above) the performance increases leveled
off. The left columns for coverage and MRR in
Table 2 show the results. It can be seen, that the re-
sults for the translation pairs extracted from UBY,
UWN and Bing are only slightly inferior to the
use of manually collected cognates for training.
The small differences between the resources mir-
ror the different level of linguistic control that has
been applied in their creation. The knowledge-
free pairs from Web1T yield drastically inferior
results. We can conclude that training data con-
sisting of selected cognates is beneficial, but that
a high quality list of translations in combination
with a string similarity filter can also be sufficient
and is usually easier to obtain.

In a follow-up experiment, we use the full size
of each training set. As expected, coverage and
MRR both increase in all settings. Even with the
knowledge-free training set that introduces many
noisy pairs, satisfactory results can be obtained.
This shows that COP can be used for the produc-
tion of cognates, even if no language-specific in-
formation beyond a lexicon list is available.

4.4 Comparison to Previous Work
Previous work (Kondrak and Dorr, 2004; Inkpen
et al., 2005; Sepúlveda Torres and Aluisio, 2011;

4http://www.bing.com/translator
5We only use every 5th word in order to limit the number

of results to a manageable size.
6The threshold was selected to cover ~80% of the test set.
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Cov. (n=5) MRR

DICE .46 .21
XDICE .52 .25
LCSR .51 .24
SpSim .52 .22

COP .65 .54

Table 3: Comparison of different approaches for
cognate production.

Montalvo et al., 2012) is based on similarity mea-
sures that are used to decide whether a candidate
word pair is a cognate pair, while COP directly
produces a target cognate from the source word.
In order to compare those approaches to COP, we
pair the English input words from the previous ex-
periments with all words from a list of Spanish
words7 and consider all resulting pairs as candi-
date pairs. For each pair, we then calculate the
similarity score and rank the pairs accordingly.
As the similarity measures often assign the same
value to several candidate pairs, we get many pairs
with tied ranks, which is problematic for comput-
ing coverage and MRR. Thus, we randomize pairs
within one rank and report averaged results over
10 randomization runs.8

We compare COP to three frequently used
string similarity measures (LCSR, DICE, and
XDICE), which performed well in (Inkpen et
al., 2005; Montalvo et al., 2012), and to SpSim
which is based on learning production rules. The
longest common subsequence ratio (LCSR) cal-
culates the ratio of the length of the longest (not
necessarily contiguous) common subsequence and
the length of the longer word (Melamed, 1999).
DICE (Adamson and Boreham, 1974) measures
the shared character bigrams, while the variant
XDICE (Brew and McKelvie, 1996) uses extended
bigrams, i.e. trigrams without the middle letter.
SpSim (Gomes and Pereira Lopes, 2011) is based
on string alignment of identical characters for the
extraction and generalization of the most frequent
cognate patterns. Word pairs that follow these
extracted cognate patterns are considered equally
similar as pairs with identical spelling.

Table 3 shows the results. The differences
between the individual similarity measures are
very small, string similarity performs on par with
SpSim. The low MRR indicates that the four
measures are not strict enough and consider too
many candidate pairs as sufficiently similar. COP

7In order to ensure a fair comparison, we use the Spanish
word list that is also used as lexicon filter in COP.

8The average standard deviation is 0.01.

Language Pair Cov. (n=5) MRR

Same alphabet en-es .65 .54
es-en .68 .48
en-de .55 .46

Cross-alphabet
en-ru .59 .47
en-el .61 .37
en-fa .71 .54

Table 4: COP results for other languages

performs significantly better than all other mea-
sures for both, coverage and MRR. The results
for the similarity measures are comparable to the
knowledge-free variant of COP (Cov = .47 and
MRR = .33, compare Table 2). Obviously, COP
better captures the relevant cognate patterns and
thus is able to provide a better ranking of the pro-
duction list. Another advantage of COP is its ap-
plicability to language pairs with different alpha-
bets (see Section 5.2), while the similarity mea-
sures can only operate within one alphabet.

5 Multilinguality

The previous experiments showed that COP works
well for the production of Spanish cognates from
English source words. However, in language
learning, we need to consider all languages previ-
ously acquired by a learner, which leads to a large
set of language combinations. Imagine, for ex-
ample, an American physician who wants to learn
German. She has studied Spanish in school and
the terminology in her professional field has ac-
customed her to Greek and Latin roots. When fac-
ing a foreign text, she might unconsciously acti-
vate cues from any of these languages. Thus, if
we want to select suitable text for her, we need to
consider cognates from many different languages.

In the following experiments, we test how COP
performs for other languages with the same alpha-
bet and across alphabets. In addition, we evaluate
how well the cognates produced by COP correlate
with human judgments.

5.1 Same Alphabet
We first analyze whether the cognate production
also works in the reverse direction and test the pro-
duction of English cognates from Spanish source
words. The results in Table 4 (upper part) show
that COP works bi-directionally, as the scores for
Spanish to English are comparable to those for En-
glish to Spanish. In addition, we train a model for
another Western European language pair, namely
English-German. The results show that COP also
works well for other language pairs.
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English Spanish German Russian Greek Farsi

alcohol alcohol, alcoholar alkohol, alkoholisch àëêîãîëü, àëêîãîëüíûé αλκοολικό, αλκοολικά الکل الکی,

coffee café - êîôåé, êîôå - قهوه

director director, directora direktor, direkt äèðåêòîð - دیر غیر,
machine machina maschine, machen ìàõèíà, ìàøèíà μηχανή, μαχίν ماشین ماشینی,

music músico, música musik, musisch - μουσικής, μουσικές موسیقی موسی,

optimal óptimo optimal, optimiert îïòèìàëüíûé - مطلوب

popular popular populär ïîïóëÿðíûé - محبوب محبور,
theory teorı́a theorie òåîðèÿ θεωρία, θεωρίας تئوری نظری,

tradition tradición tradition òðàäèöèÿ, òðàäèöèîííûé - سنت سنتی,

Table 5: Multilingual cognates for English source words produced by COP

5.2 Cross-Alphabet
Previous approaches to cognate identification only
operate on languages using the same alphabet. As
COP is able to learn correspondences between ar-
bitrary symbols, it can easily be applied on cross-
alphabet language pairs. In the previous experi-
ments, we had excluded cognate pairs that have
exactly the same string representation. For cross-
alphabet pairs, this is not possible. Thus, the task
is to tackle both, standard transliteration (as in the
English-Greek pair atlas-άτλας)9 and cognate pro-
duction (as in archangel-αρκάγγελος)10.

We evaluate COP for Russian (ru), Greek (el),
and Farsi (fa). For Russian, we use a list of
UBY-pairs as training data. Unfortunately, UWN
and UBY contain only few examples for Greek
and Farsi, so we use Bing translations of English
source words. In order to filter the resulting list
of words, we transliterate Russian and Greek into
the Latin alphabet11 and apply a string similarity
filter. We do not filter the training data for Farsi,
as the transliteration is insufficient.

The lower part of Table 4 lists the results. Given
that those language pairs are considered to be less
related than English-Spanish or English-German,
the results are surprisingly good. Especially the
production of Farsi cognates works very well, al-
though the training data has not been filtered. The
low MRR for Greek indicates that our lexicon fil-
ter is not restrictive enough. COP often produces
Greek words in several declinations (e.g. nouns in
genitive case) which are not eliminated and lead
to a worse rank of the correct target. We conclude
that COP also works well across alphabets.

5.3 Multilingual Cognates
In order to provide the reader with some exam-
ples of cognates produced by COP, we compiled
a short list of international words that are likely

9The transliteration of άτλας is átlas.
10The transliteration of αρκάγγελο is ark’aggelos.
11Using ICU: http://site.icu-project.org/

to occur in all languages under study. In Table 5,
we give the two top-ranked productions. It can
be seen that COP produces both, true and false
cognates (e.g. direkt for director), which is useful
for language learning scenarios. Of course, some
produced forms are questionable, e.g. the second
Farsi match for music means Moses. Note that the
gaps in the table are often cases where the absence
of a cognate production is an indicator of COP’s
quality. For example, the Greek words for direc-
tor, popular, and tradition are not cognates of the
English word but have a very different form.

5.4 Human Associations

The examples in Table 5 showed that COP pro-
duces not only the correct cognate, but all target
words that can be created from the input word
based on the learned production processes. In
order to assess how well these additional pro-
ductions of COP correlate with human associa-
tions, we conducted a user study. We presented
Czech words with German origin to 15 native Ger-
man speakers that did not have any experience
with Eastern-European languages. The partici-
pants were asked to name up to 3 guesses for the
German translation of the Czech source word. Ta-
ble 6 gives an overview of the Czech source words
together with the German associations named by
more than one person (number of mentions in
brackets). The table shows that some Czech words
are strongly associated with their correct German
translations (e.g. nudle-Nudel), while other words
trigger false friend associations (e.g. talı́ř-Taler).

Another interesting aspect is the influence of
languages besides the L1. For example, the Ger-
man association himmel for the Czech word cı́l is
very likely rooted in the Czech-French association

14Note that forms like stak also pass the lexicon filter, as
this is an infrequent, but nevertheless valid German word.
Other words like san are part of the German lexicon from
city names like San Francisco.
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Czech Human associations (German) COP productions (German)

nudle Nudel (15) nudel, nadel, ode
švagr Schwager (13) sauger, schwager, berg
šlak Schlag (12), Schlagsahne (3), schlagen (2) stak
brýle Brille (12), brüllen (4) brille, brie
cı́l Ziel (9), Himmel (2) set, zelle, teller
žold Sold(9), Zoll (5), Gold (2), verkauft (2), Schuld (2) sold, gold, geld
sál Salz (13) , Saal (8) set, san, all, saal
taška Tasche (8), Aufgabe (4), Tasse (4), Taste (2) task, as, tick
skřı́ň Schrein (5), Bildschirm/Screen (3), schreien (2) -
flétna Flöte (4), Flotte (4), Pfannkuchen (2), fliehen (2) flut, filet
muset Museum (11), müssen (3), Musik (3), Muse (2), Mus (2) mus, most, muse, mit
valčı́k Walze (4), Walzer (3), falsch (2) -
talı́ř Taler (5), Teller (2), zahlen (3), teilen (2) teller, taler, ader
šunka schunkeln (2), Sonne (2), Schinken (1), sun
knoflı́k Knoblauch (11), knifflig (4), Knopf (1) -

Table 6: Human associations and cognate productions from Czech to German
Correct translations are in bold, underlined words are COP productions that match human associations.14

cı́l-ciel.15 A similar process applies for the associ-
ation aufgabe, which is task in English and there-
fore close to taška. These cross-linguistic cogni-
tive processes highlight the importance of consid-
ering cognates from all languages a learner knows.

In order to examine how well COP reflects
the human associations, we train it on manually
collected Czech-German cognates and translation
pairs from UBY. The number of training instances
is rather small, as a language reform in the 19th
century eliminated many Czech words with Aus-
trian or German roots. Consequently, the model
does not generalize as well as for other language
pairs (see the column “COP Productions” in Ta-
ble 6).16 However, it correctly identifies cognates
like nudel, brille, and sold which are ranked first
by the human participants. As we argued above,
COP also correctly produces some of the ‘wrong’
associations, e.g. gold or taler. Thus, COP is to
a certain extent able to mimic the association pro-
cess that humans apply when identifying cognates.

6 Conclusions

We introduced COP, a novel method for cognate
production using character-based MT. We have
shown that COP succeeds in learning the neces-
sary patterns for producing cognates in different
languages and alphabets. COP performs signifi-
cantly better than similarity measures used in pre-
vious work on cognates. COP relies on training
data, but we have shown that it can be applied
even if no language-specific information beyond
a word list is available. A user study on German-
Czech cognates supports our assumption that COP

15Both words, himmel and ciel mean heaven in English.
16Coverage (0.4) and MRR (0.32) are not representative as

the test set is too small.

productions are comparable to human associations
and can be applied for language learning.

In future work, we will focus on the application
of cognates in language learning. True cognates
are easier to understand for learners and thus can
be an important factor for readability assessment
and the selection of language learning examples.
False cognates, on the other hand, can be confus-
ing and need to be practiced more frequently. They
could also be used as good distractors for multiple
choice questions. In addition, COP productions
that do not pass the lexical filter might serve as
pseudo-words in psycholinguistic experiments as
they contain very probable character sequences.
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Luı́s Gomes and José Gabriel Pereira Lopes. 2011.
Measuring Spelling Similarity for Cognate Identi-
fication. Progress in Artificial Intelligence, pages
624–633.

Iryna Gurevych, Judith Eckle-Kohler, Silvana Hart-
mann, Michael Matuschek, Christian M Meyer, and
Christian Wirth. 2012. A Large-Scale Unified
Lexical-Semantic Resource Based on LMF. Proc.
of the 13th Conference of the EACL, pages 580–590.

Diana Inkpen, Oana Frunza, and Grzegorz Kondrak.
2005. Automatic Identification of Cognates and
False Friends in French and English. In Proc. of the
International Conference Recent Advances in NLP,
pages 251–257.

Philipp Koehn and Kevin Knight. 2002. Learning a
Translation Lexicon from Monolingual Corpora. In
Proceedings of the ACL workshop on Unsupervised
lexical acquisition, pages 9–16, July.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-burch, Richard Zens, Marcello Federico,
Nicola Bertoldi, Brooke Cowan, Wade Shen, Chris-
tine Moran, Chris Dyer, Alexandra Constantin, and
Evan Herbst. 2007. Moses: Open Source Toolkit
for Statistical Machine Translation. Annual Meeting
of the Association for Computational Linguistics.

Grzegorz Kondrak and Bonnie Dorr. 2004. Identifica-
tion of Confusable Drug Names: A New Approach
and Evaluation Methodology. In Proc. of the 20th
international conference on Computational Linguis-
tics, pages 952–958.

Grzegorz Kondrak. 2000. A New Algorithm for the
Alignment of Phonetic Sequences. In Proceedings
of the 1st NAACL, pages 288–295.

I. Dan Melamed. 1999. Bitext Maps and Alignment
via Pattern Recognition. Computational Linguistics,
25(1):107–130.

Ruslan Mitkov, Viktor Pekar, Dimitar Blagoev, and An-
drea Mulloni. 2008. Methods for extracting and
classifying pairs of cognates and false friends. Ma-
chine Translation, 21(1):29–53, May.

Soto Montalvo, Eduardo G. Pardo, Raquel Martinez,
and Victor Fresno. 2012. Automatic Cognate Iden-
tification based on a Fuzzy Combination of String
Similarity Measures. IEEE International Confer-
ence on Fuzzy Systems, pages 1–8, June.

Preslav Nakov and Jörg Tiedemann. 2012. Com-
bining Word-Level and Character-Level Models for
Machine Translation Between Closely-Related Lan-
guages. In Proceedings of the ACL, pages 301–305.

Svetlin Nakov, Preslav Nakov, and Elena Paskaleva.
2007. Cognate or False Friend? Ask the Web!
In Proc. of the RANLP workshop: Acquisition and
management of multilingual lexicons, pages 55–62.

Franz Josef Och and Hermann Ney. 2003. A System-
atic Comparison of Various Statistical Alignment
Models. Computational Linguistics, 29(1):19–51.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
jing Zhu Ibm. 2002. BLEU: a Method for Auto-
matic Evaluation of Machine Translation. In Proc.
of the 40th annual meeting of the ACL, pages 311–
318, July.

Deana L Pennell and Yang Liu. 2011. A Character-
Level Machine Translation Approach for Normal-
ization of SMS Abbreviations. pages 974–982.

Taraka Rama and Karthik Gali. 2009. Modeling Ma-
chine Transliteration as a Phrase Based Statistical
Machine Translation Problem. Proceedings of the
2009 Named Entities Workshop: Shared Task on
Transliteration, (August):124–127.
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