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Abstract

We report on experiments designed to in-
vestigate the role of syntactic features in
the task of quality estimation for machine
translation, focusing on the effect of parser
accuracy. Tree kernels are used to predict
the segment-level BLEU score of English-
French translations. In order to examine
the effect of the accuracy of the parse tree
on the accuracy of the quality estimation
system, we experiment with various pars-
ing systems which differ substantially with
respect to their Parseval f-scores. We find
that it makes very little difference which
system we choose to use in the quality esti-
mation task – this effect is particularly ap-
parent for source-side English parse trees.

1 Introduction

Much research has been carried out on quality es-
timation (QE) for machine translation (MT) (Blatz
et al., 2003; Ueffing et al., 2003; Specia et al.,
2009; Callison-Burch et al., 2012), with the aim
of solving the problem of how to accurately assess
the quality of a translation without access to a ref-
erence translation. Approaches differ with respect
to the nature of the quality scores being estimated
(binary, 5-point or real-valued scales; human eval-
uations versus automatic metrics), the learning al-
gorithms used or the feature set chosen to repre-
sent the translation pairs. The aspect of the task
that we focus on is the feature set, and, in particu-
lar, the role of syntactic features. We ask the fol-
lowing: To what extent is QE for MT influenced by
the quality of the syntactic information provided to
it? Does the accuracy of the parsing model used to
provide the syntactic features influence the accu-
racy of the QE system? We compare two pairs of
parsing systems which differ with respect to their
Parseval f-scores by around 17 absolute points in

a QE system for English-French MT and find that
it makes little difference which system we use.

2 Related Work

Features extracted from parser output have been
used before in QE for MT. Quirk (2004) uses a
feature which indicates whether a full parse for a
sentence can be found. Gamon et al. (2005) use
part-of-speech (POS) tag trigrams, CFG produc-
tion rules and features derived from a dependency
analysis of the MT output. Specia and Giménez
(2010) use POS tag language model probabilities
of the MT output 3-grams. Hardmeier et al. (2012)
combine syntactic tree kernels with surface fea-
tures to produce a system which was ranked sec-
ond in the WMT 2012 shared task on QE for MT
(Callison-Burch et al., 2012). Rubino et al. (2012)
explore source syntactic features extracted from
the output of a hand-crafted broad-coverage gram-
mar/parser and a statistical constituency parser.
Avramidis (2012) builds models for estimating
post-editing effort using syntactic features such
as parse probabilities and label frequency. Like
Hardmeier et al. (2012), we use tree kernels to
represent the output of a parser, but unlike all the
previous works, we explicitly examine the role of
parser accuracy.

There have been some attempts to investigate
the role of parser accuracy in downstream ap-
plications. Johannson and Nugues (2007) intro-
duce an English constituency-to-dependency con-
verter and find that syntactic dependency trees
produced using this converter help semantic role
labelling more than dependency trees produced
using an older converter despite the fact that trees
produced using the older converter have higher
attachment scores than trees produced using the
new converter. Mollá and Hutchinson (2003) find
significant differences between two dependency
parsers in a task-based evaluation involving an an-
swer extraction system but bigger differences be-
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tween the two parsers when evaluated intrinsically.
Quirk and Corston-Oliver (2006) demonstrate that
a syntax-enhanced MT system is sensitive to a de-
crease in parser accuracy obtained by training the
parser on smaller training sets. Zhang et al. (2010)
experiment with a different syntax-enhanced MT
system and do not observe the same behaviour.
Both Miyao et al. (2008) and Goto et al. (2011)
evaluate a suite of state-of-the-art English statis-
tical parsers on the tasks of protein-pair interac-
tion identification and patent translation respec-
tively, and find only small (albeit sometimes sta-
tistically significant) differences between the pars-
ing systems. Our study is closest to that of Quirk
and Corston-Oliver (2006) since we are taking one
parser and using it to train various models with dif-
ferent training set sizes.

3 Parsing

For parsing we use the LORG parser (Attia et al.,
2010)1 which learns a latent-variable probabilis-
tic context-free grammar (PCFG-LA) from a tree-
bank in an iterative process of splitting the tree-
bank non-terminals, estimating probabilities for
the new rules using Expectation Maximization and
merging the less useful splits (Petrov et al., 2006),
and which parses using the max-rule parsing algo-
rithm (Petrov and Klein, 2007).

In order to investigate the effect of parsing accu-
racy, we train two parsing models – one “higher-
accuracy” model and one “lower-accuracy” model
– for each language. We use training set size
to control the accuracy. For English, the higher-
accuracy model is trained on Sections 2-21 of the
Wall Street Journal (WSJ) section of the Penn
Treebank (PTB) (Marcus et al., 1994) (approx
40k sentences). For French, the higher-accuracy
model is trained on the training section of the
French Treebank (FTB) (Abeillé et al., 2003) (ap-
prox 10k sentences). For the lower-accuracy mod-
els, we first select four random subsets of vary-
ing sizes from the larger training sets for each lan-
guage2 and measure the performance of the result-
ing models on the standard parsing test sets3 using
Parseval F1 – see Table 1. All parsing models are
trained with 5 split/merge cycles.

The worst-performing models for each lan-
guage are those trained on 100 training sentences.

1https://github.com/CNGLdlab/
LORG-Release

2Each smaller subset is contained in all the larger subsets.
3WSJ Section 23 and the FTB test set.

However, these models fail to parse about 10
and 2 percent of our English and French data
respectively. Since the failed sentences are not
necessarily parallel in the source and transla-
tion sides, this could affect the downstream QE
performance. Therefore, we opt to employ as
our “lower-accuracy” models the second smallest
training set sizes, which are 1K sentences for En-
glish and 500 for French. For both languages, the
difference in F1 between the lower-accuracy and
higher-accuracy models is about 17 points. In or-
der to measure how different the parses produced
by these models are on our QE data, we compute
their F1 relative to each other. The F1 for the En-
glish model pair is 71.50 and for French 63.19.

4 Quality Estimation

To minimise the effect of domain variation, we
use a QE dataset for the domain on which our
parsers have been trained (newswire). Since there
are very few human QE evaluations available for
English-French in this domain, we instead attempt
to predict automatic metric scores. We experi-
ment with BLEU, METEOR and TER, but due
to space restrictions and the similar behaviour ob-
served, we report only BLEU score predictions.
We randomly select 4500 parallel segments from
the News development data sets released for the
WMT13 translation task.4 To remain independent
of any one MT system, we translate the dataset
with the following three systems, randomly choos-
ing 1500 distinct segments from each:

• ACCEPT5: a phrase-based Moses system
trained on training sets of WMT12 releases
of Europarl and News Commentary plus data
from Translators Without Borders (TWB)
• SYSTRAN: a proprietary rule-based system
• Bing6: an online translation system

The translations are scored at the segment level
using segment-level BLEU. The data set is ran-
domly split into 3000 training, 500 development,
and 1000 test segments. Model parameters are
tuned using the development set.

We encode syntactic information using tree ker-
nels (Collins and Duffy, 2002; Moschitti, 2006)
because they allow us to use all subtrees of the

4http://www.statmt.org/wmt13
5http://www.accept.unige.ch/Products/

D_4_1_Baseline_MT_systems.pdf
6http://www.bing.com/translator
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English French
Training size 100 1K 10K 20K 40K 100 500 2.5K 5K 10K
F1 51.06 72.53 87.69 88.47 89.55 52.85 66.51 78.55 81.85 83.40

Table 1: Parser F1s for various training set sizes: the sizes in bold are selected for the experiments.

parsed sentences as features in an efficient way,
thus obviating the need for manual feature en-
gineering. We use SVMLight-TK7 (Moschitti,
2006), a support vector machine (SVM) imple-
mentation of tree kernels. The trees we use are
constituency trees obtained by the parsing mod-
els described in Section 3, and their conversion
to dependency trees using the Stanford converter
for English (de Marneffe and Manning, 2008) and
Const2Dep (Candito et al., 2010) for French.
The labels must be removed from the arcs in
the dependency trees before they can be used in
SVMLight-TK – the nodes in the resulting tree
representation are word forms and dependency re-
lations, omitting part-of-speech tags.8 Based on
preliminary experiments on our development set,
we use subset tree kernels.

We build a baseline system with features
provided for the WMT 2012 QE shared task
(Callison-Burch et al., 2012): we use Europarl v7
and News Commentary v8 (Koehn, 2005) to ex-
tract n-gram frequency, language model and word
alignment features. This is considered a strong
baseline as the system that used just these features
was ranked higher than many of the other systems.

5 Experiments and Results

We build a QE system using constituency and
dependency parse tree kernels of the source
and translation sides, exploring first the higher-
accuracy parse trees. Table 2 shows the perfor-
mance of this system (CD-STH ) compared to the
system trained on the baseline features (B-WMT).
We also compare to another baseline (B-Mean)
which always predicts the mean of the segment-
level BLEU scores of the training instances. We
evaluate performance using Root Mean Square Er-
ror (RMSE) and Pearson correlation coefficient
(r). To test the statistical significance of the per-
formance differences (at p < 0.05), we use paired
bootstrap resampling (Koehn, 2004).

CD-STH achieves statistically significantly bet-
7http://disi.unitn.it/moschitti/

Tree-Kernel.htm
8A word is a child of its dependency relation to its head

and this dependency relation is the child of the head word.

ter RMSE and Pearson r than both baselines,
which shows the usefulness of tree kernels in
QE. We combine CD-STH and B-WMT9 – this
system B+CD-STH performs statistically signifi-
cantly better than both systems individually, sug-
gesting that tree kernels can also be useful in syn-
ergy with non-syntactic features.

RMSE Pearson r
B-Mean 0.1626 0
B-WMT 0.1601 0.1766
CD-STH 0.1581 0.2437
B+CD-STH 0.1570 0.2696

Table 2: Baselines, higher-accuracy parse tree ker-
nels and combinations

We now investigate the impact of the intrinsic
quality of the parse trees on the QE system. We
build a similar model to CD-STH but with the
lower-accuracy model described in Section 3. This
system is named CD-STL in Table 3. CD-STH is
also presented in this table for ease of compari-
son. Surprisingly, CD-STL performs only slightly
lower than CD-STH and the difference is not sta-
tistically significant.

To better understand the behaviour of these
systems, we break them down into their com-
ponents: source constituency trees, target con-
stituency trees, source dependency trees and target
dependency trees. We first split based on the parse
type and then based on the translation side.

C-STH and C-STL in Table 3 are the systems
with the constituency trees of both source and
translation sides with higher- and lower-accuracy
parsing models respectively. Although the differ-
ence is not statistically significant, the system with
lower-accuracy parse trees achieves better scores
than the system with higher-accuracy trees. D-
STH and D-STL are built with the dependency
trees of the higher- and lower-accuracy parsing
models respectively. Unlike the constituency sys-
tems, the system with higher-accuracy parses per-
forms better. However, the difference is not sta-
tistically significant. These results suggest that
the intrinsic accuracy of neither the constituency

9The combination is carried out using vector summation.
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nor the dependency parses is crucial to the perfor-
mance of the QE systems. We now further split
these systems based on the translation sides.

C-SH and C-SL use the higher- and lower-
accuracy constituency trees of only the source
side. Similar to when constituency trees of both
sides were used (C-STH and C-STL), the sys-
tem built on the lower-accuracy parses performs
better although the difference is not statistically
significant. The system using higher-accuracy
constituency trees of the translation side (C-TH )
achieves better scores than the one using the
lower-accuracy ones (C-TL), but, again, this dif-
ference is not statistically significant.

D-SH and D-SL are the systems using the de-
pendency trees of only the source side. Again,
there is a small, statistically insignificant gap
between the scores of these systems. On the
other hand, there is a bigger performance gap be-
tween the systems built on the higher- and lower-
accuracy dependency trees of the translation side:
D-TH and D-TL. Although this is the only large
difference observed among all settings, it is sur-
prisingly not statistically significant.10

RMSE Pearson r
CD-STH 0.1581 0.2437
CD-STL 0.1583 0.2350
C-STH 0.1584 0.2307
C-STL 0.1582 0.2348
D-STH 0.1591 0.2103
D-STL 0.1597 0.1902
C-SH 0.1583 0.2312
C-SL 0.1582 0.2335
C-TH 0.1608 0.1479
C-TL 0.1616 0.1204
D-SH 0.1598 0.1869
D-SL 0.1601 0.1780
D-TH 0.1598 0.2102
D-TL 0.1604 0.1679

Table 3: QE systems with higher- and lower-
accuracy trees (C: constituency, D: dependency,
ST: Source and Translation, H: Higher-accuracy
parsing model, L: Lower-accuracy parsing model)

One may argue that the way the parser accu-
racy is varied here could impact the results – a
parser with similar F1 but different output may
lead to a different conclusion. It is possible to
test this by using the parsing model from a lower
split/merge (SM) cycle. For example, the models
from the first SM cycle with a 10K training set size

10The high scores of D-TH seem to be happening by
chance, because on the development set, on which the pa-
rameters are tuned, the scores are much lower.

for English and a 2.5K training set size for French
score 73.04 and 70.22 F1 points on their respective
test sets. While these scores are close to those of
the lower-accuracy models used above, their out-
puts are different: the parses with the two lower-
accuracy English models achieve only 66.46 F1

against each other and with the two French ones
66.51 F1. We use the parse trees of these alterna-
tive lower-accuracy parsing models to build a new
QE system. The RMSE is 0.1585 and Pearson r is
0.2316. These scores are not statistically signifi-
cantly different compared to CD-STH , strengthen-
ing our conclusion that intrinsic parse accuracy is
not crucial for QE.

Another question is to what extent we require
a linguistically realistic syntactic structure which
retains some form of regularity no matter how ac-
curate. To answer this question, we build ran-
dom tree structures for source and translation seg-
ments. The random tree for a segment is generated
by recursively splitting the sentence into random
phrases and randomly assigning them a syntactic
label.11 We parse the source and translation seg-
ments using this method and build a QE system
with the output trees. The RMSE and Pearson r are
0.1631 and -0.0588 respectively. This shows that
tree kernels still require the regularity encoded in
the lower- and higher-accuracy trees.

6 Conclusion

We explored the impact of parse quality in predict-
ing automatic MT evaluation scores, comparing
the use of constituency and dependency tree ker-
nels built from the output of parsing systems with
a large accuracy gap when measured using Parse-
val F1. This large difference in F1 did not have a
knock-on effect on the QE task. Our next step is
to carry out the experiments in the opposite direc-
tion (French-English) so that we better understand
why the translation side trees were not as useful as
the source side trees. Using other intrinsic parser
evaluation metrics might also prove useful.
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