
Investigation on the Effects of ASR Tuning on Speech Translation Performance

Paul R. Dixon Andrew Finch Chiori Hori Hideki Kashioka

National Institute of Communication Technology
Kyoto, Japan

{paul.dixon,andrew.finch,chiori.hori,hideki.kashioka}@nict.go.jp

Abstract
In this paper we describe some of our recent investigations
into ASR and SMT coupling issues from an ASR perspec-
tive. Our study was motivated by several areas: Firstly, to
understand how standard ASR tuning procedures effect the
SMT performance and whether it is safe to perform this tun-
ing in isolation. Secondly, to investigate how vocabulary and
segmentation mismatches between the ASR and SMT system
effect the performance. Thirdly, to uncover any practical is-
sues that arise when using a WFST based speech decoder for
tight coupling as opposed to a more traditional tree-search
decoding architecture.

On the IWSLT07 Japanese-English task we found that
larger language model weights only helped the SMT perfor-
mance when the ASR decoder was tuned in a sub-optimal
manner. When we considered the performance with suitable
wide beams that ensured the ASR accuracy had converged
we observed the language model weight had little influence
on the SMT BLEU scores.

After the construction of the phrase table the actual SMT
vocabulary can be less than the training data vocabulary. By
reducing the ASR lexicon to only cover the words the SMT
system could accept, we found this lead to an increase in the
ASR error rates, however the SMT BLEU scores were nearly
unchanged. From a practical point of view this is a useful
result as it means we can significantly reduce the memory
footprint of the ASR system.

We also investigated coupling WFST based ASR to a
simple WFST based translation decoder and found it was
crucial to perform phrase table expansion to avoid OOV
problems. For the WFST translation decoder we describe
a semiring based approach for optimizing the log-linear
weights.

1. Introduction
In this paper we describe our recent investigations into the
coupling of a (Weighted Finite State Transducer) WFST
based speech decoder with both standard Statistical Machine
Translation (SMT) decoder and a simple WFST-based trans-
lation decoder.

Development of speech translation systems is a challeng-
ing problem. Not only is the construction of high quality
models a challenging research problem, there is also the need

to cascade the Automatic Speech Recognition (ASR) and
Statistical Machine Translation (SMT) systems together in
a complementary manner.

We investigated the relationship between the speech
recognition performance in terms of both Word Error Rate
(WER) and Real Time Factor (RTF) and the effects that
various ASR tuning schemes had on the BLEU translation
scores. One motivation of this work was to establish if cer-
tain ASR tuning practises could have a negative effect on
the translation performance. Without meaningful and thor-
oughly tested baselines it can sometimes be difficult to anal-
yse or interpret new techniques and results effectively.

1.1. Previous Work

Previous work on the coupling of ASR and SMT has looked
at coupling issues and the effects of WER on SMT perfor-
mance.

Some of the earliest work on coupling speech and trans-
lation used a joint source model [1] in the WFST framework.
One advantage of this approach is the joint model can be use
in place of the ASR language model. Other authors also in-
vestigated this approach and proposed extensions to allow for
different lexical units or re-ordering either as second pass or
via embedded information[2, 3, 4].

Later work has demonstrated that a phrase-based log-
linear model offers better performance than the joint source
approach. In addition it has been demonstrated that lattice
coupling or confusion network coupling further improves
performance [5, 6, 7]. To achieve optimal gains in this cou-
pling scenario it is necessary to optimize the acoustic and
source language model weights as part of the training pro-
cess.

Recently in [8] the authors argued that WER was not the
best criteria to optimize a speech translation system. They
used a hierarchical SMT system that was connected to the
n-best output of a speech decoder. They performed experi-
ments where they varied the LM weight and observed large
values of the LM weight gave better SMT performance but a
reduced WER. Sarikaya [9] et al, observed that reducing the
ASR WER correlated with an increased BLEU score, but the
relations was not linear. Saon [10] wrote the better the WER
the better the performance of the speech translation compo-
nent.

167

2. WFST Based Speech Recognition
Recently the WFST based approach has become popular for
constructing speech recognition decoders[11]. One of the ad-
vantages of the WFST framework is the manner in which we
can represent each of the knowledge sources in a consistent
manner. The knowledge sources can be composed together
and optimized for speed and size ahead of decoding.

Often the recognition cascade is constructed from the
following components; the Language Model(LM) G which
represents the recognition grammar, the lexicon L which is
built from the pronunciation dictionary and maps phoneme
sequences to words, a transducer C that converts context-
dependent phonemes to context-independent phonemes, and
optionally the acoustic models H. In our decoder the recog-
nition cascade is constructed according to:

(C ◦ det(L)) ◦G

where det is the determinization operation, and ◦ is the
composition operation. In our construction process C and
det(L) are composed together with a standard static com-
position. The composition with G makes use of lookahead-
composition[12], and is either performed online or offline de-
pending on the task complexity and performance constraints.
In our decoder the expansion of context-dependant arcs to
HMM state sequence is performed online inside the decoder.

3. Task and Model Training
For the evaluations we used the IWSLT07 Japanese/English
training, development and test data [13]. The
Japanese/English task is based around The Basic Travel
Expression Corpus (BTEC) task. This is a multi-lingual
corpus of tourism style phrases.

3.1. ASR Training

We used the original acoustic models, lexicon and train-
ing text that were used to generate the IWSLT 2007 speech
recognition output. By using the same ASR models it allows
us to compare our results with other system results submitted
to the same IWSLT 2007 task.

The acoustic models were a pair of gender dependent
models each with 5700 states and 10 diagonal Gaussians per
state. The acoustic models were trained on feature vectors
comprised of 12 MFCCs with their deltas, augmented with a
delta power term.

The ASR LM training text consisted of 85k sentences and
had a vocabulary of 59k words. We built a modified Kneser-
Ney smoothed tri-gram using the MITLM toolkit[14]. Prior
to training the LM the Japanese text was segmented using
the same propriety tool as used to segment the IWSLT SMT
training text. This was done to make coupling easier and
remove the need for a possible re-segmentation after recog-
nition.

Our in-house decoder SprinTra is a general one-pass
Viterbi decoder. To parallel decode the gender dependent

acoustic models we first constructed separate male and fe-
male lexicon and context-dependency transducers. These
transducers were combined and optimized according to:

(CF ◦ det(LF)) ∪ (CM ◦ det(LM)))

Where ∪ is the union operation and the M and F sub-
scripts indicate the gender, the individual acoustic models
were merged to form a single acoustic model and appropri-
ate relabeling was applied. The final recognition cascade we
used was:

((CF ◦ det(LF)) ∪ (CM ◦ det(LM))) ◦G

The composition of the language model G was performed
on-the-fly using lookahead composition[12]. This construc-
tion allows us to drive several search networks in parallel
with the general decoder in a memory efficient manner. This
choice of construction is the same technique we use in our
production systems. Although, it is possible to construct in-
dividual male and female CLG cascades, decode them sep-
arately in parallel and then select the best result. In practise
we find the union system gives a less than 20% increase in
CPU cost in comparison to a system with a single acoustic
model. Furthermore, we can make additional memory sav-
ing by only having to load one copy of the language model.

This highlights one of the advantages of the WFST
framework for speech recognition. The search network was
modified to allow parallel decoding, whilst requiring no code
changes to the decoder core itself. This parallel decoding
scheme could easily be extended to various models for dif-
ferent tasks or environments, or even multiple languages as
described in [15].

3.2. SMT Training

The SMT system was based around the Moses training and
decoding components [16]. The SMT systems were all
trained on the standard IWSLT 2007 training data which con-
sisted of 20k training sentence pairs. The phrase tables were
all built using the standard Moses training scripts. In all
cases the English text was lower-cased and tokenized using
the standard Moses scripts prior to training. After SMT de-
coding the casing was recovered prior to evaluation.

To build the target LM we used the mono-lingual compo-
nent of the IWSLT training text. Again a modified Kneser-
Ney trigram was built using the MITLM toolkit. We ob-
served no improvement in translation performance when us-
ing higher order n-gram language models on this task.

The log-linear weights in the baseline Moses system
were optimized using the standard Moses MERT script
mert-moses.pl. The development data was 2k sentence
pairs each with a single target translations from the IWSLT
2007 data.

168

4. Experiments
4.1. Matching the ASR and SMT systems

Our baseline system consists of a speech recognition decoder
that generates a single best recognition hypothesis which is
then used as the input to the translation decoder.

4.1.1. Punctuation

We first used the clean test-set as SMT input and compared
the performance when training the SMT system with punctu-
ation, without punctuation, and with punctuation only on the
target side. After MERT optimizing the weights of each sys-
tem, we found that punctuation on both sides gave the best
performance, followed by target side only punctuation. Re-
moving punctuation from both sides gave the worst perfor-
mance. Based on these results we trained with punctuation
marks present on both the source and target sides and later
considered techniques to add punctuation to the ASR out-
put. The average length of the English and Japanese training
sentences was 7.6 and 9.15 words per sentence respectively.
Japanese sentences were slightly longer because the text seg-
menter outputs morpheme like units which are smaller than
words. The average length of the Japanese test reference
transcriptions was 7.2 words per sentence.

4.1.2. Segmentation

We investigated how matching the segmentation and vocab-
ulary units of the ASR and SMT components changed the
translation performance. Japanese is normally written with-
out whitespaces separating the words and this gives an even
greater possibility of mismatch between the ASR and SMT
components if the systems are trained on different segmen-
tations. Furthermore, Japanese uses four scripts simultane-
ously and permits these scripts to be interchanged when writ-
ing words or even parts of words.

Often when constructing a Japanese ASR system the
training text is segmented with a Part-of-Speech (POS) tag-
ger, this will output the base form of each word along with
the most likely pronunciation and POS tags. In Japanese
a base form can have multiple pronunciations and possibly
meanings based on the context. In Japanese ASR it is very
common to construct a tuple from all of these fields and con-
sider the tuple as the word.

Data sparseness issue may occur when including the POS
and pronunciation as part of the words, however, under the
WFST framework there is a slight practical advantage. The
tuple form of a vocabulary entries will reduce or remove the
amount of non-determinism on the output side of the lexicon
transducer. This is because for each lexical entry there is
only one possible pronunciation, and therefore in the lexicon
transducer at any state there is at most one transition with a
given output symbol. In practise we find for Japanese this
helps to reduce the amount of memory required to perform
the determinzation of L ◦ G. In general we have found that

adding the POS and pronunciations tags to the final LM and
lexicon entries often leads to smaller search networks that are
faster to decode. Although recent progress in composition
and on-the-fly algorithms [12] have helped to remove the
expensive det(L ◦G) step.

For the IWSLT task we did not observe any substantial
difference in ASR performance with or without the tuple
form of the vocabulary entries. Although, for a large vocabu-
lary Japanese spontaneous speech task we have observed sig-
nificantly larger search networks and slower decoding speeds
by removing the POS tags. A problem with stripping POS
tags from the lattice and applying optimizations is it may in-
crease the chances that the lattice cannot be determinized.

For future work in this area we plan to investigate the
use of POS tags and pronunciation data in a factored SMT
based system, or to extend the Lexicographic semiring idea
as proposed by Roark et al [17].

4.1.3. Punctuation Recovery

In the first experiments we looked a several simple heuristics
to add punctuation. The silences in the recognition output are
either removed or mapped to periods or commas. We found
that removing all silences and simply adding a final period to
the recognition output performed best. On inspection of the
Japanese test-set we found that the only types of punctuation
present were final periods.

4.2. Decoder Tuning and Translation Performance

In this section we considered how the SMT performed as
we changed the speech decoder parameters. We were not
only interested in the relationship between WER and BLEU
scores, but if certain sub-optimal WER values could give
comparable BLEU scores at faster decoding speeds.

The WFST decoder only has a few search parameters
and this makes tuning simple. There is a main search beam
that prunes hypotheses with scores worse than the best score
plus a threshold, this parameter controls the balance between
speed and errors. The other parameter we changed was the
LM weight which balances the score contributions from the
acoustic and language models. In speech recognition these
parameters are normally tuned to minimize the WER under
some possible speed constraints.

In these experiments we fixed the band at 10000 hypothe-
ses and looked at the change in SMT and ASR performance
for a set of LM weights across various beam widths. The
LM weight was varied between 12 to 20 in increments of 2,
this choice was based on the following: In ASR we often
find weight values of 12-15 give the best balance of RTF and
WER, however in [8] the authors reported more favourable
BLEU score for larger LM weights.

Figure 1 shows the RTF vs WER as we changed the
speech recognition decoder parameters. We observed smaller
language model weights values give more favourably ASR
performance curves.

169

 0

 5

 10

 15

 20

 25

 30

 0 0.1 0.2 0.3 0.4 0.5 0.6

W
E

R

RTF

12

14

16

18

20

Figure 1: ASR WER vs RTF across a set of different lan-
guage model weights.

Figure 2 shows the SMT BLEU vs WER for each LM
weight. For any given beam there is almost a linear relation-
ship between the WER and BLEU score. Reducing the error
rate improves the translation. The results seem to agree with
findings from [8], where larger LM weights appear to give
better SMT performance but worse ASR performance. How-
ever, we also observed the SMT system achieved the same
asymptotic accuracy regardless of LM weight width as long
as the beam used in the ASR decoder was wide enough.

 0.38

 0.39

 0.4

 0.41

 0.42

 0.43

 0.44

 0.45

 0 5 10 15 20 25 30

B
L

E
U

WER

12

14

16

18

20

Figure 2: SMT BLEU score vs ASR WER across a set of
different language model weights.

From figure 1 we see a smaller LM weights lead to faster
convergence of the ASR performance. In figure 3 we plot-
ted the RTF of the ASR decoder and the SMT BLEU scores.
What is interesting is how close the curves are and for a given
RTF the BLEU scores become closer regardless of the LM
weight. In fact the smaller LM weights give better WER and
BLEU scores and faster ASR decoding speeds. If we were
tuning for tight computational constraints it makes a lot more
sense to pick a smaller value for the LM weight. Reduc-

ing the value below 12 or above 20 gave poorer performance
characteristics. Further investigations are needed to ascertain
whether this result is specific to this task.

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0 0.2 0.4 0.6 0.8 1

B
L

E
U

RTF

12

14

16

18

20

Figure 3: MT BLEU vs ASR RTF for a set of different lan-
guage model weights

4.3. ASR and SMT Vocabulary Matching

There was a mismatch between the vocabulary used for ASR
and SMT training. The presence of the Out-of-Vocabulary
(OOV) words in the SMT output has a negative impact on the
readability and naturalness of the translation quality. Here,
we investigated whether matching the vocabularies of both
systems would improve the SMT BLEU scores.

The ASR system training vocabulary was comprised of
approximately 59k words, whilst the SMT system had only
12.5k unique source words. The ASR vocabulary was essen-
tially the superset of SMT vocabulary. Only a small number
of words (approx. 50) were only present in the SMT source
vocabulary.

In a phrase-based decoder even when matching the ASR
and SMT vocabularies there is no guarantee certain source
words won’t appear in the output like an OOV. In the train-
ing process the phrase table construction is not guaranteed
to generate a phrase for every single source word and there-
fore certain source words will only appear in larger phrases.
If these words are encountered in a different context and the
decoder is unable to handle them and they will be propa-
gated through to the output in the same way as a true OOV.
To counter this we added one-to-one word pairs to allow ev-
ery individual word to be translated. Our approach is sim-
pler than the scheme described in[18], we just look for the
best possible word alignments from the training data and add
these to the phrase table using a very small flooring probabil-
ity.

Moreover, in practise the SMT vocabulary can become
even smaller. After phrase table construction we found the
SMT vocabulary only had 8.5k unique words.

Any ASR vocabulary item that did not appear in the SMT

170

training text was mapped to an unknown word token before
training the ASR language model.

Figure 4 shows the SMT BLEU vs WER for each LM
weight under matched vocabulary conditions. When match-
ing the vocabularies we first noticed a large increase in the er-
ror rate the speech recognition system. When restricting the
ASR vocabulary the best WER was 5.5 versus 3.03 for the
unrestricted case. However, there was a smaller reduction in
SMT performance, reducing from 0.4490 in the unmatched
conditions to 0.4452 for matched vocabularies.

From a practical point of view limiting the ASR vocab-
ulary gave no speed gains for the speech decoding phase.
However, we compared the sizes of the full composed static
search network and observed an approximately 40% reduc-
tion in ASR memory requirements. These size reductions
would be beneficial if we need to deploy the system to a
smaller scale device such as a tablet or smartphone.

 0.38

 0.39

 0.4

 0.41

 0.42

 0.43

 0.44

 0.45

 0 5 10 15 20 25 30

B
L

E
U

WER

12

14

16

18

20

Figure 4: MT BLEU vs ASR WER for a set of different lan-
guage model weights using a matched vocabulary.

5. WFST Lattice Based Interface
This section describes our initial investigations into the
tighter coupling of speech recognition and translation sys-
tems. In particular we investigate the practical issues in-
volved in coupling the lattice output of a WFST ASR sys-
tem to a WFST based SMT. Our final goal is to have a com-
plete end-to-end speech translation system implemented us-
ing WFSTs.

Lattice based coupling of ASR and SMT has been exten-
sively studied and observed to improve performance. One
of the most successful approaches is to use confusion net-
works [19] to interface the ASR output to the SMT compo-
nent or lattice coupling based on confusion network informa-
tion [7].

Using the lattices from a WFST based speech recogni-
tion decoder introduces a few problems when interpreting the
costs and labels of the lattice arcs. This is due to a combi-
nation of the transducer optimizations and the structure of

the component WFSTs used to construct the ASR cascade.
In particular there are three specific issues which make the
computation of the confidence scores problematic.

• The determinization operation will push the output la-
bels forward towards the initial state of the WFST.
Furthermore, the context-dependency transducer will
introduce a delay between the input and output la-
bels [20]. This means that we cannot interpret the out-
put labels as corresponding to the actual word endings.

• The determinization and weight pushing algorithms
will move the weights closer to the initial state of the
WFST.

• Repeated lower order language model paths are in-
troduced by the back-off approximation used in the
WFST representation of the language model[21]. The
lattices generated from the WFST decoder will have
paths replicated that correspond to each of the lower
order n-grams sequences.

We initially looked at converting the WFST phone lat-
tices to word lattices or confusion networks and using them
as the input to the Moses decoder. However, we found that
the system did not perform well, possibly due to the pre-
viously mentioned issues. Given these issues, we decided
to investigate the use of a WFST based translation decoder.
When direct coupling WFST implementations the total path
scores not individual label scores are important, and this will
circumvent the previously mentioned problems.

5.1. WFST Based Machine Translation

The WFST framework has been extensively studied for ma-
chine and direct speech translation tasks. The approach we
adopted is based on the method proposed in [22]. In the
WFST decoder we used the following cascade of transduc-
ers λ1M ◦ λ2T ◦ λ3Nλ4 ◦ P ◦ λ5G. Where M is the source
phrase segmentation transducer, T is the phrase table, N is
the target phrase segmentation transducer, P is the insertion
penalty andG is the target language model. All the transduc-
ers are assumed to be in the tropical semiring and λn param-
eters are the log-linear weights. In the following section we
describe our approach to optimizing the log-linear weights
λn in the WFST framework.

5.2. Optimization of WFST Feature Weights

The area we address in this section is the problem of tun-
ing the log-linear weights within the WFST framework.
The optimization of the feature weights requires that dur-
ing decoding we maintain the individual feature contribu-
tions. However in the WFST framework after composition
and optimization the contributions from each of the underly-
ing knowledge sources is lost. One way to obtain the feature
contributions is perform a re-alignment phase after decoding
as described in [23], the drawback with this approach is the

171

need for a second decoding pass. An alternative approach is
to access the internals of the composition process and try to
recover the component state sequences from the state pairs
the composition algorithm maintains internally . This ap-
proach would fail if during or after the decoding process we
apply operations such as determinization or epsilon removal.

The method we describe uses a tuple semiring which can
track individual score contributions from a cascade of WF-
STs. This allows for the preservation of scores after any
composition or even optimization algorithms.

A semiring is formally defined as the quintuple
(K,⊕,⊗, 0̄, 1̄), where K is a non-empty weight set, ⊕is a
commutative operator with identity 0̄, and ⊗ is an addition
operator with identity 1̄ [24].

The tropical semiring (R ∪ {−∞,+∞} ,min,+,∞, 0)
is example of a semiring that is often used in speech and
language processing applications [24]. Here, the ⊗ opera-
tion corresponds to extending a path or hypothesis by adding
a cost, and the ⊕ operation is used to compute the cost of
paths passing through a state, in the tropical semiring this
corresponds to taking a minimum under the Viterbi approxi-
mation.

For the purpose of tracking score contributions we used
a semiring that is tuple of tropical weights. The length of
the tuple n is the number of FSTs in the full cascade, in-
cluding the input sequence or lattice that is represented as
an acceptor. Each slot in the tuple corresponds to the score
contribution of a component WFST.

Given a pair of weights: A = (a1, a2, . . . , an) and B =
(b1, b2, . . . , bn). The ⊗ operator performs a component wise
multiplication:

A⊗B = (a1 ⊗ b1, a2 ⊗ b2, . . . , an ⊗ bn)

This is simply applying the standard ⊗ operation to each of
the elements of the tuple. The ⊕ is operator defined as:

A⊕B =

{
A if

∑
i ai ≤

∑
i bi,

B otherwise

In the tuple version of the tropical semiring, the compo-
nent wise sum of weights will correspond to the same weight
in the scalar tropical semiring. Therefore we can use tuple
version for training, or scalar version for decoding.

For the realization we make use of OpenFst’s [25] elegant
templating mechanism. The new semiring can be easily in-
tegrated into the existing tools and libraries. To optimize the
log-linear factors we make use of the ZMERT toolkit[26].
After decoding an n-best list is generated from the lattices
output from the WFST based translation decoder and input
to ZMERT. The new weights are then applied to the com-
ponent FST and decoding/optimization process is run until
ZMERT converges.

5.3. OOV in WFST translation

After the SMT training process we frequently observed cases
where individual words only occurred in the context of larger

Table 1: Comparison of the Moses and WFST decoding ap-
proaches.

Configuration Moses WFST
Baseline 32.29 33.16
+ phrase table expansions 32.38 34.29
+ MERT optimization 35.44 35.77

phrases. During testing if these words occurred in differ-
ent contexts it would be impossible to construct a valid path
through the WFST translation machines and the translation
would fail. Adding epsilon transitions to model deletions
from the source sentence did not work well in practise and
substantially increased the search time. The phrase-table ex-
pansion discussed in section 4.3 was essential in the WFST
decoder to achieve BLEU scores comparable to Moses.

5.4. Experiments

In these experiments we compared Moses to the WFST based
decoder, the goal was to evaluate the effectiveness of the
phrase table expansion and the weight tuning procedure.

We used the same phrase table and testset from the pre-
vious experiments. Because the WFST system did not use a
re-ordering component we disabled re-ordering in Moses.

To optimize the weights in both system we used 1000
one-to-one sentence pairs. For Moses we used the standard
mert-moses.pl script to optimize the weights. For the
WFST based system we used ZMERT. Once optimized the
WFST can be switched into the more efficient tropical semir-
ing.

In the case of WFST decoder the final search network
was M ◦ T ◦ N ◦ P ◦ G. Where M is the source phrase
segmentation transducer, T is the phrase table,N is the target
phrase segmentation transducer, P is the insertion penalty
and G is the target language model.

The results in table 1 show the comparison between the
phrase-based decoder and the WFST. The results show the
phrase-table expansion give a large improvement in the case
of the WFST decoder, because it allows all test sentences to
be successfully translated. The expansion method also gives
a very small improvement in the Moses decoder.

The tuning semiring is effective for the WFST decoder
and gives slightly better performance when compared to the
Moses decoder. In the un-tuned systems the WFST performs
better, possibly due to differences in the default weight se-
lections.

Finally we considered the performance of the WFST de-
coder using lattice input. The lattices had both acoustic and
language model weights, silence words were mapped to ep-
silon transitions. On this testset we only observed a 0.2 im-
provement in BLEU scores. It is possible that optimizing the
WFST decoder using the lattice input and taking into account
the language model weighting could improve performance.

172

5.5. Future Work in WFST Coupling

In future work we would like to optimize the speech recog-
nition weighting parameters as part of the MERT training of
the lattice coupled system.

We also plan to investigate techniques to extract better
confidence scores from the lattices generated from a WFST
decoder. One possibility is to is encode word end markers
into the context-dependency transducer and use a specialized
epsilon removal algorithm to convert the phone-lattices to
word-level lattices with the correct alignment of the acous-
tic scores. To optimize the lattices it should be possible to
use some of the recent work on semirings and determiniza-
tion algorithms [17, 27, 28]. Finally, the LM scores can be
re-applied using failure translation to ensure correct weight
synchronization whilst avoiding the expansion of un-needed
lower order paths. With such lattices available it should be
possible to perform deeper comparison between the WFST
decoder and Moses decoder.

Finally, we need to add re-ordering into SMT WFST de-
coder, another WFST alternative would be to to investigate
the hierarchical WFST approach as described in [23].

6. Conclusions
In the first part of the paper we looked at basic coupling be-
tween a WFST ASR system and Moses phrase decoder. We
found we can substantially reduce the memory consumption
of the ASR system by reducing the vocabulary to exactly
match the SMT, whilst having little impact on the BLEU
score.

In the second part of the paper, we reported our initial
experiments on coupling WFST ASR and SMT decoders.
We have shown it is more important to deal with OOV and
perform phrase table expansion when using a WFST based
SMT decoder. Our proposed approach is extremely simple
and yields goods results. We have also described a semiring
that allows the optimization of the log-linear weights in the
WFST framework and shown its effectiveness.

7. Acknowledgements
Thanks to Michael Paul, Shigeki Matsuda and Teruaki
Hayashi for helping to obtain the original acoustic models
and data used in for IWSLT 07 Japanese speech recognition
system. We thank the anonymous reviewers for helpful com-
ments on this paper.

8. References
[1] E. Vidal, “Finite-state speech-to-speech translation,” in

Proc. ICASSP, 1997, pp. 111–114.

[2] F. Casacuberta, “Finite-state transducers for speech-
input translation,” in Proc. ASRU, 2001.

[3] S. Bangalore and G. Riccardi, “Stochastic finite-state

models for spoken language machine translation,” Ma-
chine Translation, vol. 17, pp. 165 – 184, 2002.

[4] D. Caseiro and I. Trancoso, “Weighted finite-state
transducer inference for limited-domain speech-to-
speech translation,” in Computational Processing of the
Portuguese Language, 2006, vol. 3960, pp. 60–68.

[5] W. Shen, B. W. Delaney, T. Anderson, and R. Slyh,
“The MIT-LL/AFRL IWSLT-2007 mt system,” in Proc.
IWSLT, 2007.

[6] N. Bertoldi, R. Zens, M. Federico, and W. Shen, “Effi-
cient speech translation through confusion network de-
coding,” IEEE Transactions on Audio, Speech and Lan-
guage Processing, vol. 16, pp. 1696 – 1705, 2008.

[7] E. Matusov and H. Ney, “Lattice-based ASR-MT in-
terface for speech translation,” IEEE Transactions on
Audio, Speech and Language Processing, vol. 19, pp.
721–732, 2011.

[8] X. He, L. Deng, and A. Acero, “Why word error rate is
not a good metric for speech recognizer training for the
speech translation task?” in Proc. ICASSP 2011, 2011,
pp. 5632–5635.

[9] R. Sarikaya, Z. Bowen, D. Povey, M. Afify, and Y. Gao,
“The impact of ASR errors on speech-to-speech trans-
lation performance,” in Proc. ICASSP, 2007, pp. 1289
– 1292.

[10] G. Saon and M. Picheny, “Lattice-based viterbi decod-
ing techniques for speech translation,” in Proc. ASRU,
2007, pp. 386 – 389.

[11] M. Mohri, F. C. N. Pereira, and M. Riley, “Speech
recognition with weighted finite-state transducers,”
Springer Handbook of Speech Processing, pp. 1–31,
2008.

[12] C. Allauzen, M. Riley, and J. Schalkwyk, “A gener-
alized composition algorithm for weighted finite-state
transducers,” in Proc. Interspeech, 2000, pp. 1203–
1206.

[13] C. S. Fordyce, “Overview of the IWSLT 2007 Evalua-
tion Campaign,” in Proc. IWSLT 2007, 2007, pp. 1–12.

[14] B.-J. P. Hsu and J. Glass, “Iterative Language Model
Estimation: Efficient Data Structure & Algorithms,” in
Proc. Interspeech, 2008, pp. 58–65.

[15] T. J. Hazen, I. L. Hetherington, and A. Park, “FST-
Based Recognition Techniques for Multi-Lingual and
Multi-Domain Spontaneous Speech,” in Proc. Eu-
rospeech, 2001, pp. 58–65.

173

[16] H. Hoang and P. Koehn, “Design of the Moses Decoder
for Statistical Machine Translation,” in Proc. Software
Engineering, Testing, and Quality Assurance for Natu-
ral Language Processing, 2008, pp. 58–65.

[17] B. Roark, R. Sproat, and I. Shafran., “Lexicographic
semirings for exact automata encoding of sequence
models,” in Proc. ACL, 2011, pp. 1–5.

[18] K. Arora, M. Paul, and E. Sumita, “Translation of un-
known words in phrase-based statistical machine trans-
lation for languages of rich morphology.” in Proc. of
1st International Workshop on Spoken Languages Tech-
nologies for Under-resourced languages, 2008, pp. 70–
75.

[19] L. Mangu, E. Brill, and A. Stolcke, “Finding consen-
sus in speech recognition: Word error minimization
and other applications of confusion networks,” Com-
puter Speech and Language, vol. 14, no. 4, pp. 373–
400, 2000.

[20] M. Riley, F. Pereira, and M. Mohri, “Transducer com-
position for context-dependent network expansion,” in
Proc. Eurospeech, 1997, pp. 1427–1430.

[21] C. Allauzen, M. Mohri, and B. Roark, “Generalized al-
gorithms for constructing statistical language models,”
in Proc. of 41st Annual Meeting of the Assocication for
Computational Linguistics, 2003, pp. 40–47.

[22] S. Kumar, Y. Deng, and W. Byrne, “A weighted finite
state transducer translation template model for statisti-
cal machine translation,” Natural Language Engineer-
ing, vol. 12, pp. 35 – 75, 2006.

[23] A. de Gispert, G. Iglesias, G. Blackwood, E. R. Banga,
and W. Byrne, “Hierarchical phrase-based translation
with weighted finite-state transducers and shallow-n
grammars,” Computational Linguistics, vol. 36, pp.
505–533, 2010.

[24] M. Mohri, “Weighted automata algorithms,” Springer
Handbook of weighted automata, (to appear) 2009.

[25] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and
M. Mohri, “OpenFst: A general and efficient weighted
finite-state transducer library,” in Proc. of CIAA 2007,
2007, pp. 11–23.

[26] O. Zaidan, “Z-MERT: A fully configurable open source
tool for minimum error rate training of machine trans-
lation systems,” The Prague Bulletin of Mathematical
Linguistics, no. 91, pp. 79–88, 2009.

[27] M. Y. Izhak Shafran, Richard Sproat and B. Roark,
“Efficient determinization of tagged word lattices us-
ing categorial and lexicographic semirings,” in Proc.
ASRU, 2011, to appear.

[28] D. Povey, M. Hannemann, G. Boulianne, L. Burget,
A. Ghoshal, M. Janda, M. Karafiát, S. Kombrink,
P. Motlı́ček, Y. Qian, N. T. Vu, K. Riedhammer, and
K. Veselý, “Generating exact lattices in the WFST
framework,” 2011, submitted to ICASSP 2012.

174

