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Abstract
Phrase alignment is a crucial step in phrase-based statistical
machine translation. We explore a way of improving phrase
alignment by adding syntactic information in the form of
chunks as soft constraints guided by an in-depth and detailed
analysis on a hand-aligned data set. We extend a probabilis-
tic phrase alignment model that extracts phrase pairs by opti-
mizing phrase pair boundaries over the sentence pair [1]. The
boundaries of the target phrase are chosen such that the over-
all sentence alignment probability is optimal. Viterbi align-
ment information is also added in the extended model with
a view of improving phrase alignment. We extract phrase
pairs using a relatively larger number of features which are
discriminatively trained using a large-margin online learning
algorithm, i.e., Margin Infused Relaxed Algorithm (MIRA)
and integrate it in our approach. Initial experiments show im-
provements in both phrase alignment and translation quality
for Arabic-English on a moderate-size translation task.

1. Introduction
Phrase-based statistical machine translation has been around
for several years It has been well decribed and discussed in
[2] and [3]. Most of these phrase-based approaches rely on
robust word alignment strategies for phrase pair extraction
like the IBM word alignment models [4]. The now stan-
dard approach proposed by [2] relied on heuristics to extract
phrase pairs by reading off the Viterbi path generated from
word alignment models [5] and using maximum likelihood
estimates (MLE) for phrase scoring.

[1] proposed a novel probabilistic phrase extraction al-
gorithm which viewed phrase alignment as a sentence split-
ting problem (PESA). Given a source phrase, the algorithm
finds boundaries of the target phrase by optimizing overall
sentence alignment probability. This method does not rely
on the traditional Viterbi alignment approach as cited above.
Phrase pairs are extracted from a bilingual corpus by search-
ing for sentences pairs, which contain a given source phrase
and then finding the optimal target phrase within each sen-
tence pair.

In this paper, we propose to extend this approach by
adding more information derived from analysis of syntac-
tic constraints based on chunk information. This informa-

tion is obtained by parsing the parallel corpus using mono-
lingual shallow parsers on the source and target side. We also
add alignment information by reading off the Viterbi align-
ment path for a sentence pair and comparing the relative po-
sition of these alignment points with respect to the rectangu-
lar block of the source-target phrase pair, which is described
later in the paper. Our proposed approach not only helps in
improving the quality of extracted phrase pairs but also im-
proves relative quality of translation against the baseline.

Adding linguistically motivated information in phrase-
based SMT systems proves to be a tradeoff between unlin-
guistically motivated phrase pair extraction from parallel text
versus incorporating benefits of linguistic analyses derived
before training time. Hard linguistic constraints improve
quality somewhat but lose out on coverage. It is thus im-
portant to use this linguistic a priori knowledge as a ‘soft
constraint’ rather than forcing the MT system to completely
ignore unlinguistic but strong mappings in the parallel cor-
pus which could result in deterioration of performance. This
fact has been emphasized in previous works of [6], [7] and
[8].

As stated above, we extend the translation model by
adding a set of features based on syntax and alignment. It
is then important to combine features in such a way that the
phrase extraction step is optimized over aligning the entire
sentence pair. Hence, we use an online large-margin training
algorithm, i.e., Margin Infused Relaxed Algorithm, (MIRA)
developed by [9] to optimize weights over an extended set
of features optimized towards an oracle selection. Online
discriminative learning algorithms have been popular in the
SMT domain, and researchers have used the MIRA algo-
rithm to train MT systems in the past. For instance, [10], [11]
used MIRA algorithm to train MT systems over a large num-
ber of features during decoding time. The PESA approach
described in [1] only used a manually derived set of weights
for optimization, since it relied only on lexical information
features obtained from word alignment models.

The main contributions of this work are: 1. Extending a
phrase alignment approach by adding syntax and alignment
information. 2. Incorporating an online large-margin train-
ing method to optimize weights during phrase extraction.

In Section 2 we give a brief overview of related work.
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Section 3 we describe our analysis based on chunk informa-
tion. Section 4 describes the baseline phrase extraction sys-
tem. In sections 5 and 6 we explain our extended approach
and training algorithm used during phrase extraction. Sec-
tion 7 gives our experimental setup and summarizes results.
Section 8 concludes the paper and lists some future direc-
tions.

2. Related work
There has been a strong line of research focused on incorpo-
rating syntax in SMT systems, chunk information being one
approach. Our work is also based on adding chunk-based
information as syntactic features to an existing phrase align-
ment method. Hence, we focus our attention on incorporat-
ing chunk information for SMT.

A chunk has been well defined by [12]. Combining lo-
cally grouped words (a constituent) as one translation unit
has been shown helpful in improving performance of various
machine translation systems. One of the recent work in this
line of research is [13]. They built a chunk-based example-
based machine translation (EBMT) system in which each
chunk is treated as a translation unit. It combined a typical
EBMT system and a chunk-based system to produce target
translations in the form of linguistically motivated chunks.
It backed off to the standard EBMT approach, for translat-
ing target fragments that were not chunks. Following the
chunk-based paradigm, they adapted standard word align-
ment models to align chunks by treating each chunk as an
individual word. This was done to account for sparseness
in terms of statistical evidence for words locally grouped as
chunks. They achieved improved performance over baseline
systems for Korean-English and Chinese-English translation
tasks using this approach.

Some of the previous related work on chunk MT also in-
clude that of [14] and [15]. [15] had proposed an SMT ap-
proach based on combining chunking knowledge. They de-
composed the translation model into three levels: sentence
level reordering, chunk mapping and translation of words
within a chunk pair. [14] treated each translation unit as a
chunk by breaking down the translation model into chunk
alignment, and word alignment within chunks for translation.
They subsequently performed chunk reordering in a sentence
pair chunked on both sides.

Each of the above cited work treats chunks as translation
units in the translation model. They either completely back-
off to a phrase/word based model in the absence of proper
chunks or degrade gracefully in order to produce translations
for rest of the sentence. None of these models uses available
syntactic information in the form of a soft constraint. How-
ever, work proposed by [6] and [11] incorporated syntactic
information as soft constraints in a hierarchical phrase-based
MT system ([16]) by penalizing phrase pairs that violated
these linguistic constraints. The penalty (or, cost) incurred
is determined by an optimal combination of feature weights
and feature values. They did not altogether ignore or revert to

standard phrase-based (hierarchical) models in case of these
violations.

We carry out this work in similar vein as that of [6]
and [11], wherein chunk-based syntactic restrictions are used
as soft constraints. We search for an optimal set of target
phrases given a source phrase using this information in the
PESA model.

3. Chunk-based analysis
We present an analysis for exploring ways to add chunk-
based information in the model. This analysis was based
on a hand-aligned data set containing 21107 sentence pairs
for Arabic-English obtained from the DARPA GALE pro-
gram. We tried to find automatically generated chunk-to-
chunk mappings on the basis of manual word alignment in-
formation for the language pair in both directions. Chunk
mapping analysis provided important insights with respect
to coming up with a set of features for the model. We based
our analysis on the following criteria:
• We considered one-to-one chunk alignments based on

words within a chunk on the source side aligned only
to words within a chunk on the target side and vice
versa.

• These include all unaligned words within the chunk
pair.

• We also restricted the mappings to have no word align-
ment links outside of the chunk pairs. This criterion
was followed in order to keep chunk alignments re-
stricted, which otherwise could be potentially large.

We included unaligned words in our chunk mappings to in-
corporate some of the language divergences between the lan-
guage pair. Our alignment analysis also considered one-to-
many chunk mappings looking from both sides. Our analysis
based on the above criteria is summarized in figure 1.

First half of Figure 1 outlined in black represents a con-
fusion matrix relating all one-to-one chunk mappings based
on the criteria listed above. It can be observed from the fig-
ure that some of the most frequently occurring chunks like
NP, PP (on the Arabic side) do not have direct one-to-one
correspodence with chunk labels like NC, PC on the English
side. Although, these labels occur in contiguous sequences
on either side and could be seen as translation equivalents
of each other for the entire sequence. This leads us to align
such sequences as chunk phrase pairs based on IBM1 style
alignment as described in section 5.1. However, there are
strong correlations between other chunk types like VP – VC
and ADJP – ADJC which can be used as high frequency
combinations in the model. Cells shaded in grey (in the
confusion matrix) show relatively high frequent albeit un-
expected chunk mappings whereas those in black show ex-
pected chunk mappings. We also see that there is a signicant
number of unaligned chunks on both sides (1:0 row/column)
in the latter half of the figure which is of concern and some-
thing that need to be addressed. The row/column titled “To-
tal” represents the total distribution of each individual chunk
label in the hand-aligned corpus. Numbers given in percent-
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Figure 1: Chunk analysis based on hand aligned Arabic-English parallel corpus. Rows represent chunks on Arabic side and
columns represent chunks on English side.

ages denote relative distribution of chunks in the bilingual
corpus.

We also analyzed one-to-many and many-to-many chunk
mappings, but due to space constraints, we cannot list them
all. An important conclusion from this analysis was to con-
sider aligning these continuous chunk sequences as ‘chunk
phrase pairs’ in the extended model.

4. Phrase pair extraction as sentence splitting
(PESA)

We describe in brief the method for phrase pair extraction
as proposed in [1]. Traditional approaches in the past fo-
cused on extracting phrase pairs as a post-processing step of
different word alignment methods, most prominently, IBM
word alignment models. The post-processing step involves
reading off a combination of alignment points on the Viterbi
paths generated by running word alignment models in both
directions (source to target, target to source) to extract phrase
pairs. Some of these combinations over alignment points
have been proposed by [5].

The method proposed in [1] optimizes the target phrase
boundary (ẽ) given a source phrase (f̃ ) in a sentence pair (f, e)
from a bilingual parallel corpus. The method constrains the
calculation of word alignment (for instance, IBM1 model)
for phrase pairs to reduce the potentially large search space
for phrase pair alignments. The constraints are defined as
follows:

1. IBM1 model probabilities are summed for words in-
side the target phrase for words inside a source phrase for
phrase alignment. Similarly, for words that lie outside of the
source phrase, probabilities are only summed up for words
that correspondingly lie outside of a candidate target phrase
within a given sentence pair.

2. IBM1 model has a uniform distribution of 1/I for po-
sition alignment, where I is the length of the target sentence.

In this case, it is modified to 1/l for words inside the source
phrase and 1/(I - l), for words outside the source phrase,
where l is the length of the target phrase.

Mathematically, the constrained IBM1 style phrase align-
ment probability is represented as:

pi1,i2(f|e) =
1

(I − l)

j1−1∏
j=1

∑
i/∈(i1...i2)

p(fj |ei)

×1

l

j2∏
j=j1

i2∑
i=i1

p(fj |ei)

× 1

(I − l)

J∏
j=j2+1

∑
i/∈(i1...i2)

p(fj |ei) (1)

where, pi1,i2 (f |e) is the sentence alignment probability in the
source to target direction. j1, j2 are the start and end posi-
tions of a given source phrase in the source sentence, respec-
tively. i1, i2 are target phrase boundaries, optimized over
the sentence pair. Similarly, sentence alignment probability
is also calculated for the reverse direction (target to source),
pi1,i2 (e|f ).

[1] noted that the probability terms calculated in equation
(1) and in the reverse direction may lead to weaker alignment
scores within a phrase pair even though the overall sentence
alignment score may be good. This is more likely in the
case of longer sentence pairs. Hence, they introduced phrase
alignment probability scores calculated only within phrase
pairs over IBM1 style alignment using probabilities from the
trained lexicon. They calculated both raw as well as normal-
ized scores in order to make probabilities sum to one. These
scores are calculated as:

p(f̃ |ẽ) =
j2∏

j=j1

i2∑
i=i1

p(fj |ei) (2)
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pnorm(f̃ |ẽ) =
j2∏

j=j1

i2∑
i=i1

p(fj |ei)∑I
i′=1p(fj |ei′)

(3)

Equation (2) represents probability alignment score of
just a phrase pair as opposed to the entire sentence pair in
equation (1). Equation (3) represents renormalized scores
over phrase pair alignment. [1] computes the scores for both
directions. Hence, a total of six scores (sentence alignment,
phrase alignment and renormalized scores, in both direc-
tions) are obtained in the PESA system.

These scores are then combined in a weighted log-linear
manner as follows:

(i1, i2) = argmax
(i1,i2)

{
3∑

k1=1

λk1 log(P
fe
k1

) +
3∑

k2=1

λk2 log(P
ef
k2

)

}
(4)

where, P fe
k and P ef

k are alignment scores in respective
directions and λ′s are the weights associated with each align-
ment scores which are optimized.

This approach forms our baseline for results reported in
section 7. We compare results of the extended model against
this baseline.

Figure 2: Phrase pair as sentence splitting (PESA). Black
dots indicate alignment points on the Viterbi path. Shaded
blocks indicate constrained phrase alignment.

5. Extended model for PESA
In this section we describe an extended model for PESA
where we add information based on syntax and alignment in
the translation model. Our syntactic approach is based on ex-
tracting chunk-based information from the bilingual training
corpus.

5.1. Chunk-based syntactic constraints

Phrase pairs extracted by the baseline PESA approach are ag-
nostic to syntactic structure. Syntactic structure could play
an important role in translation between two relatively dis-
tant language pairs as noted by [13], in our case, Arabic and

English. The lexical scores for the extracted phrase pairs are
computed using IBM4 model trained lexicon. We present a
method here to capture chunk-based information available in
the form of chunk boundaries and chunk labels.

We use existing statistical monolingual shallow parsers
for Arabic and English to produce a chunked bilingual cor-
pus. We used the AMIRA toolkit1 for Arabic language pro-
cessing [17], which is a sequence of statistically built seg-
mentation, POS-tagging and base phrase chunking models
using support vector machines (SVMs). For English, we
used the TreeTagger2 package developed by [18] for POS-
tagging and subsequent base phrase chunking. Some amount
of post-processing is required for both sides in order to gen-
erate the desired output. For instance, certain tokens are left
outside of chunk boundaries by the parsers. We put these left-
over tokens within chunk boundaries of a new chunk unit la-
beled ‘UNK’. For more details on chunking strategies please
refer [17] and the TreeTagger documentation for Arabic and
English, respectively.

We carried out an in-depth analysis in order to determine
what all chunk-based information should be captured in the
model as presented in section 3. We now describe the set of
features that were used to incorporate chunk information in
our model.

5.1.1. Chunk boundary (CB) features

• We look at the number of source and target phrase
boundaries (p) that match with their corresponding
chunk boundaries (c) on the left and right sides. Each
match produces a constant bonus. This step generates
two features, one each for source and target. Formally,

δ(p, c) =

{
1 if p = c
0 otherwise

• In a candidate phrase pair with given source phrase, we
try to match the corresponding source chunk boundary
with target chunk boundary on either sides, i.e. CB-
CB (=match), CB-noCB (=no match), noCB-noCB
(=match). Here, CB denotes chunk boundary and
noCB denotes region within chunk boundaries. Each
match fires the feature. This step generates two fea-
tures, one each for left and right sides.

These features introduce a soft bias towards phrases that are
full sequences of chunks.

5.1.2. Phrase length to chunk span

Given a source phrase and its corresponding candidate target
phrase, we compute the ratios of the phrase pair with respect
to its chunk span for both source and target, thus generating
two features. In other words, we look at the “fraction” of
the phrase pair that is fully covered by chunks. The intuition
behind this feature is that ideally we would want a sequence
of chunks to span the entire length of a phrase.

1http://nlp.ldeo.columbia.edu/amira/
2http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
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5.1.3. Chunk balance feature

• We compute the absolute difference between the num-
ber of chunks on the source and target side for a phrase
pair. The intuition is that a balanced number of chunks
indicates a better phrase pair. It is represented as:

d = |nfc −me
c|

where, nfc is the number of chunks in the source phrase
(f̃ ) and, me

c is the number of chunks in the target
phrase (ẽ).
• We also look at the ratio of the number of source and

target chunks (nfc , me
c) in the phrase pair.

5.1.4. Chunk label features

We use chunk label mapping information as observed from
our analysis on hand-aligned data.
• We replace the sequence of words in a constituent

with its chunk label. We then train a lexicon, using
these labels, on the chunked corpus. Each underly-
ing sequence of chunk labels within a phrase pair is
treated as a ‘chunk phrase pair’, (f̃c, ẽc) with each (fcj ,
eci ) pair representing a chunk to chunk mapping. We
then calculate chunk phrase alignment probability us-
ing IBM1 style alignment for both directions. Chunk
phrase alignment probability can be represented as:

p(f̃c|ẽc) =
j2∏

j=j1

i2∑
i=i1

p(f cj |eci ) (5)

Similarly, chunk phrase alignment probability can be
computed in the reverse direction, p(ẽc|f̃c). These set
of features align sequences of chunks on either side
to handle one-to-many and many-to-many chunk map-
pings.
• We also use indicator features for high frequency com-

binations like VP–VC, ADJP–ADJV, ADVP–ADVC
etc. Co-occurrence of these labels can be viewed as a
good sign of phrase pair quality.
• Indicator features looking for presence of different

types of labels in chunk phrase pairs are also used.
These features are represented as follows:

φl(f
c
j ) =

{
1 if l = f cj
0 otherwise

for the source phrase and similarly for the target
phrase, where l is the chunk label.

5.2. Alignment features

Apart from capturing syntactic information explained in sec-
tion 5.1, we also added alignment features in the extended
PESA model. [1] describes a method for finding optimal tar-
get phrase boundaries (i1, i2) given the source phrase bound-
aries (j1, j2), and the sentence pair. As can be seen in figure

2 from [1], alignment is restricted to the grey-colored areas.
The black spots indicate alignment points for the sentence
pair on the Viterbi path. The rectangular block or the can-
didate phrase pair (shaded in dark grey) need not always in-
clude all target words which are aligned to the source phrase
according to this Viterbi path. It can have aligned words from
outside the block. We therefore, use this information to look
at how many aligned words lie outside this block and penal-
ize such an extracted phrase pair accordingly. The features
we use to bring alignment information from the Viterbi path
are defined as follows:

Viterbi alignment points within the phrase pair. We
look at the number of alignment points that lie on the Viterbi
path and are within the phrase pair. More number of such
alignment points indicates a better phrase pair candidate.

Unaligned inside words. Similarly, we look at the num-
ber of unaligned words within the phrase pair for both source
and target side. Less number of unaligned words is an indi-
cator of better phrase alignment quality.

Inside-outside alignment. This feature computes the
number of inside words aligned to the outside. We com-
pute this feature for both directions i.e., inside source phrase
words aligned with outside target words and vice versa.

Unaligned words on phrase boundaries. This feature
computes the number of unaligned words at the boundaries
of source and target phrases. This feature is particularly im-
portant in the case where unaligned words are preferred to lie
within the rectangular block, rather than on it.

6. Online large-margin discriminative training

Online large-margin training methods have been employed
successfully in the past for various structure prediction tasks
in natural language processing, such as dependency parsing,
chunk labeling and statistical machine translation. Online
large-margin algorithms like the margin infused relaxed al-
gorithm (MIRA) developed by [9] have been shown to learn
weights of a much larger number of features with greater sta-
bility because of its ability to update weights after each train-
ing instance based on newly learnt margin constraints.

We used the MIRA algorithm to learn weights for all fea-
tures in our extended PESA model to produce optimal phrase
translations. We describe in brief, how we perform the learn-
ing step using MIRA.

6.1. MIRA algorithm

MIRA algorithm is defined by an update rule which is sub-
ject to max-margin constraints with respect to a loss func-
tion computed for the predicted output against the reference.
These updates are applied in an online manner, i.e., after see-
ing each training instance per iteration. The weight update
is minimized and the change is kept as low as possible with
respect to the current weight vector. Change in the weight
vector is subject to the constraint that the margin between
the reference/oracle and hypothesis must at least be as large
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as the loss value.
Formally, the update rule in MIRA is given by,

argmin
w

||wi+1 − wi||2 + C ·
∑
k

ξk(yt, y
′)

s.t., s(xt, yt)− s(xt, yk) + ξk(yt, y
′) ≥ L(yt, y′);

y′ ∈ bestk(xt;wi); ξk(yt, y
′) ≥ 0

where, w is the weight vector, yt is the oracle translation clos-
est to the reference, y′ is in the k-best candidate list, s (x, y)
is the scoring function while L(yt, y′) is the computed loss.
ξk is the slack variable whose value is always non-negative
and C is the slack constant used in the objective function that
determines how aggressively the weight vector is updated af-
ter each instance. The weights obtained after each update are
averaged at the end of the training step in order to prevent
overfitting.

6.2. Loss function and oracle selection

We use two different metrics in computing the loss. The “er-
ror” or loss is measured in terms of standard word error rate
(WER) normalized against the oracle length. We also com-
pute loss in terms of a modified smoothed-BLEU (mBLEU)
version. We present a comparison in error rates for optimiz-
ing weights using both mBLEU and WER.

We optimize system performace (or accuracy) towards
an oracle target phrase which is selected from a k-best list of
candidate target phrase translations. Reference target phrases
cannot always be reached by the phrase extraction system.
This is due to the fact that we try to find translation can-
didates for phrases extracted from hand-aligned data using
training data, which is different from the hand-aligned data.
Hence, there is no guarantee that the system would always
find reference target phrases in the training data. Thus, we
need to select an m-best list of target phrase translations clos-
est to one or multiple references from a larger k-best list of
candidate phrases. In our experiments we set m=1 i.e., con-
sider only the first-best oracle phrase.

We consider two different metrics, WER and modified
BLEU, in our loss function as stated above. BLEU scor-
ing metric was defined on the document level which con-
siders higher order n-gram (typically 4) precision scores for
the whole document. Hence, to compute BLEU-like scores
at the phrase level we need to do some modifications. We
smoothed the original BLEU metric and considered only un-
igram matches in its computation. Our smoothing technique
is defined in a manner similar to that of NIST BLEU evalu-
ation script3. The smoothed version of BLEU is computed
by adding a partial count of

(
1/2k

)
, for each precision score

whose matching n-gram count is zero, where k=1 for the first
‘n’ value for which the n-gram match count is zero.

The two different loss functions are given by:

L(yt, y
′) =WER(yt, y

′)

3ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v13.pl

for optimization using WER and,

L(yt, y
′) = 1−mBLEU(yt, y

′)

for optimization using modified smoothed-BLEU.
We evaluate the error rates in training and testing for

MIRA in terms of normalized Levenshtein distance i.e.,
WER. This metric of evaluation seems more reasonable than
a precision/recall type metric since it is desirable to award
partial “credit” for candidate target phrases as the reference
is not always reachable in our case.

7. Experiments and results
We conducted experiments to test the effectiveness of our ap-
proach on both phrase alignment and translation quality for
Arabic-English. We present some results from the experi-
ments conducted in this section on a moderate size parallel
corpus.

7.1. Data and experimental setup

Our data consisted of 641,414 Arabic-English parallel sen-
tences (18.5+19.1 million words) from the news domain ob-
tained from LDC. We trained IBM4 model with MGIZA [19]
on the dataset in both directions. Alignment points were re-
fined by using the grow-diag-final heuristic as proposed by
[3]. We also ran AMIRA toolkit [17] with ATB segmenta-
tion on the Arabic side of the parallel corpus and TreeTagger
on English side of the parallel corpus for POS-tagging and
chunking. MGIZA was again used to train IBM4 alignment
model for the chunked corpus consisting only of chunk la-
bels on both sides. We trained a 5-gram language model on
the English Gigaword corpus. We used the Moses toolkit 4

for SMT for decoding.
We also experimented with a 21107-sentence parallel

hand-aligned corpus for evaluating phrase alignment qual-
ity using MIRA algorithm. We extracted reference target
phrases for a given set of source phrases as train/test set from
this corpus.

7.2. Phrase alignment experiments

We evaluated the efficiency of our extended translation
model for phrase alignment using MIRA algorithm for train-
ing. We experimented with two metrics (cf. section 5.2) for
optimization. We extracted a total of 3645 unique source
phrases from the hand-aligned corpus and did a 75-25% split
for training/testing (2734/911 phrase pairs). Each source
phrase had multiple number of reference translations in our
setup. We generate a 10-best target phrase candidate list for
each source phrase and evaluate the error against the first
best candidate. We ran MIRA for 20 iterations per sys-
tem. The final averaged weight vector obtained is used to
extract phrase tables during the decoding step. Training er-
ror rates (in WER) for optimization with MIRA using WER
and mBLEU as loss functions on the baseline and extended

4http://statmt.org/moses/
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Table 1: Test results for phrase alignment quality using MIRA

System Loss Error Rate (WER) Loss Error Rate (WER)
Lexical (Baseline) WER 31.40% mBLEU 22.41%

Baseline+Alignment WER 30.26% mBLEU 22.23%
Baseline+Alignment+Chunks WER 29.43% mBLEU 21.30%

Figure 3: Training error curves for different models, op-
timized with two different loss functions. Legend: B-
WER (baseline, loss=WER), BA (baseline+alignment fea-
tures, loss=WER), BAC-WER(baseline+alignment+chunk
features, loss=WER). Similarly, for loss=mBLEU. Number
of iterations is along x-axis and WER along y-axis.

models are shown in figure 3. Test results are shown in table
1. Error rates are measured in WER. We found the value of
C=0.001 to be optimal in our experiments.

We can see from figure 3 that, MIRA performed much
better with mBLEU as the loss function as opposed to WER.
We hypothesize the reason for this could be that WER tends
to prefer shorter translation candidates, while mBLEU im-
poses a length penalty that penalizes shorter translations. An
analysis on the training set reveals that the average length
of the first-best translation candidate for mBLEU is greater
than that of WER. There are small but consistent improve-
ments in phrase alignment quality by adding alignment and
chunk features to the baseline model. Although, improve-
ment using alignment features only is not significant. There
is an improvement of 5% relative to the baseline for opti-
mization with mBLEU and 6% relative for optimization with
WER using the full extended model.

7.3. Translation experiments

We present initial results for translation experiments on stan-
dard NIST MT testsets. We extracted phrase pairs into a
phrase table using PESA along with the trained weights. This
phrase table was fed in to the Moses decoding pipeline. We
did not use the same weights obtained from phrase extrac-
tion step in the decoder. This is due to the fact that we have

additional features such as language and reordering model
scores in the decoder, which requires training to be done
afresh when combined with scores from the phrase table. Re-
sults shown below are using Moses decoder with a simple
distance-based reordering model. We used minimum error
rate training [20] to tune weights on MT03 dev set consisting
of 663 sentences and evaluated on four NIST eval MT test
sets. We report translation results using BLEU and TERp
evaluation metrics as shown in table 2. It can be observed
that using chunk features and alignment features in differ-
ent systems, results in initial improvements in both BLEU
and TERp scores. There is, on average, an improvement of
+1.93 BLEU points on all test sets using chunk features and
+1.63 while using alignment features. TERp scores are also
lowered for the two systems by -1.14 and -1.01 TERp points
on average, respectively. Adding syntax based linguistic in-
formation into the system gives better results. Additional
improvement is also achieved by adding simplistic features
based on Viterbi alignments.

Table 2: Test results for translation experiments using four
standard NIST testsets for Arabic-English. Abbreviations for
the systems are as follows: BL: Baseline system using only
lexical scores. B+C: System using baseline and chunk fea-
tures. B+A: System using baseline and alignment features.

BLEU Scores
System MT03 dev MT04 MT05 MT06 MT08 Avg

BL 32.37 25.13 30.47 23.01 22.60 na
B+C 33.97 27.05 33.01 24.92 23.96 +1.93
B+A 34.59 25.32 33.65 24.49 24.29 +1.63

TERp Scores
System MT03 dev MT04 MT05 MT06 MT08 Avg

BL 60.58 66.69 61.01 69.32 71.73 na
B+C 60.24 64.45 59.70 69.43 70.60 -1.14
B+A 58.81 64.72 58.77 69.51 71.71 -1.01

The results reported in this paper are based on one par-
ticular set of features in addition to the baseline per system.
Hence, we intend to incorporate all sets of features into a sin-
gle translation model and optimize system performance. This
approach of integration of all sources of information in the
model requires online discriminative training methods since
minimum error rate training algorithm [20] has been shown
to be unreliable for a larger number of features. Hence, we
would like to integrate the MIRA algorithm into a decoder
[21] with which results were first reported for the baseline
PESA method in [1]. We also intend to integrate the extended
model with an online phrase alignment step ([1]) which elim-
inates the need for generating large phrase tables offline.
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8. Conclusion and future work
We presented an approach that can be incorporated success-
fully into a probabilistic phrase alignment and scoring sys-
tem. This system treats phrase pair extraction as a sentence
splitting problem (PESA) which did not rely on a heuristic-
based mechanism to extract and score phrase pairs. The
extended model includes syntactic information in the form
of chunk-based features. It also includes features based on
Viterbi word alignments. The combination of these fea-
tures is optimized using online margin-based discriminative
training methods like MIRA, at the time of phrase extrac-
tion which is also an additional contribution to the original
approach. The overall approach yielded improvements in
phrase alignment and translation quality on Arabic-English
translation task.

We intend to integrate MIRA algorithm at decoding time
as well to incorporate larger sets of features during decod-
ing and extend it to an online phrase extraction mechanism.
We also intend to extend this approach on a full-scale MT
system.
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