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Abstract

For current statistical machine translation system, reorder-

ing is still a major problem for language pairs like Chinese-

English, where the source and target language have signif-

icant word order differences. In this paper, we propose a

novel reordering model based on sequence labeling tech-

niques. Our model converts the reordering problem into a

sequence labeling problem, i.e. a tagging task. For the given

source sentence, we assign each source token a label which

contains the reordering information for that token. We also

design an unaligned word tag so that the unaligned word phe-

nomenon is automatically implanted in the proposed model.

Our reordering model is conditioned on the whole source

sentence. Hence it is able to catch the long dependency in

the source sentence. Although the learning on large scale

task requests notably amounts of computational resources,

the decoder makes use of the tagging information as soft

constraints. Therefore, the training procedure of our model

is computationally expensive for large task while in the test

phase (during translation) our model is very efficient. We

carried out experiments on five Chinese-English NIST tasks

trained with BOLT data. Results show that our model im-

proves the baseline system by 1.32 BLEU 1.53 TER on aver-

age.

1. Introduction
The systematic word order difference between two lan-

guages, pose a challenge for current statistical machine trans-

lation (SMT) systems. The system has to decide in which

order to translate the given source words. This problem is

known as the reordering problem. As shown in [1], if arbi-

trary reordering is allowed, the search problem is NP-hard.

In this paper, we propose a novel tagging style reorder-

ing model. Our model converts the reordering problem into a

sequence labeling problem, i.e. a tagging task. For the given

source sentence, we assign each source token a label which

contains the reordering information for that token. We also

design an unaligned word tag so that the unaligned word phe-

nomenon is automatically implanted in the proposed model.

Our model is conditioned on the whole source sentence.

Hence it is able to capture the long dependency in the source

sentence. We compare two training methods: conditional

random fields (CRFs) and recurrent neural network (RNN).

Although the learning on large scale task requests notably

amounts of computational resources, the decoder makes use

of the tagging information as soft constraints. Therefore, the

training procedure of our model is computationally expen-

sive while in the test phase (during translation) our model is

very efficient.

The remainder of this paper is organized as follows: Sec-

tion 2 reviews the related work for solving the reordering

problem. Section 3 introduces the basement of this research:

the principle of statistical machine translation. Section 4 de-

scribes the proposed model. Section 5 provides the experi-

mental configuration and results. Conclusion will be given in

Section 6.

2. Related Work
Many ideas have been proposed to address the reordering

problem. Early work focuses on reordering constraints, e.g.

using ITG constraints [2] and IBM constraints [3] to model

the sequence permutation. Within the phrase-based SMT

framework there are mainly three stages where improved re-

ordering could be integrated:

1. Reorder the source sentence. So that the word order

of source and target sentences is similar. Usually it is

done as the preprocessing step for both training data

and test data.

2. In the decoder, add models in the log-linear framework

or constraints in the decoder to reward good reordering

options or penalize bad ones.

3. In the reranking framework.

For the first point, [4] used manually designed rules to re-

order parse trees of the source sentences as a preprocessing

step. Based on shallow syntax, [5] used rules to reorder the

source sentences on the chunk level and provide a source-

reordering lattice instead of a single reordered source sen-

tence as input to the SMT system. Designing rules to reorder
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the source sentence is conceptually clear and usually easy to

implement. In this way, syntax information can be incorpo-

rated into phrase-based SMT systems. However, one disad-

vantage is that the reliability of the rules is often language

pair dependent.

In the second category, researchers try to inform the de-

coder on what a good reordering is or what a suitable decod-

ing sequence is. [6] used a discriminative reordering model

to predict the orientation of the next phrase given the previ-

ous phrase. [7] presents a translation model that constitutes

a language model of a sort of bilanguage composed of bilin-

gual units. From the reordering point of view, the idea is that

the correct reordering is to find the suitable order of trans-

lation units. [8] puts the syntactic cohesion as a soft con-

straint in the decoder to guide the decoding process to choose

those translations that do not violate the syntactic structure

of the source sentence. Adding new features in the log-linear

framework has the advantage that the new feature has access

to the whole search space. Another advantage of methods in

this category is that we let the decoder decide the weights of

features, so that even if one model gives wrong estimation

sometimes, it can still be corrected by other models. Our

work in this paper belongs to this category.

In the reranking step, the system has the last opportunity

to choose a good translation. [9] describe the use of syntac-

tic features in the rescoring step. They report the most useful

feature is IBM Model 1 score. The syntactic features con-

tribute very small gains. Another disadvantage of carrying

out reordering in reranking is the representativeness of the

N-best list is often a question mark.

3. Translation System Overview
In this section, we are going to describe the phrase-based

SMT system we used for the experiments.

In statistical machine translation, we are given a source

language sentence fJ
1 = f1 . . . fj . . . fJ . The objective

is to translate the source into a target language sentence

eI1 = e1 . . . ei . . . eI . The strategy is among all possible

target language sentences, we will choose the one with the

highest probability:

êÎi = argmax
I,eI1

{Pr(eI1|fJ
1 )} (1)

We model Pr(eI1|fJ
1 ) directly using a log-linear combination

of several models [10]:

Pr(eI1|fJ
1 ) =

exp
( M∑

m=1
λmhm(eI1, f

J
1 )

)
∑

I′ ,e′ I
′

1

exp
( M∑

m=1
λmhm(e′I′

1 , fJ
1 )

) (2)

The denominator is to make the Pr(eI1|fJ
1 ) to be a probabil-

ity distribution and it depends only on the source sentence

fJ
1 . For search, the decision rule is simply:

êÎi = argmax
I,eI1

{ M∑
m=1

λmhm(eI1, f
J
1 )

}
(3)

The model scaling factors λM
1 are trained with Minimum Er-

ror Rate Training (MERT).

In this paper, the phrase-based machine translation sys-

tem is utilized [11, 12, 13]. The translation process consists

in segmenting the source sentence according to the phrase ta-

ble which is built from the word alignment. The translation

of each of these segments consists in just extracting the tar-

get side from the phrase pair. With the corresponding target

side, the final translation is the composition of these trans-

lated segments. In this last step, reordering is allowed.

4. Tagging-style Reordering Model
In this section, we describe the proposed model. First we

will describe the training process. Then we explain how to

use the model in the decoder.

4.1. Modeling

Figure 1 shows the modeling steps. The first step is word

alignment training. Figure 1(a) is an example after GIZA++
training. If we regard this alignment as a translation re-

sult, i.e. given the source sentence f7
1 , the system trans-

lates it into the target sentence e71. The alignment link set

{a1 = 3, a3 = 2, a4 = 4, a4 = 5, a5 = 7, a6 = 6, a7 = 6}
reveals the decoding process, i.e. the alignment implies the

order in which the source words should be translated, e.g.

the first generated target word e1 has no alignment, we can

regard it as a translation from a NULL source word; then the

second generated target word e2 is translated from f3. We

reorder the source side of the alignment to get Figure 1(b).

Figure 1(b) implies the source sentence decoding sequence

information, which is depicted in Figure 1(c). Using this ex-

ample we describe the strategies we used for special cases in

the transformation from Figure 1(b) to Figure 1(c):

• ignore the unaligned target word, e.g. e1

• the unaligned source word should follow its preceding

word, the unaligned feature is kept with a ∗ symbol,

e.g. f∗
2 is after f1

• when one source word is aligned to multiple target

words, only keep the alignment that links the source

word to the first target word, e.g. f4 is linked to e5 and

e6, only f4 − e5 is kept. In other words, we use this

strategy to guarantee that every source word appears

only once in the source decoding sequence.

• when multiple source words aligned to one target

word, put together the source words according to their

original relative positions, e.g. e6 is linked to f6 and

f7. So in the decoding sequence, f6 is before f7.
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f1 f2 f3 f4 f5 f6 f7

e1 e2 e3 e4 e5 e6 e7

(a)

f3 f1 f2 f4 f6 f7 f5

e1 e2 e3 e4 e5 e6 e7

(b)

f1 f∗
2 f3 f4 f5 f6 f7

f3 f1 f2 f4 f6 f7 f5

(c)

f1 f∗
2 f3 f4 f5 f6 f7

+1 +1 −2 0 +2 −1 −1

(d)

BEGIN-Rmono Unalign Lreorder-Rmono Lmono-Rmono Lmono-Rreorder Lreorder-Rmono END-Lmono

f1 f∗
2 f3 f4 f5 f6 f7

(e)

Figure 1: Modeling process illustration.

Now Figure 1(c) shows the original source sentence and

its decoding sequence. By using the strategies above, it

is guaranteed that the source sentence and its decoding se-

quence has the exactly same length. Hence the relation can

be modeled by a function F (f) which assigns a value for

each of the source word f . Figure 1(d) manifests this func-

tion. The positive function values mean that compared to the

original position in the source sentence, its position in the

decoding sequence should move right. If the function value

is 0, the word’s position in original source sentence and its

decoding sequence is same. For example, f1 is the first word

in the source sentence but it is the second word in the decod-

ing sequence. So its function value is +1 (move right one

position).

Now Figure 1(d) converts the reordering problem into a

sequence labeling or tagging problem. To make the compu-

tational cost to a reasonable level, we do a final step simplifi-

cation in Figure 1(e). Suppose the longest sentence length is

100, then according to Figure 1(d), there are 200 tags (from

-99 to +99 plus the unalign tag). As we will see later, this

number is too large for our task. We instead design nine tags.

For a source word fj in one source sentence fJ
1 , the tag of fj

will be one of the following:

Unalign fj is an unaligned source word

BEGIN-Rmono j = 1 and fj+1 is translated after fj
(Rmono for right monotonic)

BEGIN-Rreorder j = 1 and fj+1 is translated before fj
(Rreorder for right reordered)

END-Lmono j = J and fj−1 translated before fj (Lmono

for left monotonic)

END-Lreorder j = J and fj−1 translated after fj (Lre-

order for left reordered)

Lmono-Rmono 1 < j < J and fj−1 translated before fj
and fj translated before fj+1

Lreorder-Rmono 1 < j < J and fj−1 translated after fj
and fj translated before fj+1

Lmono-Rreorder 1 < j < J and fj−1 translated before fj
and fj translated after fj+1

Lreorder-Rreorder 1 < j < J and fj−1 translated after fj
and fj translated after fj+1

Up to this point, we have converted the reordering prob-

lem into a tagging problem with nine tags. The transforma-

tion in Figure 1 is conducted for all the sentence pairs in the

bilingual training corpus. After that, we have built an “an-

notated” corpus for the training. For this supervised learn-

ing task, we choose the approach conditional random fields

(CRFs) [14, 15, 16] and recurrent neural network (RNN)

[17, 18, 19].

For the first method, we adopt the linear-chain CRFs.

However, even for the simple linear-chain CRFs, the com-

plexity of learning and inference grows quadratically with

respect to the number of output labels and the amount of

structural features which are with regard to adjacent pairs

of labels. Hence, to make the computational cost as low

as possible, two measures have been taken. Firstly, as de-

scribed above we reduce the number of tags to nine. Sec-

ondly, we add source sentence part-of-speech (POS) tags to

the input. For features with window size one to three, both

source words and its POS tags are used. For features with

window size four and five, only POS tags are used.
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As the second method, we use recurrent neural network

(RNN). RNN is closely related with Multilayer Perceptrons

(MLP) [20, 21], but the output of one ore more hidden lay-

ers is reused as additional inputs for the network in the next

time step. This structure allows the RNN to learn whole se-

quences without restricting itself to a fixed input window. A

plain RNN has only access to the previous events in the input

sequence. Hence we adopt the bidirectional RNN (BRNN)

[22] which reads the input sequence from both directions

before making the prediction. The long short-term memory

(LSTM) [23] is applied to counter the effects that long dis-

tance dependencies are hard to learn with gradient descent.

This is often referred to as vanishing gradient problem [24].

4.2. Decoding

Once the model training is finished, we make inference on

develop and test corpora. After that we get the labels of

the source sentences that need to be translated. In the de-

coder, we add a new model which checks the labeling con-

sistency when scoring an extended state. During the search,

a sentence pair (fJ
1 , e

I
1) will be formally splitted into a seg-

mentation SK
1 which consists of K phrase pairs. Each

sk = (ik; bk, jk) is a triple consisting of the last position

ik of the kth target phrase ẽk. The start and end position of

the kth source phrase f̃k are bk and jk. Suppose the search

state is now extended with a new phrase pair (f̃k, ẽk):

f̃k := fbk . . . fjk (4)

ẽk := eik−1+1 . . . eik (5)

We have access to the old coverage vector, from which we

know if the new phrase’s left neighboring source word fbk−1

and right neighboring source word fjk+1 have been trans-

lated. We also have the word alignment within the new

phrase pair, which is stored during the phrase extraction pro-

cess. Based on the old coverage vector and alignment, we

can repeat the transformation in Figure 1 to calculate the la-

bels for the new phrase. The added model will then check the

consistence between the calculated labels and the labels pre-

dicted by the reordering model. The number of source words

that have inconsistent labels is the penalty and is then added

into the log-linear framework as a new feature.

5. Experiments
In this section, we describe the baseline setup, the CRFs

training results, the RNN training results and translation ex-

perimental results.

5.1. Experimental Setup

Our baseline is a phrase-based decoder, which includes the

following models: an n-gram target-side language model

(LM), a phrase translation model and a word-based lexicon

model. The latter two models are used for both directions:

p(f |e) and p(e|f). Additionally we use phrase count fea-

tures, word and phrase penalty. The reordering model for

the baseline system is the distance-based jump model which

uses linear distance. This model does not have hard limit.

We list the important information regarding the experimental

setup below. All those conditions have been kept same in this

work.

• lowercased training data (Table 1) from the BOLT task

alignment trained with GIZA++

• tuning corpus: NIST06

test corpora: NIST02 03 04 05 and 08

• 5-gram LM (1 694 412 027 running words) trained

by SRILM toolkit [25] with modified Kneser-Ney

smoothing

training data: target side of bilingual data.

• BLEU [26] and TER [27] reported

all scores calculated in lowercase way.

• Wapiti toolkit [16] used for CRFs; RNN is built by the

RNNLIB [28] toolkit.

Chinese English
Sentences 5 384 856
Running Words 115 172 748 129 820 318
Vocabulary 1 125 437 739 251

Table 1: training data statistics

Table 1 contains the data statistics used for translation

model and LM. For the reordering model, we take two fur-

ther filtering steps. Firstly, we delete the sentence pairs if the

source sentence length is one. When the source sentence has

only one word, the translation will be always monotonic and

the reordering model does not need to learn this. Secondly,

we delete the sentence pairs if the source sentence contains

more than three contiguous unaligned words. When this hap-

pens, the sentence pair is usually low quality hence not suit-

able for learning. The main purpose of the two filtering steps

is to further lay down the computational burden. The label

distribution is depicted in Figure 2. From the figure we can

see that most words are monotonic. We then divide the cor-

pus to three parts: train, validation and test. The source side

data statistics for the reordering model training is given in

Table 2 (target side has only nine labels).

train validation test
Sentences 2 973 519 400 000 400 000
Running Words 62 263 295 8 370 361 8 382 086
Vocabulary 454 951 149686 150 007

Table 2: reordering model training data statistics
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5.2. CRFs Training Results

The toolkit Wapiti [16] is used in this paper. We choose the

classical optimization algorithm limited memory BFGS (L-

BFGS) [29]. For regularization, Wapiti uses both the �1 and

�2 penalty terms, yielding the elastic-net penalty of the form

ρ1· ‖ θ ‖1 +
ρ2
2
· ‖ θ ‖22 (6)

In this work, we use as many features as possible because �1

penalty ρ1 ‖ θ ‖1 is able to yield sparse parameter vectors,

i.e. using a �1 penalty term implicitly performs the feature se-

lection. The computational costs are given here: on a cluster

with two AMD Opteron(tm) Processor 6176 (total 24 cores),

the training time is about 16 hours, peak memory is around

120G. Several experiments have been done to find the suit-

able hyperparameter ρ1 and ρ2, we choose the model with

lowest error rate on validation corpus for translation exper-

iments. The error rate of the chosen model on test corpus

(the test corpus in Table 2) is 25.75% for token error rate

and 69.39% for sequence error rate. The feature template we

set initially will generate 722 999 637 features. After training

36 902 363 features are kept.

5.3. RNN Training Results

We also applied RNN to the task as an alternative approach to

CRFs. The here used RNN implementation is RNNLIB [28]

which has support for long short term memory (LSTM) [30].

We used a one of k encoding for the input word and also for

the labels. After testing several configurations over the val-

idation corpus we used a network with LSTM 200 nodes in

the hidden layer. The RNN has a token error rate of 27.31%
and a sentence error rate of 77.00% over the test corpus in

Table 2. The RNN is trained on a similar computer as above.

RNNLIB utilizes only one thread. The training time is about

three and a half days and peak memory consumption is 1G .

5.4. Comparison of CRFs and RNN errors

From machine learning point of view, CRFs performs bet-

ter than RNN (token error rate 25.75% vs 27.31%). Both

error rate values are much higher than what we usually see

in part-of-speech tagging task. The main reason is that the

“annotated” corpus is converted from word alignment which

contains lots of error. However, as we will show later, the

model trained with both CRFs and RNN help to improve the

translation quality.

Table 3 and Table 4 demonstrate the confusion matrix of

the CRFs and RNN errors over the test corpus. The rows rep-

resent the correct tag that the classifier should have predicted

and the columns are the actually predicted tags. E.g. the nun-

ber 687724 in first row and first column of Table 3 tells that

there are 687724 correctly labeled Unalign tags. The num-

ber 15084 in first row and second column of Table 3 repre-

sents that there are 15084 Unalign tags labeled incorrectly

to Begin-Rmono. Therefore, numbers on the diagonal from

the upper left to the lower right corner represent the amount

of correctly classified tags and all other numbers show the

amount of false labels. The many zeros show that both clas-

sifier rarely make mistake for the label “BEGIN-∗” which

only occur at the beginning of a sentence. The same is true

for the “END-∗” labels.

5.5. Translation Results

Results are summarized in Table 6. Automatic measure

BLEU and TER scores are provided. Also we report signif-

icance testing results on both BLEU and TER. We perform

bootstrap resampling with bounds estimation as described in

[31]. We use the 95% confidence threshold (denoted by ‡ in

the table) to draw significance conclusions. Besides the five

test corpora, we add a column avg. to show the average im-

provements. We also add a column Index for score reference

convenience.

From Table 6 we see that our proposed reordering model

using CRFs improves the baseline by 0.98 BLEU and 1.21
TER on average, while the proposed reordering model us-

ing RNN improves the baseline by 1.32 BLEU and 1.53 TER

on average. For the CRFs-based model, the largest BLEU

improvement 1.15 is from NIST05 and the largest TER im-

provement 1.57 is from NIST03. The improvements are even

larger with the tags created by the RNN with a BLEU im-

provement of 1.70 and a TER improvement 1.98 for NIST02.

For line 3 and 6, all the scores are better than their corre-

sponding baseline values with more than 95% confidence.

For line 2 and 5, three out of the five scores are better than

their corresponding baseline values with more than 95% con-

fidence. The results show that our proposed idea improves

the baseline system and RNN trained model performs better

than CRFs trained model, in terms of both automatic measure

and significance test.

To investigate why RNN has lower performance for the

tagging task but achieves better BLEU, we build a 5-gram

LM on the source side of the training corpus in Table 2. Per-

plexity values are provided in Table 5. We see clearly that the

perplexity of the test corpus for reordering model comparison

is much lower than those NIST corpora for translation exper-

iments. In other words, there exists mismatch of the data for

reordering model training and actual MT data. This could

explain why CRFs is superior to RNN for labeling problem

while RNN is better for MT tasks.

Running Words OOV Perplexity
Test in Table 2 8 382 086 0 6.665
NIST02 22 749 391 234.494
NIST03 24 180 518 346.242
NIST04 49 612 700 223.492
NIST05 29 966 511 342.925
NIST08 32 502 998 473.975

Table 5: Perplexity
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·107

BEGIN-Rmono

BEGIN-Rreorder

END-Lmono

END-Lreorder

Lmono-Rmono

Lmono-Rreorder

Lreorder-Rmono

Lreorder-Rreorder

UNALIGN

Amount of Tags

Figure 2: Tags distribution illustration.

����������Reference
Prediction Unalign BEGIN-Rm BEGIN-Rr END-Lm END-Lr Lm-Rm Lr-Rm Lm-Rr Lr-Rr

Unalign 687724 15084 850 7347 716 493984 107364 43457 9194
BEGIN-Rmono 3537 338315 6209 0 0 0 0 0 0
BEGIN-Rreorder 419 12557 17054 0 0 0 0 0 0
END-Lmono 1799 0 0 365635 3196 0 0 0 0
END-Lreorder 510 0 0 5239 7913 0 0 0 0
Lmomo-Rmono 188627 0 0 0 0 4032738 176682 150952 13114
Lreorder-Rmono 88177 0 0 0 0 369232 433027 27162 15275
Lmomo-Rreorder 32342 0 0 0 0 268570 24558 296033 10645
Lreorder-Rreorder 9865 0 0 0 0 34746 20382 16514 45342

Recall 50.36% 97.20% 56.79% 98.65% 57.92% 88.40% 46.42% 46.83% 35.74%
Precision 67.89% 92.45% 70.73% 96.67% 66.92% 77.56% 56.83% 55.42% 48.46%

Table 3: CRF Confusion Matrix. Abbreviations: Lmono(Lm) Lreorder(Lr) Rmono(Rm) Rreorder(Rr)

����������Reference
Prediction Unalign BEGIN-Rm BEGIN-Rr END-Lm END-Lr Lm-Rm Lr-Rm Lm-Rr Lr-Rr

Unalign 589100 17299 901 7870 1000 639555 82413 24277 3305
BEGIN-Rmono 1978 339686 6397 0 0 0 0 0 0
BEGIN-Rreorder 186 13812 16032 0 0 0 0 0 0
END-Lmono 2258 0 0 364121 4251 0 0 0 0
END-Lreorde 699 0 0 4693 8269 1 0 0 0
Lmomo-Rmono 142777 1 0 0 0 4232113 105266 78692 3264
Lreorder-Rmono 96278 0 1 0 0 491989 323272 14635 6698
Lmomo-Rreorder 31118 0 0 0 0 380483 18144 198068 4335
Lreorder-Rreorder 12366 0 1 0 0 50121 25196 17008 22157

Recall 43.13% 97.59% 53.39% 98.24% 60.53% 92.77% 34.65% 31.33% 17.47%
Precision 67.19% 91.61% 68.71% 96.66% 61.16% 73.04% 58.32% 59.54% 55.73%

Table 4: RNN Confusion Matrix. Abbreviations: Lmono(Lm) Lreorder(Lr) Rmono(Rm) Rreorder(Rr)

6. Conclusion

In this paper, a novel tagging style reordering model has been

proposed. By our modeling method, the reordering prob-

lem is converted into a sequence labeling problem so that

the whole source sentence is taken into consideration for re-

ordering decision. By adding an unaligned word tag, the un-

aligned word phenomenon is automatically implanted in the

proposed model. Although the training phase of our model

needs large computational costs, its usage for decoding is

quite simple. In practice, we do not experience decoding

memory increase nor speed slow down.

We choose CRFs and RNN to accomplish the sequence

labeling task. The CRFs learning task takes huge amount of

features and significant computational costs. Both �1 and �2

penalty are used in regularization. Hence the feature selec-

tion is automatically conducted. For test corpus, the token er-

ror rate is 25.75% and the sequence error rate is 69.39%. For
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Systems NIST02 NIST03 NIST04 NIST05 NIST08 avg. Index

BLEU scores
baseline 33.60 34.29 35.73 32.15 26.34 - 1

baseline+CRFs 34.53 35.19 36.56‡ 33.30‡ 27.41‡ 0.98 2

baseline+RNN 35.30‡ 35.34‡ 37.03‡ 33.80‡ 27.23‡ 1.32 3

TER scores
baseline 61.36 60.48 59.12 60.94 65.17 - 4

baseline+CRFs 60.14‡ 58.91‡ 57.91‡ 59.77‡ 64.30‡ 1.21 5

baseline+RNN 59.38‡ 58.87‡ 57.60‡ 59.56‡ 63.99‡ 1.53 6

Table 6: Experimental results. ‡ means the value is better than its corresponding baseline with more than 95% confidence.

RNN training, we adopt the bidirectional RNN with LSTM.

For test corpus, the token error rate is 27.31% and the se-

quence error rate is 77.00%.

We utilize our model as soft constraints in the decoder.

Experimental results show that our model is stable and im-

proves the baseline system by 0.98 BLEU and 1.21 TER

(trained by CRFs) and 1.32 BLEU and 1.53 TER (trained by

RNN). Most of the scores are better than their corresponding

baseline values with more than 95% confidence.

The two main contributions are: propose the tagging-

style reordering model and prove its ability to improve the

translation quality; compare two sequence labeling tech-

niques CRFs and RNN. To our best knowledge, this is the

first experimental comparison of the CRFs and RNN.
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