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Abstract

We participated in the OLYMPICS task in IWSLT 2012 and

submitted two formal runs using a forest-to-string translation

system. Our primary run achieved better translation quality

than our contrastive run, but worse than a phrase-based and

a hierarchical system using Moses.

1. Introduction
Syntax-based SMT approaches incorporate tree structures

of sentences to the translation rules in the source language

[10, 14, 23, 22], the target language [1, 7, 12, 18, 26], or

both [2, 3, 28]. Due to the structural constraint, the trans-

ducer grammar extracted from parallel corpora tends to be

quite large and flat. Hence, the extracted grammar consists

of translation rules that appear few times, and it is difficult to

apply most translation rules in the decoding stage.

For generalization of transducer grammar, binarization

methods of a phrase structure grammar have been suggested

[1, 12, 20, 26]. Binarization is a process that transforms an

n-ary grammar into a binary grammar. During the transfor-

mation, a binarization method introduces the virtual nodes

which is not included in the original tree. The virtual nodes

in a binarized phrase structure grammar are annotated us-

ing the phrasal categories in the original tree. Unfortunately,

these approaches are available only for string-to-tree mod-

els, because we are not aware of the correct binarization of

the source tree at the decoding stage. To take the advantage

of binarization in tree-to-string models, a binarized forest of

phrase structure trees has been proposed [25]. Since the num-

ber of all possible binarized trees are exponentially many, the

author encode the binarized trees in a packed forest, which

was originally proposed to encode the multiple parse trees

[14].

In contrast to previous studies, we propose to use a novel

binarized forest of dependency trees for syntax-based SMT.

A dependency tree represents the grammatical relations be-

tween words as shown in Figure 1. Dependency grammar

has that holds the best phrasal cohesion across the languages

[6]. We utilize dependency labels for the annotation of the

virtual nodes in a binarized dependency tree. To the best of

our knowledge, this is the first attempt to binarize the depen-

Figure 1: An example dependency tree with dependency la-

bels

dency grammar.

2. Binarized Dependency Forest
Forest-to-string translation approaches construct a packed

forest for a source sentence, and find the mapping be-

tween the source forest and the target sentence. A packed

forest is a compact representation of exponentially many

trees. Most studies focused on the forest of multiple parse

trees in order to reduce the side effect of the parsing error

[13, 14, 15, 19, 27, 28]. On the other hand, Zhang et. al.

[25] attempted to binarize the best phrase structure tree. A

binarization method comprises the conversion of the possi-

bly non-binary tree into a binarized tree. The authors sug-

gested a binarized forest, which is a packed forest that com-

pactly encodes multiple binarized trees. It improves general-

ization by breaking downs the rules into the smallest possible

parts. Thus, a binarized forest that the authors suggested cov-

ers non-constituent phrases by introducing a virtual node, for

example, “beavers build” or “dams with” in Figure 1.

In this paper, we propose a binarized forest analogous to

but two differences. First, we binarize the best dependency
tree instead of the best phrase structure tree. Because depen-

dency grammar does not have non-terminal symbols, it is not

trivial to construct a binarized forest from a dependency tree.

Second, we annotate the virtual nodes using the dependency

labels instead of the phrase categories.

2.1. Construction of binarized dependency forest

We utilize the concept of the well-formed dependency pro-

posed by Shen et. al. [18]. A well-formed dependency refers

to either a connected sub-graph in a dependency tree (treelet)

or a floating dependency, i.e., a sequence of treelets that have

a common head word. For example, “beavers build” is a

treelet and “dams with” is a floating dependency.
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Since the number of all possible binarized trees are ex-

ponentially many, we encode a binarized forest F in a chart

analogous to Zhange et. al. [25]. Let π be the best depen-

dency tree of a source sentence from w1 to wn. π consists

of a set of information for each word wj , i.e. the head word

HEAD(wj) and the dependency label LABEL(wj). For

each word wj , we initialize the chart with a binary node v.

For each span sbegin:end that ranges from wbegin+1 to wend,

we check whether the span consists of a well-formed depen-

dency. For each pair of sub-spans sbegin:mid and smid:end,

which are rooted at vl and vr respectively, we add an incom-

ing binary edge e if:

• Sibling (SBL): vl and vr consist of a floating depen-

dency, or

• Left dominates right (LDR): vl has no right child

RIGHT (vl) and vl dominates vr, or

• Right dominates left (RDL): vr has no left child

LEFT (vr) and vr dominates vl.

Note that the root node of the SBL case is a virtual node,

and we extend the incoming binary edge of v for LDR and

RDL cases by attaching vr and vl, respectively. For example,

{dobj, prep}2:4 is the root node for the SBL case where vl is

“dams” and vr is “with”, and build0:4 is the root node for the

LDR case where vl is build0:2 and vr is {dobj, prep}2:4.

Algorithm 1 shows the pseudo code, and Figure 2 shows

a part of the binarized forest for the example dependency tree

in Figure 1. Although the worst time complexity of the con-

struction is O(n3), the running time is negligible when we

extract translation rules and decode the source sentence in

practice (less than 1 ms). Because we restrict the combina-

tion, a binary node has a constant number of incoming binary

edges. Thus, the space complexity is O(n2).

2.2. Augmentation of phrasal node

We also augment phrasal nodes for word sequences, i.e.

phrases in PBSMT. A phrasal node p is a virtual node cor-

responding to a span sbegin:end, yet it does not consist of a

well-formed dependency. Hence, augmenting phrasal nodes

in F leads to including all word sequences covered in PB-

SMT. Because phrases capture more specific translation pat-

terns, which are not linguistically justified, we expect that the

coverage of the translation rules will increase as we augment

phrasal nodes.

We augment phrasal nodes into the chart that we built for

the binarized forest. For each span sbegin:end, we introduce a

phrasal node if the chart cell is not defined, i.e. the span does

not consist of well-formed dependency. We restrict the max-

imum length of a span covered by a phrasal node to L. For

each pair of sub-spans sbegin:mid and smid:end, where they

are rooted at vl and vr respectively we add an incoming bi-

nary edge e if any of v, vl, or vr is a phrasal node. Algorithm

2 shows the pseudo code.

Algorithm 1: Construct Binarized Dependency Forest

1 function Construct(π)
input : A dependency tree π for the sentence

w1 . . . wJ

output: A binarized forest F stored in chart
2 for col = 1 . . . J do
3 create a binary node v for wcol

4 chart[1, col] ← v

5 end
6 for row = 2 . . . J do
7 for col = row . . . J do
8 if a span scol−row:col consists of a

well-formed dependency then
9 create a binary node v

10 for i = 1 . . . row do
11 vl ← chart[i, col − row + i]
12 vr ← chart[row − i− 1, col]
13 if vl and vr consist of a

floating dependency then
14 create an incoming binary node

e = 〈v, vl, vr〉
15 end
16 else if vl has no right child

and vl dominates vr then
17 create an incoming binary node

e = 〈vl, LEFT (vl), vr〉
18 end
19 else if vr has no left child

and vr dominates vl then
20 create an incoming binary node

e = 〈vr, vl, RIGHT (vr)〉
21 end
22 else
23 continue // combination is

not allowed
24 end
25 IN(v) ← IN(v) ∪ {e}
26 end
27 chart[row, col] ← v

28 end
29 end
30 end

2.3. Annotation of virtual node using dependency label

The translation probability of fine-grained translation rules is

more accurate than that of a coarse one [21]. It is also ben-

eficial in terms of efficiency because fine-grained translation

rules reduce the search space by constraining the applicable

rules. Therefore, we annotate the virtual nodes in F using

dependency labels that represent the dependency relation be-

tween the head and the dependent word.

An annotation of a virtual node v for a span

sbegin:end is a set of dependency labels ANN(v) =
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Figure 2: A part of the chart of the binarized dependency forest for the example dependency tree in Figure 1. The dotted lines

represent the rows in a chart, and the nodes in a row represent the cells the rooted at these nodes. The solid lines are the incoming

binary edges of the binary nodes. For each root node v which covers more than two words, we denote the covered span to

vbegin:end for clarity. The virtual nodes have annotation using dependency labels as explained in Section 2.3. Note that a binary

node can have more than one incoming binary edges, e.g. {conj, cc}4:7.

Algorithm 2: Augment Phrasal Nodes

1 function Augment(F , L, n)
input : A binarized forest F , the maximum phrase

length L, the sentence length n
output: A binarized forest F ′ with phrasal nodes

2 for row = 2 . . .min(L, n) do
3 for col = row . . . n do
4 if row ≤ L and chart[row, col] is not

defined then
5 create a phrasal node v
6 chart[row, col] ← v

7 end
8 else
9 v ← chart[row, col]

10 end
11 for i = 0 . . . row do
12 vl ← chart[i, col − row + i]
13 vr ← chart[row − i− 1, col]
14 if any of v, vl, or vr is a

phrasal node then
15 create an incoming binary node

e = 〈v, vl, vr〉
16 IN(v) ← IN(v) ∪ {e}
17 end
18 end
19 end
20 end

⋃end
j=begin+1 LABEL(wj). Note that we merge duplicated

relations if there are more than two modifiers. Thus it ab-

stracts the dependency relations of the covered words, for ex-

ample, the modifiers consist of a coordination structure such

as “logs and sticks” in the example. When there exist more

than two preposition phrases, our proposed method also takes

advantage of the abstraction. Since a coordination structure

or a the number of preposition phrases can be long arbitrar-

ily, merging duplicated relations minimizes the variation of

the annotations, and increases the degree of f the generaliza-

tion.

2.4. Extraction of translation rule

We extract tree-to-string translation rules from the binarized

forest as proposed in [13] after we identify the substitution

sites, i.e., frontier nodes. A binary node is a frontier node if a

word in the corresponding source span has a consistent word

alignment, i.e. there exists at least one alignment to the target

and any word in the target span does not aligned to the source

word out of the source span. For example, since build0:2 has

inconsistent word alignment in Figure 3, it is not a frontier

node. The identification of the frontier nodes in F is done by

a single post-order traversal.

After we identify the frontier nodes, we extract the min-

imal rules from each frontier node [8]. Figure 4 shows the

minimal rules extracted from the example sentence. For each

frontier node v, we expand the tree fragment until it reaches

the other frontier nodes. For each tree fragment, we compile

the corresponding target words, and substitute the frontier

nodes with the labels. If a virtual node is the root of a tree

fragment, we do not substitute the frontier nodes that cover

length-1 spans. For example, R2, R5, R6, R8 and R9 have

length-1 spans that is not substituted. The extraction of the

minimal rules takes linear time to the number of the nodes in

F , thus the length of the sentence.

Figure 3: An example of word alignment and target sentence.
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Figure 4: The minimal translation rules. Each box represents

the source tree fragment (above) and the corresponding target

string (below) with mapping for substitution sites (X).

We also extract composed rules in order to increase the

coverage of the extracted translation rules [7]. We believe

that the composed rules also prevents the over-generalization

of the binarized dependency forest. For each tree fragment

in the minimal rules, we extend the the tree fragment beyond

the frontier nodes until the size of the tree fragment is larger

than a threshold. When we restrict the size, we do not count

the non-leaf virtual nodes. We also restrict the number of the

extension for each tree fragment in practice. Figure 5 shows

two composed rules that extend the tree fragments in R1 and

R8, respectively.

3. Experiments
We performed the experiments in the OLYMPICS task in

IWSLT 2012. The task provided two parallel corpora, one

from the HIT Olypic Trilingual Corpus (HIT) and the other

from the Basic Tranvel Expression Corpus (BTEC). We only

carried out our experiment with the official condition, i.e.

training data limited to supplied data only. As the size of

training data sets in the HIT and BTEC is relatively small, we

regards the 8 development data sets in the BTEC corpus also

as training corpora. Each development corpus in the BTEC

corpus has multiple references and we duplicated the source

sentences in Chinese for the reference sentences in English.

One development set (Dev) was used for tuning the weights

in the log-linear model and the other development set (De-

vTest) was used for testing the translation quality. Finally,

the formal runs were submitted by translating the evaluation

corpus. Table 1 summarizes the statistics of corpora we used.

Figure 5: Two composed translation rules.

Table 1: Corpus statistics of the corpora. Sentence column

shows the number of sentence pairs, and Source and Target

column shows the number of words in Chinese and English,

respectively.
Sentence Source Target

Train 111,064 911,925 1,007,611

Dev 1,050 9,499 10,125

DevTest 1,007 9,623 10,083

Test 998 9,902 11,444

Table 2: The official evaluation results of the submitted runs.

P is the primary run and C is the contrastive run. M is a

phrase-based SMT using Moses with lexicalized reordering

and H is Hierarchical phrase-based SMT using Moses-chart.
BLEU NIST TER GTM METEOR

P 0.1203 3.7176 0.7999 0.4352 0.3515

C 0.1031 3.4032 0.8627 0.4207 0.3163

M 0.1666 4.3703 0.6892 0.4754 0.4168

H 0.1710 4.4841 0.6817 0.4803 0.4182

We compared the effectiveness of our proposed methods

in two different settings. The primary run fully utilized the

methods described in Section 2. The contrastive run, on the

other hand, skipped the augmentation of phrasal nodes de-

scribed in Section 2.2. Therefore, the translation rules used

in the contrastive run only included tree fragments that satis-

fies the well-formed dependency. We denoted the contrastive

run as the baseline in the next section. We also compared

the submitted runs with a phrase-base SMT with lexical-

ized reordering and a hierarchical phrase-based SMT using

Moses. Table 2 shows the evaluation results using various

metrics following the instruction provided by the task orga-

nizer (README.OLYMPICS.txt). Please refer the details in

the overview paper [5].

For both primary and contrastive runs, we implemented

a forest-to-string translation system using cube pruning [11]

in Java. The implementation of our decoder is based on a

log-linear model. The feature functions are similar to hierar-

chical PBSMT including a penalty for a glue rule, as well as

bidirectional translation probabilities, lexical probabilities,

and word and rule counts. For the translation probabilities,

we applied Good-Turing discounting smoothing in order to

prevent over-estimation of sparse rules. We also restricted

the maximum size of a tree fragment to 7, and the number of

the extension to 10,000.

For an Chinese sentence, we used a CRFTagger to ob-

tain POS tags, and a chart parser to obtain a dependency tree

developed in our laboratory. The F-measure of the CRFTag-

ger is 95% and the unlabelled arc score (UAS) of the parser

is 87%. We used GIZA++[17] to obtain bidirectional word

alignments for each segmented parallel corpus, and applied

the grow-diag-final-and heuristics. For tuning the parameter

of a log-linear model, we utilized an implementation of min-
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imum error rate training [16], Z-MERT [24]. We built the

n-gram language model using the IRSTLM toolkit 5.70.03

[4], and converted in binary format using KenLM toolkit [9].

4. Discussion
The augmentation of the phrasal nodes (primary run) outper-

formed the baseline (contrastive run) in all evaluation met-

rics. However, both our approaches underperformed any of

Moses systems. We suspected the reasons as follows:

• Over-generalization of the dependency structure

causes a lot of incorrect reordering, although we an-

notate the virtual nodes using dependency labels.

• Over-constraint of the tree structure makes a lot of

translations impossible that are possible with phrase-

based models.

• Parsing error affects the extraction of translation rules

and decoding, which are inevitable.

Besides, there are many out-of-vocabulary in all systems

due to the relatively small size of the training data. We hope

more data in the HIT and BTEC corpora will be available in

the future.

5. Conclusion
We participated in the OLYMPICS task in IWSLT 2012 and

submitted two formal runs using a forest-to-string translation

system. Our primary run achieved better translation quality

than our contrastive run, but worse than a phrase-based and

a hierarchical system using Moses.
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