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Abstract

This paper provides a fast alternative to Minimum Discrimi-

nation Information-based language model adaptation for sta-

tistical machine translation. We provide an alternative to

computing a normalization term that requires computing

full model probabilities (including back-off probabilities) for

all n-grams. Rather than re-estimating an entire language

model, our Lazy MDI approach leverages a smoothed uni-

gram ratio between an adaptation text and the background

language model to scale only the n-gram probabilities cor-

responding to translation options gathered by the SMT de-

coder. The effects of the unigram ratio are scaled by adding

an additional feature weight to the log-linear discriminative

model. We present results on the IWSLT 2012 TED talk

translation task and show that Lazy MDI provides compara-

ble language model adaptation performance to classic MDI.

1. Introduction
Topic adaptation is used as a technique to adapt language

models based on small contexts of information that may

not necessarily reflect an entire domain or genre. In sce-

narios such as lecture translation, it is advantageous to per-

form language model adaptation on the fly to reflect topical

changes in a discourse. In these scenarios, general purpose

domain adaptation techniques fail to capture the nuances of

discourse; while domain adaptation works well in modeling

newspapers and government texts which contain a limited

number of subtopics, the genres of lectures and speech may

cover a virtually unbounded number of topics that change

over time. Instead of general purpose adaptation, adaptation

should be performed on smaller windows of context.

Most domain adaptation techniques require the re-

estimation of an entire language model to leverage the use of

out-of-domain corpora in the construction of robust models.

While efficient algorithms exist for domain adaptation, they

are in practice intended to adapt language models globally

over a new translation task. Topic adaptation, on the other

hand, intends to adapt language models as relevant contex-

tual information becomes available. For a speech, the rele-

vant contextual information may come in sub-minute inter-

vals. Well-established and efficient techniques such as Mini-

mum Discrimination Information adaptation [1, 2] are unable

to perform topic adaptation in real-time scenarios for large

order n-gram language models. In practice, new contextual

information is likely to be available before techniques such

as MDI have finished LM adaptation from earlier contexts.

Thus spoken language translation systems are typically un-

able to use the state-of-the-art techniques for the purpose of

topic adaptation.

In this paper, we seek to apply MDI adaptation tech-

niques in real-time translation scenarios by avoiding the

computation of the normalization term that requires all n-

grams to be re-estimated. Instead, we only wish to adapt

n-grams that appear within an adaptation context. Dubbed

“Lazy MDI”, our technique uses the same unigram ratios as

MDI, but avoids normalization by applying smoothing trans-

formations based a sigmoid function that is added as a new

feature to the conventional log-linear model of phrase-based

statistical machine translation (SMT). We observe that Lazy

MDI performs comparably to classic MDI in topic adapta-

tion for SMT, but possesses the desired scalability features

for real-time adaptation of large-order n-gram LMs.

This paper is organized as follows: In Section 2, we dis-

cuss relevant previous work. In Section 3, we review MDI

adaptation. In Section 4, we describe Lazy MDI adaptation

for machine translation and review how unigram statistics of

adaptation texts can be derived using bilingual topic model-

ing. In Section 5, we report adaptation experiments on TED

talks1 from IWSLT 2010 and 2012, followed by our conclu-

sions and suggestions for future work in Section 6.

2. Previous Work
This paper is based on the work of [3], which combines MDI

adaptation with bilingual topic modeling on small adapta-

tion contexts for lecture translation. Adaptation texts are

drawn from source language input and leveraged for lan-

guage model adaptation. A bilingual Probabilistic Latent Se-

mantic Analysis (PLSA) [4] model is constructed by combin-

ing parallel training texts, allowing for inference on mono-

lingual source texts for MDI adaptation by removing source

language unigram statistics.

1http://www.ted.com/talks
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A similar approach is considered by [5] in domain adap-

tation by constructing two hierarchical LDA models from

parallel document corpora and enforcing a one-to-one cor-

respondence between the models by learning the hyperpa-

rameters of the variational Dirichlet posteriors in one LDA

model and bootstrapping the second model by fixing the hy-

perparameters. The bilingual LSA framework is also applied

to adapt translation models. Other bilingual topic modeling

approaches include Hidden Markov Bilingual Topic AdMix-

tures [6] and Polylingual Topic Models [7].

The literature focuses primarily on domain adaptation,

using techniques such as information retrieval to select

similar sentences in training corpora for adaptation, either

through interpolation [8] or corpora filtering [9], or mixture

model adaptation approaches [10, 11].

An alternative to MDI adaptation is proposed by [12],

which uses a log-linear combination of binary features

fi(h,w) to scale LM probabilities P (w | h):

P̂ (w | h) = exp

(∑
i

fi(h,w)λi

)
P (w | h).

Normalization is avoided by simply dividing P̂ (w | h) by

P̂ (w | h) + 1.

3. MDI Adaptation
MDI adaptation was originally presented in [1] as a means

for domain adaptation on language models. MDI adapta-

tion scales the probabilities of a background language model,

PB(h,w), by a factor determined by a ratio between the un-

igram statistics observed in an adaptation text A versus the

same statistics observed in the background corpus B:

α(w) =

(
P̂A(w)

PB(w)

)γ

, 0 < γ ≤ 1. (1)

As such, the adapted language model PA(h,w) is con-

structed as follows:

PA(h,w) = PB(h,w)α(w), (2)

where h is the n-gram history of word w. As outlined in

[13], the adapted language model can also be written recur-

sively in an interpolated conditional form with discounted

frequencies f∗(w|h) and reserved probabilities for out-of-

vocabulary words λ(h):

PA(w|h) = f∗
A(w|h) + λA(h)PA(w|h′), (3)

with:

f∗
A(w|h) =

f∗
B(w|h)α(w)

z(h)
, (4)

λA(h) =
λB(h)z(h

′)
z(h)

, (5)

and

z(h) = (
∑

w:NB(h,w)>0

f∗
B(w|h)α(w)) + λB(h)z(h

′), (6)

which efficiently computes the normalization term for high

order n-grams recursively by just summing over observed n-

grams. The recursion ends with the following initial values

for the empty history ε:

z(ε) =
∑
w

PB(w)α(w), (7)

PA(w|ε) = PB(w)α(w)z(ε)
−1. (8)

While MDI has been applied in domain adaptation both

for language models [2] and translation models [5], its re-

estimation requires the computation of the normalization

term outlined in (6). In topic adaptation scenarios, it is de-

sirable to rapidly adapt a background language model us-

ing small adaptation contexts consisting of few sentences.

One method of inferring unigram statistics for MDI adapta-

tion given sparse data is to perform bilingual topic modeling

[3, 5, 7]. While it has been shown that the combination of

topic modeling and MDI adaptation yield a significant im-

provement in translation adequacy, the approach of adapting

non-overlapping contexts of size C requires M /C full LM re-

estimations on a translation task with M sentences, with each

re-estimation requiring the expensive computation of the nor-

malization term.

4. Lazy MDI Alternative for SMT
The goal of MDI adaptation is to construct an adapted lan-

guage model that minimizes its Kullback-Leibler divergence

from the background LM, which is effectively performed via

the unigram ratio scaling method described in (1) and (2). We

seek to loosely approximate this KL divergence in statistical

machine translation by adapting only n-grams that appear as

translation options for a given sentence. As such, we seek to

avoid computing a normalization term that requires observ-

ing the probabilities of all high- and lower-order n-grams in

the LM. Since the ratio of unigram probabilities is defined

across the range [0,+∞], we explore smoothing functions

that bind the ratio to a finite range.

4.1. Smoothing unigram ratios

In machine learning, sigmoid activation functions are typ-

ically used to constrain functions in the range of [0, a] or

[−a, a] to reduce the bias of a few data points within a train-

ing set. Likewise we explore the use of sigmoid functions to

reward n-gram probabilities across the range of [0, a]. How-

ever, since we are scaling ratios in general, we desire the

following properties of our smoothing function f :

f(0) = 0; lim
x→+∞ f(x) = a

f(1) = 1; lim
x→−∞ f(x) = −a
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Figure 1: A plot of the transformed fast sigmoid function for pos-

itive ratios in (10) and its first derivative, evaluated at a = 2. The

relative changes in f(x) are labeled, centered at f(1). The changes

in f(x) are symmetric with respect to each ratio and inverse ratio.

In particular the f(1) = 1 constraint ensures that background

LM probabilities remain fixed when the ratio is balanced.

Staple sigmoid functions such as the logistic function or

the hyperbolic tangent unfortunately cannot satisfy the prop-

erty f(1) = 1 for any magnitude a. However, a fast sigmoid
approximation was proposed in [14], defined as:

f(x) =
x

1 + |x| . (9)

With some simple transformations, we arrive at our desired

function:

f(x, a) =
ax

a+ |x| − 1
, a > 1. (10)

Figure 1 contains a plot of (10) at a = 2 and its first deriva-

tive. A useful property of the fast sigmoid in (10) is that the

change in slope is symmetric with respect to inverted ratios,

relative to the center at x = 1. For example, for the fast

sigmoid outlined in Figure 1, a ratio of 2:1 yields a scale of

1 + 1
3 , while a ratio of 1:2 yields a scale of 1− 1

3 .

4.2. Log-linear feature

Since we are no longer normalizing n-gram probabilities, we

can consider the smoothed unigram probabilities as a func-

tion that rewards or penalizes translation options based on

the likelihood that the words composing the target phrase

should appear in the translation. We treat the smoothed uni-

gram probabilities as a new feature in the discriminative log-

linear model of the decoder. While our new feature is inde-

pendent from any language model features, we can logically

consider the adaptation of a background language model as a

log-linear combination of the LM feature and the Lazy MDI

feature as:

P̂LM (E | F ) = PLM (E | F )γ1 ·
|E|∏
i=1

α̂(ei)
γ2 , (11)

where PLM (E | F ) computes the language model probabil-

ities of target sentence E, given a source sentence F ; though

we only consider language models that score the target sen-

tence, independent from F . α̂(ei) is the Lazy MDI adapta-

tion on the ith target word in E, defined as:

α̂(w) = f

(
PA(w)

PB(w)

)
. (12)

By rearranging terms, we arrive at our unnormalized log-

linear approximation of (2):

P̂LM (E) =

|E|∏
i=1

PLM (ei | hi)
γ1 · α̂(ei)γ2 . (13)

In practice, only translation hypotheses suggested by the

translation model are scored by the language model, thus

limiting the number of unigram ratios to consider. Addition-

ally, for computational efficiency, calculations are performed

in log space. For a = 2, our fast sigmoid function can be

rewritten as:

f(x, 2) = 2 ·
(
1 + e− ln(x)

)−1

, x > 0, (14)

which allows us to compute log probability ratios as

lnPA(w)− lnPB(w).

4.3. Sparsity considerations

If we treat the background and adaptation unigram statistics

as unigram language models, we can use smoothing to re-

serve probability for out-of-vocabulary words. However, due

to the sparsity of unigram features in adaptation texts, it is

possible that the adapted unigram statistics are missing words

that appear in the background LM. Assuming that there are

insufficient adaptation statistics to reliably scale the probabil-

ities of n-grams containing these words, we instead leave the

background probabilities intact by fixing the unigram proba-

bility ratio to 1.

A similar problem can arise in the scenario that the adap-

tation text contains unigrams that are not observed in the

background LM. One possible solution is to limit the vocab-

ulary of the adaptation statistics to the same as that of the

background.

4.4. Inferring unigrams via bilingual topic modeling

Since an adaptation text is in practice too small to directly

compute reliable unigram statistics, we resort to topic model-

ing approaches to infer full unigram probabilities. One such

approach is Probabilistic Latent Semantic Analysis (PLSA)

[4], which computes the probability of unigrams in a doc-

ument d by marginalizing over a collection of latent topics

Z:

P (w | d) =
∑
z∈Z

P (w | z)P (z | d). (15)

Following the exposition of [3], we construct a bilin-

gual topic model by combining source and target parallel
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sentences into “monolingual” documents with vocabulary

VFE = VF ∪VE .2 During inference, we infer unigram prob-

abilities of VFE using only documents containing only the

source language. Removing words f ∈ VF from the proba-

bility distribution and normalizing yields a probability distri-

bution for all words in VE .

5. Experiments
We conduct experiments on the IWSLT TED talk transla-

tion tasks from 2010 and 2012. In Section 5.1, we evaluate

the utility of Lazy MDI using lowercased unigram statistics

on a lowercased MT system trained only on TED data. We

compare the performance of smoothed and unsmoothed Lazy

MDI against classic MDI.

In Section 5.2, we evaluate the logical adaptation of cased

language models with uncased unigram statistics from both

the adaptation text and the background text. Due to the small

size of the adaptation texts, we are not guaranteed a reliable

unigram probability estimations on a vocabulary that is likely

to double in size. We evaluate the utility of Lazy MDI on

a state-of-the-art system against a domain-adapted mixture

LM.

5.1. IWSLT 2010

We replicate the experimental settings of [3] and provide

a comparison of classic MDI against Lazy MDI, using the

same data set of English-French translations of TED talks,

downloaded from the TED website as it was on March 30,

2011 and split into training, dev and test sets according to

indexes used for IWSLT 20103 evaluation. The data set is

segmented at the clause level, rather than at the level of sen-

tences. The TED training data consists of 329 parallel talk

transcripts with approximately 84k sentences. The TED test

data consists of transcriptions created via 1-best ASR out-

puts from the KIT Quaero Evaluation System. It consists of

2381 clauses and approximately 25,000 English and French

words, respectively.

Lowercased SMT systems are built upon the Moses

open-source SMT toolkit [15]4. The translation and lex-

icalized reordering models have been trained on parallel

data. One 5-gram background LM was constructed with the

IRSTLM toolkit [16] on the French side of the TED training

data (740k words), and smoothed via the improved Kneser-

Ney technique [17]. The weights of the log-linear interpola-

tion model were optimized via minimum error rate training

(MERT) [18] on the TED development set, using 200 best

translations at each tuning iteration.

As in [3], online adaptation is simulated by splitting

the training corpus into small non-overlapping contexts of 5

lines (41,847 “documents” in total) and performing bilingual

2To avoid overlapping types in the topic mdoel, we annotate the source

and target vocabularies to track their provenance.
3http://iwslt2010.fbk.eu/
4http://www.statmt.org/moses/

PLSA training using IRSTLM. The PLSA model consists of

250 topics and is trained for 20 EM iterations. Ten inference

iterations are performed on the English side of the develop-

ment and test sets to generate French unigram probabilities

for each 5-line context.

MDI adaptation is performed on the test set contexts us-

ing the 5-gram TED language model described above as the

background. For each 5-line context in the test set, the back-

ground LM is replaced with the adapted LM for SMT decod-

ing, preserving the same feature weight as the background

LM.

In the case of Lazy MDI, adaptation is integrated into the

Moses decoder using the same context unigrams. MERT is

performed on the development set with simultaneous adap-

tation for each context. We experiment with both adaptation

via unsmoothed unigram ratios and smoothing via our trans-

formed fast sigmoid function. Words not in the adaptation

unigram LM are fixed with a 1:1 ratio to prevent their effect

on the global translation hypothesis score.

We ran 3 MERT instances for each system and evalu-

ated using MultiEval 0.3 [19]. Evaluation results in terms

of BLEU, METEOR (French), TER, and segment length are

listed in Table 1. We observe similar results between MDI

Metric System Avg ssel sTest p

BLEU ↑
Baseline 28.0 0.5 0.3 -

MDI 28.2 0.5 0.2 0.01

Lazy MDI (unsmoothed) 24.4 0.5 5.8 0.00

Lazy MDI (smoothed) 28.3 0.5 0.1 0.00

METEOR ↑
Baseline 50.4 0.4 0.1 -

MDI 50.6 0.5 0.2 0.09

Lazy MDI (unsmoothed) 47.7 0.4 4.3 0.00

Lazy MDI (smoothed) 50.5 0.4 0.1 0.18

TER ↓
Baseline 57.3 0.6 0.4 -

MDI 56.9 0.6 0.4 0.00

Lazy MDI (unsmoothed) 61.9 0.6 8.0 0.00

Lazy MDI (smoothed) 56.9 0.6 0.1 0.00

Length

Baseline 104.1 0.5 1.1 -

MDI 103.5 0.5 0.9 0.00

Lazy MDI (unsmoothed) 106.2 0.5 4.5 0.00

Lazy MDI (smoothed) 103.5 0.5 0.2 0.00

Table 1: Lowercased evaluation of MDI and Lazy MDI adaptation

techniques on the IWSLT 2010 TED test set. Metric scores aver-

aged across three MERT runs. p-values are relative to the baseline.

ssel indicates the variance due to test set selection. Significant im-

provements in terms of BLEU and TER are observed for both MDI

and smoothed Lazy MDI (via a fast sigmoid transformation of un-

igram ratios). Unsmoothed Lazy MDI yields unpredictable results

during optimization.

and smoothed Lazy MDI – both of which yield an average

improvement of 0.2 and 0.3 BLEU, respectively. As pre-

dicted, unsmoothed Lazy MDI adaptation performs poorly

as the unigram ratios between the background and context

LMs often diverge greatly. This can also be observed in the

weight associated with the feature, as shown in Table 2. For

unsmoothed Lazy MDI, the associated feature weight has di-

vergent values across each MERT instance, implying the un-

　　　　　　　　　　　　   247 
 
The 9th International Workshop on Spoken Language Translation 
　　　　　  Hong Kong, December 6th-7th, 2012 



predictability of unbounded ratios.

System Metric Opt 1 Opt 2 Opt 3
Baseline BLEU 27.64 28.20 28.20

MDI BLEU 28.49 28.07 28.16

Lazy MDI (unsmoothed)
BLEU 27.14 17.80 28.40

weight 0.1537 0.4096 0.0445

Lazy MDI (smoothed)
BLEU 28.27 28.39 28.17

weight 0.0132 0.0177 0.0138

Table 2: Lowercased evaluation runs for the TED baseline and

Lazy MDI adaptations for the IWSLT 2010 test set across three tun-

ing instances. Unsmoothed Lazy MDI yields unstable adaptation

feature weights across each run. “Opt 2” overpowers the log-linear

model, causing a large overfitting to the development set. “Opt 3”

provides the best generalization to the test set by reducing the ef-

fects of the adaptation. For fast sigmoid-smoothed Lazy MDI, the

adaptation weights remain consistent across all runs.

5.2. IWSLT 2012

We also evaluate the performance of our fast sigmoid-

smoothed Lazy MDI setting on a state-of-the-art SMT sys-

tem submitted for the IWSLT 2012 TED English-French MT

shared task5. In this experiment, we build cased translation

systems using Moses and evaluate the effects of Lazy MDI

adaptation from lowercased unigram context statistics. Our

baseline system consists of translation and reordering mod-

els trained from the in-domain TED6 corpus, as well as out-

of-domain Giga French-English7 and Europarl v7 [21] cor-

pora. Each out-of-domain corpus was domain-adapted by

aggressive filtering using a cross-entropy difference scoring

technique described by [22] on the French side and optimiz-

ing the perplexity against the (French) TED training data by

incrementally adding sentences. The corresponding parallel

English sentences were preserved to provide compact paral-

lel corpora. A single phrase and reordering table were con-

structed using the fill-up technique described in [23] in a cas-

caded fashion in the order of TED, Giga French-English, and

Europarl.

A domain-adapted 5-gram mixture language model was

constructed with IRSTLM from the TED, Giga French-

English, Gigaword French v2 AFP8, and WMT News Com-

mentary v7 corpora. The same filtering technique [22] was

applied to the LM corpora. For Lazy MDI, we again use

the bilingual PLSA model constructed from the IWSLT 2010

training data, with 250 topics and 20 EM iterations. MERT

is again performed on the development set with simultaneous

Lazy MDI adaptation for each context.

Topic adaptation results against the domain-adapted

baseline are shown in Table 3. The evaluation results are av-

eraged over three MERT optimizations of the baseline and

5http://hltc.cs.ust.hk/iwslt/index.php/evaluation-campaign/ted-task
6https://wit3.fbk.eu/mt.php?release=2012-03-test
7109 French-English data set provided by the WMT 2012 translation

task [20].
8http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC2009T28

Lazy MDI-adapted systems. We observe that performing

Lazy MDI adaptation yields a BLEU improvement of 0.2

against the already-adapted baseline, suggesting a cumula-

tive gain of domain adaptation and topic adaptation. We also

observe a 0.2 improvement in terms of TER, while METEOR

remains more or less the same. The tuning weights obtained

across three MERT iterations are averaged to control opti-

mizer instability. We list the evaluation results of each sys-

tem run in Table 4.

Metric System Avg ssel sTest p

BLEU ↑ Mix LM 32.4 0.5 0.0 -

+Lazy MDI 32.6 0.5 0.1 0.07

METEOR ↑ Mix LM 52.0 0.4 0.0 -

+Lazy MDI 52.1 0.4 0.1 0.18

TER ↓ Mix LM 49.5 0.5 0.1 -

+Lazy MDI 49.3 0.5 0.2 0.05

Length
Mix LM 97.3 0.4 0.3 -

+Lazy MDI 97.2 0.4 0.2 0.12

Table 3: Evaluation of Lazy MDI adaptation on the IWSLT 2010

TED test set provided in the IWSLT 2012 TED translation task.

Metric scores averaged across three MERT runs. Lazy MDI p-

values are relative to the domain-adapted baseline, described in Sec-

tion 5.2. ssel indicates the variance due to test set selection. Sig-

nificant improvements in terms of BLEU and TER are observed for

smoothed Lazy MDI (via a fast sigmoid transformation of unigram

ratios).

System Metric Opt 1 Opt 2 Opt 3 Avg

Mix LM
BLEU 32.37 32.44 32.44 32.42

NIST 7.463 7.438 7.438 7.443

+Lazy MDI
BLEU 32.63 32.55 32.52 32.70

NIST 7.473 7.480 7.440 7.448

Table 4: Lowercased evaluation runs for the mixture LM baseline

and Lazy MDI adaptations for the 2010 test set in the IWSLT 2012

translation task, across three tuning instances. The weights from the

tuning instances are averaged to control optimizer instability. Per-

forming Lazy MDI adaptation on the mixture LM baseline yields a

0.28 BLEU improvement and marginal NIST improvements.

We evaluate the impact of Lazy MDI adaptation by com-

puting TER on the translation of each individual line from the

2010 test set by each system. We observe that of the 1,664

transcript lines, 247 lines yield a TER improvement, while

175 result in a higher error rate. We show three examples of

segments yielding a TER improvement in Table 5. For ID

#364, Lazy MDI yields a slight increase in fluency, while ad-

equacy remains more or less the same. The baseline suggests

that white pills are worse than blue pills – a subtle difference

from the intent of the reference. The Lazy-adapted hypoth-

esis corrects this difference, but makes common mistakes in

translating “good” and “as”. Lazy MDI yields a shorter trans-

lation in ID #1055 that moves away from a literal translation

in the first half of the sentence that closely matches the ref-

erence. ID #1059 results in a very minor article change from
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“the” to “our”. In this context, this subtle difference is im-

portant because the speaker is comparing the water at his fish

farm to other farms.

ID Text TER

364

But a white pill is not as good as a blue pill .

Mais un comprimé blanc n’ est pas aussi bon qu’ une

comprimé bleu

(0.154)

Mais une pilule blanche est moins bonne qu’ une

pilule bleue .

0.769

Mais une pilule blanche n’ est pas aussi bien comme

une pilule bleue .

0.615

1055

I mentioned that to Miguel , and he nodded .

J’ ai dit ça à Miguel , et il a acquiesçé . (0.167)

J’ ai mentionné que de Miguel , et il a fait un signe . 0.500

J’ ai dit à Miguel , et il a fait un signe . 0.333

1059

And then he added , ” But our water has no impurities

. ”

Et puis il a ajouté : ” Mais notre eau n’ a pas d’ im-

puretés . ”

(0.058)

Et puis il a ajouté : ” Mais l’ eau n’ a pas impuretés .

”

0.176

Et puis il a ajouté : ” Mais notre eau n’ a pas impuretés

. ”

0.118

Table 5: Three examples of improvement in MT results: the first

translation in each collection corresponds to the reference transla-

tion, the second utilizes a mixture LM, and the third adds Lazy MDI

adaptation. The sentence-level TER scores are listed by each hy-

pothesis and the difference is listed in parentheses by the reference.

We also outline three examples of diminished perfor-

mance after performing Lazy MDI in Table 6. The Lazy

MDI example in ID #858 demonstrates an attempt to liter-

ally translate the word “space” as “espace”, which can am-

biguously refer either to outer space, or a domain (as in the

reference translation). This surface word is likely to have

been chosen above “domaine” due to its topic similarity to

“nucléaire”. While the TER on this sentence is higher than

the baseline, it should be noted that the baseline didn’t pro-

vide a translation for “space”. ID #895 is an example where

the topic adaptation attempts to literally translate “I think”,

but adds an additional “that” afterward. The sentence be-

comes a bit awkward to read. The baseline, however, leaves

out the hedge phrase “I think” and comes across as factual.

It is likely that a human translator would prefer the topic-

adapted sentence. In ID #1358, synonyms for “globe” are

selected, correctly implying that the speaker refers to a globe

as the world. While the reference and baseline select the

word “planet”, the topic-adapted sentence prefers “world” –

an equally acceptable word. It is likely that “world” was se-

lected due to collocations with “trash” and “pollution”. With

only one reference translation, it is hard to detect when Lazy

MDI adaptation actually worsens the translation hypothesis.

6. Conclusions
We have presented a simplified framework for approximat-

ing MDI adaptation in an online manner for lecture trans-

lation. We avoid normalization computations that prevent

ID Text TER

858

In the nuclear space , there are other innovators .

Dans le domaine nucléaire , il y a d’ autres innova-

teurs .

(-0.167)

Dans le nucléaire , il y a d’ autres innovateurs . 0.083

En l’ espace nucléaire , il y a d’ autres innovateurs . 0.250

895

And so there is a thread of something that I think is

appropriate .

Mais là-dedans , il y a quelque chose qui ne me sem-

ble pas faux .

(-0.267)

Et il y a un fil de quelque chose qui est approprié . 0.600

Et il y a un fil de quelque chose que je pense que c’

est approprié .

0.867

1358

and not only that , we ’ve used our imagination to

thoroughly trash this globe .

Pire , nous avons utilisé notre imagination pour pol-

luer profondément cette planète .

(-0.154)

Et non seulement ça , nous avons utilisé notre imagi-

nation à ordures soigneusement cette planète .

0.538

Et non seulement ça , nous avons utilisé notre imagi-

nation à ordures soigneusement ce monde .

0.692

Table 6: Three examples of decreased TER performance in MT

results: the first translation in each collection corresponds to the

reference translation, the second utilizes a mixture LM, and the

third adds Lazy MDI adaptation. The sentence-level TER scores

are listed by each hypothesis and the difference is listed in paren-

theses by the reference.

classic MDI from being used in speech translation scenarios.

Lazy MDI adaptation acts as a separate log-linear feature that

doesn’t directly adapt LM probabilities – instead, it rewards

or penalizes the scores of each translation hypothesis by ob-

serving the unigram probabilities inferred an adaptation con-

text and compares it to the background in a smoothed ratio.

The smoothing is performed by a conservative fast sigmoid

function that favors 1:1 ratios and prevents ratios from grow-

ing above a magnitude a.

We conducted adaptation experiments on TED talk data

from IWSLT 2010 and 2012 and demonstrate a significant

improvement in terms of BLEU, NIST, and TER over two

baselines: a lowecased TED-only system, and a state-of-the-

art cased system that combines in-domain and out-of-domain

data. We demonstrate that Lazy MDI adaptation has cumula-

tive adaptation effects on already-adapted language models.

For future work, we intend to compare our fast sig-

moid function against non-sigmoidal smoothing functions

for Lazy MDI. We additionally intend to explore log-linear

alternatives that do not rely on the computation of unigram

ratios – for example, inferring context from semantically-rich

resources, such as Wikipedia or WordNet.

As it currently stands, Lazy MDI adaptation scales uni-

gram ratios from data sources with differing vocabularies. It

is likely that we can gain more reliable ratios by filtering the

background unigram LM vocabulary to match the adaptation

text and renormalizing the probabilities.

Another potential weakness in our approach is the use of

topic models that do not filter stop-words and perform uni-

gram adaptation on the surface level. For morphologically-
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rich languages, such as German or Arabic, the vocabulary

sizes can increase greatly due to word splitting. We intend to

test our adaptation approach using word stems.

7. Acknowledgements
This work was supported by the T4ME network of excellence

(IST-249119), funded by the DG INFSO of the European

Commission through the Seventh Framework Programme.

8. References
[1] S. A. Della Pietra, V. J. Della Pietra, R. Mercer, and

S. Roukos, “Adaptive language model estimation us-

ing minimum discrimination estimation,” in Proceed-
ings of the IEEE International Conference on Acous-
tics, Speech and Signal Processing, vol. I, San Fran-

cisco, CA, 1992, pp. 633–636.

[2] M. Federico, “Efficient language model adaptation

through MDI estimation,” in Proceedings of the 6th
European Conference on Speech Communication and
Technology, vol. 4, Budapest, Hungary, 1999, pp.

1583–1586.

[3] N. Ruiz and M. Federico, “Topic adaptation for

lecture translation through bilingual latent seman-

tic models,” in Proceedings of the Sixth Work-
shop on Statistical Machine Translation. Edinburgh,

Scotland: Association for Computational Linguis-

tics, July 2011, pp. 294–302. [Online]. Available:

http://www.aclweb.org/anthology/W11-2133

[4] T. Hofmann, “Probabilistic Latent Semantic Analysis,”

in Proceedings of the 15th Conference on Uncertainty
in AI, Stockholm, Sweden, 1999, pp. 289–296.

[5] Y.-C. Tam, I. Lane, and T. Schultz, “Bilingual

LSA-based adaptation for statistical machine

translation,” Machine Translation, vol. 21,

pp. 187–207, December 2007. [Online]. Available:

http://portal.acm.org/citation.cfm?id=1466799.1466803

[6] B. Zhao and E. P. Xing, “HM-BiTAM: Bilingual Topic

Exploration, Word Alignment, and Translation,” in Ad-
vances in Neural Information Processing Systems 20,

J. Platt, D. Koller, Y. Singer, and S. Roweis, Eds. Cam-

bridge, MA: MIT Press, 2008, pp. 1689–1696.

[7] D. Mimno, H. M. Wallach, J. Naradowsky, D. A. Smith,

and A. McCallum, “Polylingual Topic Models,” in Pro-
ceedings of the 2009 Conference on Empirical Meth-
ods in Natural Language Processing. Association for

Computational Linguistics, August 2009.

[8] B. Zhao, M. Eck, and S. Vogel, “Language Model

Adaptation for Statistical Machine Translation via

Structured Query Models,” in Proceedings of Coling

2004. Geneva, Switzerland: COLING, Aug 23–Aug

27 2004, pp. 411–417.

[9] A. Sethy, P. Georgiou, and S. Narayanan, “Select-

ing relevant text subsets from web-data for building

topic specific language models,” in Proceedings of
the Human Language Technology Conference of the
NAACL, Companion Volume: Short Papers. New

York City, USA: Association for Computational Lin-

guistics, June 2006, pp. 145–148. [Online]. Available:

http://www.aclweb.org/anthology/N/N06/N06-2037

[10] G. Foster and R. Kuhn, “Mixture-model adaptation

for SMT,” in Proceedings of the Second Workshop
on Statistical Machine Translation. Prague, Czech

Republic: Association for Computational Linguis-

tics, June 2007, pp. 128–135. [Online]. Available:

http://www.aclweb.org/anthology/W/W07/W07-0217

[11] P. Koehn and J. Schroeder, “Experiments in Do-

main Adaptation for Statistical Machine Transla-

tion,” in Proceedings of the Second Workshop on
Statistical Machine Translation. Prague, Czech

Republic: Association for Computational Linguis-

tics, June 2007, pp. 224–227. [Online]. Available:

http://www.aclweb.org/anthology/W/W07/W07-0233

[12] S. F. Chen, K. Seymore, and R. Rosenfeld, “Topic adap-

tation for language modeling using unnormalized expo-

nential models,” in IEEE ICASSP-98. IEEE, 1998, pp.

681–684.

[13] M. Federico, “Language Model Adaptation through

Topic Decomposition and MDI Estimation,” in Pro-
ceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing, vol. I, Or-

lando, FL, 2002, pp. 703–706.

[14] G. M. Georgiou, “Parallel distributed processing in the

complex domain,” Ph.D. dissertation, Tulane Univer-

sity, New Orleans, LA, USA, 1992, uMI Order No.

GAX92-29796.

[15] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch,

M. Federico, N. Bertoldi, B. Cowan, W. Shen,

C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin,

and E. Herbst, “Moses: Open Source Toolkit for

Statistical Machine Translation,” in Proceedings of the
45th Annual Meeting of the Association for Compu-
tational Linguistics Companion Volume Proceedings
of the Demo and Poster Sessions, Prague, Czech

Republic, 2007, pp. 177–180. [Online]. Available:

http://aclweb.org/anthology-new/P/P07/P07-2045.pdf

[16] M. Federico, N. Bertoldi, and M. Cettolo, “IRSTLM:

an Open Source Toolkit for Handling Large Scale Lan-

guage Models,” in Proceedings of Interspeech, Mel-

bourne, Australia, 2008, pp. 1618–1621.

　　　　　　　　　　　　   250 
 
The 9th International Workshop on Spoken Language Translation 
　　　　　  Hong Kong, December 6th-7th, 2012 



[17] S. F. Chen and J. Goodman, “An empirical study of

smoothing techniques for language modeling,” Com-
puter Speech and Language, vol. 4, no. 13, pp. 359–

393, 1999.

[18] F. J. Och, “Minimum Error Rate Training in Sta-

tistical Machine Translation,” in Proceedings of the
41st Annual Meeting of the Association for Com-
putational Linguistics, E. Hinrichs and D. Roth,

Eds., 2003, pp. 160–167. [Online]. Available:

http://www.aclweb.org/anthology/P03-1021.pdf

[19] J. Clark, C. Dyer, A. Lavie, and N. Smith, “Bet-

ter hypothesis testing for statistical machine transla-

tion: Controlling for optimizer instability,” in Proceed-
ings of the Association for Computational Lingustics,

ser. ACL 2011. Portland, Oregon, USA: Associa-

tion for Computational Linguistics, 2011, available at

http://www.cs.cmu.edu/ jhclark/pubs/significance.pdf.

[20] C. Callison-Burch, P. Koehn, C. Monz, M. Post,

R. Soricut, and L. Specia, “Findings of the 2012 work-

shop on statistical machine translation,” in Proceedings
of the Seventh Workshop on Statistical Machine
Translation. Montréal, Canada: Association for Com-

putational Linguistics, June 2012, pp. 10–51. [Online].

Available: http://www.aclweb.org/anthology/W12-

3102

[21] P. Koehn, “Europarl: A multilingual corpus for

evaluation of machine translation,” Unpublished,

http://www.isi.edu/∼koehn/europarl/,

2002.

[22] R. C. Moore and W. Lewis, “Intelligent selection of

language model training data,” in ACL (Short Papers),
2010, pp. 220–224.

[23] A. Bisazza, N. Ruiz, and M. Federico, “Fill-up versus

Interpolation Methods for Phrase-based SMT Adapta-

tion,” in International Workshop on Spoken Language
Translation (IWSLT), San Francisco, CA, 2011.

　　　　　　　　　　　　   251 
 
The 9th International Workshop on Spoken Language Translation 
　　　　　  Hong Kong, December 6th-7th, 2012 




