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Abstract
We present a method to estimate the quality of auto-
matic translations when reference translations are not
available. Quality estimation is addressed as a two-step
regression problem where multiple features are com-
bined to predict a quality score. Given a set of fea-
tures, we aim at automatically extracting the variables
that better explain translation quality, and use them to
predict the quality score. The soundness of our ap-
proach is assessed by the encouraging results obtained
in an exhaustive experimentation with several feature
sets. Moreover, the studied approach is highly-scalable
allowing us to employ hundreds of features to predict
translation quality.

1. Introduction

Despite an intensive research in the last fifty years, ma-
chine translation (MT) systems are still far from per-
fect [1]. Hence, a desirable feature to improve their
practical deployment is the capability of predicting at
run-time1 the reliability of the generated translations.
This task, referred to as quality estimation [2] (QE),
is becoming a crucial component in practical MT sys-
tems [3, 1]. For instance, to decide if an automatic
translation is worth being supervised by a translator or
it should be translated from scratch. Quality can be es-
timated at the word, sentence, or document level. Here,
we focus on the estimation of sentence-level quality.

Sentence-level QE is typically addressed as a re-
gression problem [4, 2]. Given a translation (and other
sources of information), a set of features is extracted
and used to build a model that predicts a quality score.
This point of view provides a solid framework within
which accurate predictors can be derived. However,
several problems arise when applying this approach to
predict the quality of natural language sentences. For

1That is, in the absence of reference translations.

example, while the concept of translation quality is
quite intuitive, the definition of features that reliably ac-
count for it has proven to be elusive [4, 1]. Thus, in
practice, feature sets contain a large number of noisy,
collinear and ambiguous features that hinder the learn-
ing process of the regression models, e.g., due to the
“curse of dimensionality” [5].

An interesting approach to overcome these prob-
lems is to conceive QE as a two-step problem. In a first
step, a dimensionality reduction (DR) process strips out
the noise present in the original features returning a re-
duced set of (potentially new) features. Then, the actual
quality prediction is made from this reduced set. Typi-
cally, QE systems reduce the dimensionality by simply
selecting a subset of the original features according to
some relevance measure [2, 6, 7]. However, a recent
study [8] have shown that DR methods based on a pro-
jection of the original features may be more effective.
The intuition for this is clear, the new features extracted
by a projection-based DR method summarize the “in-
formation” contained in the all the original features, in
contrast, the information contained in the features dis-
carded by a feature selection method is inevitably lost.

We work on the foundations of [8] and provide an
exhaustive empirical study of the most successful QE
approach described there. This approach (§2) involves
a DR method based on a partial least squares [9] (PLS)
projection of the data and a support vector machine [10]
(SVM) as prediction model. We test this two-step QE
approach in a wide variety of conditions (§3) where we
compare the performance of PLS to the most widely-
used projection-based DR approach, namely principal
component analysis [11] (PCA). Empirical results (§4)
show that PLS consistently outperformed PCA in pre-
diction accuracy and feature reduction ratio. This latter
result is particularly interesting because it allows us to
apply QE in scenarios with strict temporal restrictions,
for instance interactive machine translation tasks.
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Figure 1: Dataflow of the studied two-step QE approach.

2. A Two-Step QE Approach

The method proposed in [8] divide QE (Rm → R) into
two sub-problems. First, the originalm-dimensional set
of features is projected into a new r-dimensional set of
features (Rm → Rr, r < m). Then, this reduced fea-
ture set is used to build a regression model that predicts
the actual quality scores (Rr → R). Figure 1 shows a
diagram of this two-step training methodology. Next
sections describe how to solve these two sub-problems.

2.1. Dimensionality Reduction

Typical approaches to reduce a set of noisy features
involve the use of principal components analysis [11]
(PCA). PCA projects the set of features into a set of
principal components (PCs) where each PC explains the
variability of the features in one principal direction. As
a result, these PCs contain almost no redundancy but,
since the PCA transformation ignore the quality scores
to be predicted, they do not necessarily have to be the
best features to perform the prediction.

Instead, we implement a feature reduction tech-
nique based on partial least squares [9] (PLS). PLS ex-
tracts a ordered set of latent variables (LVs) such that
each of them accounts for the maximum possible co-
variability between the features and the scores to be pre-
dicted under the constraint of being uncorrelated with
previous LVs. That is, LVs are uncorrelated as PCs do,
and additionally, they explain as much as the variability
in the quality scores as possible. As a result, usually few
LVs than PCs are required to reach a certain accuracy.

Let {xi, yi}ni=0 be a corpus with n samples where
xi arem-dimensional feature vectors, and yi are quality
scores. This corpus can be written in matrix form where
symbol ᵀ indicates the transpose of a matrix or vector:

X=

xᵀ
1
...
xᵀ
n

=

x11 · · · x1m...
. . .

...
xn1 · · · xnm

 y=

y1...
yn

 (1)

Then, PLS constructs the following linear model
where b is a vector of regressor coefficients, and f is

a vector of zero-centered Gaussian errors:

y = Xb+ f (2)

PLS also defines two PCA-like transformations (P
for X, and q for y) with E and f being the correspond-
ing errors, and a linear relation R linking both blocks:

X = TPᵀ +E y = Uqᵀ + f U = TR (3)

where matrices T and U are the projections of X and
y respectively. The value of the regression coefficients
b are finally computed as [9]:

b = Rqᵀ where R = W(PᵀW)−1 (4)

where W is a weight matrix that accounts for the cor-
relation between X and U.

The columns in matrix T are the LVs of X. Each of
these LVs accounts for the maximum co-variability be-
tween X and y not explained by previous LVs. There-
fore, similarly as it is usually done with PCA, we can
collect the first r LVs and use them to represent the
original m-dimensional feature set. Given that r <m,
and that the LVs are orthogonal by definition, we are
simultaneously addressing the “curse of dimensional-
ity” and reducing the noise present in the original fea-
tures. Moreover, the reduced set also explains most of
the variability in the quality scores to be predicted.

In the experiments, we used the pls library [12] of
the R toolkit. The dimension of the reduced set r is one
of the meta-parameters of the studied QE approach.

PLS can be directly used as a predictor model (see
Equation (2)). However, its simple linear model is not
adequate to model the nonlinear relation that may exist
between the features and the quality scores. Preliminary
experiments confirmed this intuition.

2.2. Prediction Model

Once the reduced feature set is extracted, a support vec-
tor machine (SVM) is used predict the quality scores
(Rr→R). We choose SVMs because they have shown
good prediction accuracy and robustness when dealing
with noisy data in a number of tasks.



SVMs, first proposed for classification problems by
Cortes and Vapnik [10], are a class of machine learning
models that are able to model nonlinear relations be-
tween the features and the values to be predicted. Prior
to any calculation, SVMs project the data into an al-
ternative space. This projection, defined by a kernel
function, may be nonlinear; thus, though a linear re-
lationship is learned in the projected feature space, this
relationship may be nonlinear in the original space. Fol-
lowing previous works on QE [2], we use SVMs with
a radial basis kernel as implemented in the LibSVM
package [13]. Values γ, ε, and C are additional meta-
parameters to be optimized.

3. Experimental Setup

3.1. Corpus

We computed quality scores for the English-Spanish
news evaluation data used in the QE task of the 2012
workshop on statistical MT [1] (WMT12). The Spanish
translations were generated by a phrase-based MT sys-
tem trained on the Europarl and News Commentaries
corpora as provided for the WMT12 translation task.
Evaluation data contains 1832 translations for training,
and 422 translations for test. The quality score of each
translation {y ∈ R | 1 ≤ y ≤ 5} is computed as the av-
erage of the scores given manually by three different
experts in terms of post-editing effort:
5: The translation requires little editing to be publishable
4: 10%–25% of the translation needs to be edited
3: 25%–50% of the translation needs to be edited
2: 50%–70% of the translation needs to be edited
1: The translation must be translated from scratch

3.2. Feature Sets

We conducted QE experiments with several feature sets
submitted to the WMT12 QE task2. These sets allow
us to test our approach under a wide variety of con-
ditions. Table 1 displays, for each set, the number of
features, whether or not the features are result of a fea-
ture selection process, the percentage of features in the
training partition that are collinear with the rest of fea-
tures (redundancy), and the percentage of features in the
training partition that are constant, and hence, irrelevant
to perform the prediction. We estimated the degree of
collinearity of each feature by its condition number con-
sidering a value above 100 to denote collinearity [14]

2These are available in https://github.com/lspecia/QualityEstimation.

Name #features feature collinear constant
selection? features features

DCU-SYMC 308 no 34.6% 0.7%
LORIA 49 yes 12.2% 0.0%
SDLLW 15 yes 0.0% 0.0%
TCD 43 no 18.6% 0.0%
UEDIN 56 no 5.5% 1.8%
UPV 497 no 54.3% 6.8%
UU 82 no 7.5% 2.5%
WLV-SHEF 147 no 21.0% 2.7%

Table 1: Main properties of the feature sets. We esti-
mated the collinearity with the condition number [14].

We consider the feature sets as independent corpora
provided by an external agent. Hence, and due to space
limitations, we only provide a brief description of each
set; an exhaustive description can be found in the cor-
responding citation. Many of the sets include the 17
baseline features provided by the organizers [1].

DCU-SYMC: [15] 308 features including features
based on latent Dirichlet allocation; source grammati-
cal features from the TreeTagger part-of-speech tagger,
an English grammar, the XLE parser, and the Brown
re-ranking parser; and target TreeTagger features.
LORIA: [6] 66 features including the baseline fea-
tures, and features based on cross-lingual triggers.
SDLLW: [7] 15 features exhaustively selected from an
original set of 45 features: the 17 baseline features, 8
features based on decoder information, and 20 features
based on n-gram precisions and word alignments.
TCD: [16] 43 features including the baseline features,
and features based on similarity measures with respect
to the Google n-grams data set.
UEDIN: [17] 56 features including the baseline fea-
tures and features based on named entities, mor-
phological information, lexicon probabilities, word-
alignments, and sentence and n-grams similarities.
UPV: [18] 497 features including the baseline features
and features based on word-level quality scores.
UU: [19] 82 features computed from syntactic, con-
stituency, and dependency trees.
WLV-SHEF: [20] 147 features based on part-of-
speech information, subject-verb agreement, phrase
constituency and target lexicon analysis.

3.3. Experimental Methodology

For each feature set, a QE system was built following
the two-step methodology described in §2 and depicted



Feature set Baseline PCA Our approach
RMSE #features RMSE #features RMSE #features

DCU-SYMC 0.71±0.02 308 0.70±0.02 82 (26.6%) 0.62±0.02∗ 28 (9.1%)
LORIA 0.72±0.03 49 0.75±0.01 43 (87.7%) 0.72±0.02∗ 10 (20.4%)
SDLLW 0.67±0.02 15 0.67±0.02 15 (100.0%) 0.67±0.02∗ 10 (66.7%)
TCD 0.76±0.01 43 0.74±0.02 24 (55.8%) 0.72±0.02∗ 15 (38.9%)
UEDIN 0.72±0.03 56 0.71±0.02 43 (76.8%) 0.69±0.02∗ 8 (14.3%)
UPV 0.74±0.02 497 0.69±0.02 99 (19.9%) 0.62±0.02∗ 58 (11.7%)
UU 0.72±0.02 82 0.68±0.02 74 (90.2%) 0.67±0.02∗ 29 (35.4%)
WLV-SHEF 0.71±0.02 147 0.71±0.02 91 (61.9%) 0.65±0.02∗ 25 (17.0%)

Table 2: RMSE and number of LVs obtained by cross-validation for the different feature sets. In parenthesis, we show
the number of LVs as a percentage of the original features. Baseline denotes a system trained with the whole feature
set. PCA denotes a system built using PCA instead of PLS. Best mean RMSE values and lowest number of features
are displayed boldface. Asterisks denote a statistically better result than both the other two systems (95% confidence).

in Figure 1. All features were standardized by subtract-
ing the feature mean from the raw values, and dividing
the difference by the corresponding standard deviation.

The number of LVs (r) was optimized by ten-fold
cross-validation using the training partitions (1832 sam-
ples). Each cross-validation experiment took eight folds
for training (dev-train), one held-out fold for develop-
ment and the other held-out fold for test (dev-test). We
used the dev-train folds to estimate a PLS model. Then,
this model was used to extract the r LVs of dev-train,
and of the separated development fold and the dev-test
fold. Next, we used the reduced dev-train folds to es-
timate an SVM model, the reduced development fold
to optimize the SVM meta-parameters (γ, ε, and C),
and the reduced dev-test fold to test the optimized SVM
model. The result of each complete cross-validation ex-
periment was the averaged prediction accuracy on the
ten held-out dev-test folds. The number of LVs was se-
lected to optimize this average accuracy.

Once the number of LVs was fixed, we built a new
prediction model with the whole training partition opti-
mizing the SVM meta-parameters by cross-validation.
Finally, we used this optimized SVM model to predict
the quality scores of the test partitions (422 samples).

3.4. Assessment Criteria

We measure the accuracy of a QE system by the devi-
ation of its predictions ŷ = {ŷ1, . . . , ŷn} respect to the
reference quality scores y = {y1, . . . , yn}. Following
previous QE works [2, 1], we calculate the root-mean-
squared error (RMSE) between them:

RMSE(ŷ,y) =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (5)

where n is the number of samples. RMSE quantifies
the average error of the estimation with respect to the
actual quality score. I.e. the lower the value, the better
the performance of the QE system.

Additionally, we perform different significance
tests for the reported RMSE results. On the one hand,
we obtain confidence intervals for the averaged cross-
validation test results with Student’s t-tests [21]. On the
other hand, we use paired bootstrap re-sampling [22] to
measure the significance of the RMSE differences ob-
served between the different methods in the test sets.

4. Results

We now present the results of the empirical evaluation
of the studied QE approach. First, we predicted qual-
ity scores for each of the feature sets described in §3.2.
Then, we took advantage of the scalability of the stud-
ied QE approach using jointly all the features in those
sets to perform the prediction.

4.1. Results for the Individual Feature Sets

Table 2 shows the cross-validation results (RMSE and
number of LVs) obtained for the different feature sets.
As a comparison, we present results for SVMs trained
with all the features in each set (Baseline), and for sys-
tems built using the widespread PCA instead of PLS in
the studied two-step training methodology.

We can observe that the studied approach con-
sistently obtained equal or better prediction accuracy
(RMSE) than the baseline systems. Additionally, the
number of LVs used to build the final SVMs was much
lower than the number of original features. The size of
the reduced sets varied between two thirds and one tenth
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Figure 2: Cross-validation learning curves (RMSE and 95% confidence interval) for two representative feature sets:
the highly-redundant UPV set (left), and the concise SDLLW set (right). Baseline denotes the RMSE of systems
trained with the whole original feature sets: 497 features for UPV set, and 15 features for SDLLW set.

of the original features. This reductions are roughly re-
lated with the percentage of collinear and constant fea-
tures in Table 1. In comparison to PCA, the studied DR
technique, PLS, was able to obtain better prediction ac-
curacy with less features. Usually, the number of LVs
is less than half the number of PCs.

These result indicate that the studied QE approach
was indeed able to strip out the noise present in the
original features. Additionally, the DR technique based
on PLS projections showed a better performance (both
in prediction accuracy and reduction ratio) that the
commonly-used PCA. As a result, even for highly-
engineered features sets such as SDLLW [7] that con-
tain no collinear or redundant features, our approach
was able to obtain a more compact feature set (10 LVs)
that still retained the prediction potential of the whole
original set (15 features).

Next, to better understand the influence of the num-
ber of LVs in the results, Figure 2 displays the predic-
tion accuracy as a function of the number of features
for two prototypical feature sets: the highly noisy and
collinear UPV set, and the low redundant SDLLW set.

The prediction accuracy of our method for the UPV
feature set (left panel in Figure 2) rapidly improved
as more LVs were considered. With only 5 LVs, pre-
diction accuracy already statistically outperformed the
baseline (497 features), and it reached its top perfor-
mance for 58 LVs. As we considered more LVs (for
simplicity the graph only shows up to 100 LVs), pre-
diction error steadily increased which was indicative of
over-training. Thus, we chose 58 as the optimum num-
ber of variables for the UPV set. The quite large RMSE
reduction respect to the baseline can be explained by the
ability of our approach to strip out the great amount of

noise present in the original UPV set, see Table 1. Re-
garding PCA, it was consistently outperformed by our
approach and only slightly improved the RMSE score
of the baseline system.

For the concise SDLLW feature set (right panel in
Figure 2), our system showed approximately the same
behavior: prediction accuracy rapidly improved up to
a point from where the performance remains approxi-
mately stable. In this case, 10 was the optimal number
of LVs. In contrast to the UPV set, our approach could
not improve Baseline performance which is reasonable
since SDLLW is a very clean set with no redundant or
irrelevant features (see Table 1) that could hinder the
learning process. Nevertheless, our method was able to
obtain the same prediction accuracy as Baseline with
only two thirds of the original features.

In a following experiment, we built QE systems
with the whole training partitions and the optimal num-
ber of LVs estimated in the previous cross-validation
experiments. The SVM meta-parameters (γ, ε, and C)
were optimized by standard cross-validation and the op-
timized models were used to predict the quality scores
of the test partitions. Note that due to variations in the
learning procedures, Baseline results may differ from
those reported in the WMT12 QE task [1] .

Table 3 displays, for each feature set, the RMSE
obtained by our approach in the test partition. We
also show baseline results for SVMs built with all the
features in each set, and for systems that used PCA
instead of PLS to reduce the dimensionality. RMSE
confidence intervals for Baseline, PCA and our ap-
proach always overlapped but the observed differences
were still statistically significant for a number of sets:
for DCU-SYMC, Baseline obtained a statistically bet-



Feature set Baseline PCA Our
approach

DCU-SYMC 0.87±0.07∗ 1.01±0.07 0.96±0.08∗

LORIA 0.84±0.06∗ 0.87±0.06 0.85±0.06∗

SDLLW 0.76±0.05∗ 0.77±0.05 0.76±0.05∗
TCD 0.82±0.06∗ 1.00±0.05 0.83±0.06∗

UEDIN 0.86±0.06∗ 0.85±0.05 0.86±0.05∗

UPV 0.82±0.06∗ 0.83±0.05 0.78±0.05∗

UU 0.81±0.05∗ 0.81±0.05 0.82±0.06∗

WLV-SHEF 0.84±0.05∗ 0.84±0.05 0.82±0.05∗

Table 3: RMSE and 95% confidence intervals of the
predictions for the test partitions. Best mean results are
displayed boldface. Asterisks denote a significant dif-
ference in performance (paired re-sampling, 95% con-
fidence) respect to both the other two methods.

ter result than PCA and our approach; for LORIA
and TCD, no statistically significant difference was ob-
served between our approach and Baseline but both sys-
tems obtained a statistically better result than PCA; for
UPV and WLV-SHEF, our approach statistically out-
performed the other two methods; and for SDLLW,
UEDIN and UU, no significant differences were found.

These were quite surprising results. Given the
encouraging RMSE improvements observed in cross-
validation (see Table 2), we expected to obtain similar
differences over Baseline in test. We followed a care-
ful cross-validation training process (see Section 3.3)
where each experiment was evaluated in a held-out test
fold used neither to reduce the dimensionality nor to
estimate the prediction model. Therefore, we hypothe-
sized that the explanation for the results in Table 3 was
that the training partitions were not representative of the
test partitions. We evaluated this hypothesis by means
of a series of multivariate Hotelling’s two-sample T2

tests [23]. The objective of these tests is to determine
if two samples (in our case the values of the features in
the training and test partitions) have been sampled from
the same population or not. The results of the tests in-
dicated that, for all feature sets, the training and test
partitions were indeed statistically different (p< 0.01).
In contrast, no statistical difference was found, for any
of the feature sets, between the dev-train and dev-test
folds used in the cross-validation training process.

In a more fine-grained analysis, we study individ-
ually the features in each set. The results of a series
of Student’s two-sample t-tests [21] indicated that most
of the features did exhibit statistically different values
(p < 0.01) between training and test. E.g., the value

DCU-SYMC 45.1% UEDIN 48.1%
LORIA 24.5% UPV 67.4%

SDLLW 73.3% UU 38.8%
TCD 30.2% WLV-SHEF 28.6%

Table 4: Ratio of the features in each set that have sig-
nificantly different values in the training and test parti-
tions. These ratios reduce to about 1% in the dev-train
and dev-test cross-validation folds. Significance com-
puted by Student’s two-sample t-test (99% confidence).

one of these “mismatched” features in the UPV set was
µ= 1.7 (σ = 1.4) in training, and µ= 0.9 (σ = 0.8) in
test. In contrast, only about 1% of the features exhibit
different values between the cross-validation dev-train
and dev-test folds. Table 4 displays, for each set, the
percentage of “mismatched” features between the train-
ing and test partitions.

This mismatch can be partially explained by the fact
that the training and test partitions contain news texts of
different years [1], but we still consider that the main is-
sue is the size (only 1832 samples) of training partitions
that did not adequately represent test partitions. How-
ever, both our approach and the baseline systems had to
deal with this mismatch, so, why our method and PCA
seemed to be more heavily penalized than Baseline?

The projection of the features is computed based on
the training data. Thus, if the training partition is not
representative of the test partition, the reduced feature
sets will be projected in a “direction” that may penalize
the prediction accuracy for the test set. That is, crucial
information to predict the quality scores of the test par-
tition may be stripped out. This drawback is common to
any dimensionality reduction technique as exemplified
by the also poor test results (Table 3) obtained by PCA.

The conclusion that can be extracted from these re-
sults is that the use of feature reduction implies a greater
risk of over-training the prediction system. This effect
particularly important if training data is scarce but it is
mitigated as more training data is available. Thus, given
the encouraging cross-validation results in Table 2, bet-
ter prediction accuracy could be expected in test when-
ever an adequate training partition is provided.

Under the assumption that the original features can
be computed in advance, a complimentary advantage
of the studied two-step QE approach is that it allows
us to build more time-efficient QE systems. Figure 3
displays the time required to build an SVM model (in-
cluding meta-parameter optimization) and obtain the
test predictions as a function of the number of features



 0

 40

 80

 120

 160

 200

 0  20  40  60  80  100

time [s]

# of features

Baseline

Our approach

Figure 3: Operating time (training plus prediction) of
the SVM model as a function of the number of features
used to built the model. Baseline system was trained
with the 147 original features of the WLV-SHEF set.

used to train the model. Specifically, we built QE sys-
tems with an increasing number of LVs extracted from
the WLV-SHEF feature set. Each point in the figure
is the average time of ten experiments. Results show
how operating times increased with the number of LVs.
For instance, the operating time of the baseline model
trained with the original 147 features (0.84 RMSE) was
∼200 seconds, while the operating time of the system
built with the 14 LVs extracted by PLS (0.82 RMSE)
was only ∼15 seconds which represents one order of
magnitude less operating time. Hence, our approach is
well-suited to be applied to scenarios, such as interac-
tive MT [3], with strict temporal restrictions.

4.2. Exploiting the scalability of our approach

Results in the previous section have shown that the stud-
ied QE approach was able to extract the relevant predic-
tion information from different sets of noisy features.
We now take a further step in this direction and present
results where all the features used in the previous exper-
iments are joined together to create an extremely high-
dimensional feature set from which to predict quality
scores. This aggregated set, denoted by ALL, contains
1197 features for each translation; approximately 55%
of them being collinear with the rest.

Figure 4 shows cross-validation prediction accuracy
(RMSE and 95% confidence interval) of the studied QE
approach as a function of the number of LVs. Again,
we also display results for a baseline SVM model built
using all the features, and for a system built using
PCA instead of PLS. Our approach obtained a score of
0.45±0.01 RMSE with only 86 LVs. This result rep-
resents a 30% reduction relative to the baseline RMSE
calculated with 1197 features. Regarding PCA, it barely
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Figure 4: Cross-validation learning curve for the high-
dimensional (1197 features) ALL set.

reached Baseline performance. These results indicate
that our approach was able to exploit the information
contained in the ALL set to improve prediction accu-
racy. In contrast, both Baseline and PCA were unable
to adequately manage the huge number of noisy and
collinear features. Additionally, the operating time of
the Baseline systems was ∼ 23 minutes, while it re-
duced to∼2 minutes when we used the optimal 86 LVs.

Test results were again quite disappointing: 1.4±0.1
RMSE of our approach versus 0.78± 0.06 RMSE of
Baseline and 0.81±0.07 of PCA. We hypothesize that
the clearly worse result of our approach in this case was
due to the larger number features. As more features are
available, our system can generate more “specialized”
LVs. Given that the training data does not adequately
represents the test data (see discussion in §4.1), this bet-
ter projection (as shown in Figure 4) actually hinders
prediction accuracy in the test set.

5. Summary

We have described an empirical study of a two-step
QE approach specifically designed to manage the noisy
features usually derived from natural language sen-
tences. This approach, first described in [8] implements
a method based on PLS to extract, from the original
features, the LVs that actually govern translation qual-
ity, and an SVM model to actually predict the quality
scores from these LVs.

Empirical cross-validation results showed that the
studied QE approach was able to obtain very large fea-
ture reduction ratios, and at the same time, it usually
outperformed systems built with all the original features
and systems that use PCA instead of PLS to reduce the
dimensionality. Unfortunately, results in the held-out
test partitions were disappointing. The results of differ-



ent statistical tests seem to indicate that this was due to
the small size of the training partitions. Hence, larger
RMSE improvements could be expected in test when-
ever a representative training partition is provided.

A complimentary advantage of the studied QE ap-
proach is its time-efficiency. This fact makes our ap-
proach well-suited to be deployed in scenarios with
strict temporal restrictions, such as interactive MT sys-
tems. Alternatively, we could take advantage of this
efficiency to predict translation quality from huge sets
of features. Results in this direction show that our ap-
proach was able to efficiently manage more than a thou-
sand features largely improving prediction accuracy.
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[18] J. González-Rubio, A. Sanchı́s, and F. Casacuberta,
“PRHLT submission to the WMT12 quality estimation
task,” in Proceedings of the 7th Workshop on SMT,
2012, pp. 104–108.

[19] C. Hardmeier, J. Nivre, and J. Tiedemann, “Tree ker-
nels for machine translation quality estimation,” in Pro-
ceedings of the 7th Workshop on SMT, 2012, pp. 109–
113.

[20] M. Felice and L. Specia, “Linguistic features for qual-
ity estimation,” in Proceedings of the 7th Workshop on
SMT, 2012, pp. 96–103.

[21] W. Gosset, “The probable error of a mean,” Biometrika,
no. 1, pp. 1–25, 1908.

[22] Y. Zhang and S. Vogel, “Measuring confidence inter-
vals for the machine translation evaluation metrics,” in
Proc. of the Conference on Theoretical and Method-
ological Issues in Machine Translation, 2004.

[23] T. Anderson, An Introduction to Multivariate statistical
Analysis. New York: Wiley, 1958.




