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Abstract 

In this paper, we apply a set of approaches to, efficiently, 

rescore the output of the automatic speech recognition over 

weather-domain data. Since the in-domain data is usually 

insufficient for training an accurate language model (LM) we 

utilize an automatic selection method to extract domain-related 

sentences from a general text resource. Then, an N-gram 

language model is trained on this set. We exploit this LM, 

along with a pre-trained acoustic model for recognition of the 

development and test instances. The recognizer generates a 

confusion network (CN) for each instance. Afterwards, we 

make use of the recurrent neural network language model 

(RNNLM), trained on the in-domain data, in order to 

iteratively rescore the CNs. Rescoring the CNs, in this way, 

requires estimating the weights of the RNNLM, N-gramLM 

and acoustic model scores. Weights optimization is the critical 

part of this work, whereby, we propose using the minimum 

error rate training (MERT) algorithm along with a novel N-

best list extraction method. The experiments are done over 

weather forecast domain data that has been provided in the 

framework of EUBRIDGE project. 
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1. Introduction 

A major problem in domain-specific speech recognition is the 

lack of sufficient in-domain data for acoustic modeling and 

language modeling. In the case of language modeling, one 

could train a n-gram based LM using a huge set of out of 

domain data and, then, adapt it to the domain using a given set 

of in-domain data and some adaptation techniques such as the 

ones described in [1], [2] and [3]. 

In this paper, we focus on the language modeling part and we 

introduce efficient approaches for post-processing the output 

of the automatic speech recognition (ASR) system. The 

recognizer generates the word graphs for each utterance. Then, 

we convert them into the Confusion Network (CN) forms. This 

form yields better oracle word error rate (WER) in comparison 

to the N-best list and word graphs. Then, we go through an 

iterative decoding approach for rescoring the confusion 

networks.  

For rescoring the CNs, we adopt an approach similar to the 

one described by A. Deoras [4], in particular  we combine, 

using iterative decoding, word posterior, RNNLM and 

NgramLM probabilities. The RNNLM is trained on the small 

(about 1 million words) set of in-domain data, which consists 

of captioning of weather forecast news. The reason for using 

RNNLM is that it has proven to exhibit good performance 

even if trained on small sizes of training data [5]. In order to 

estimate the weights to be assigned to RNNLM, NgramLM 

and posterior probability scores, we utilize Minimum Error 

Rate Training (MERT) technique [6] along with a novel 

method for extracting the N-best lists from the CNs. 

In Section 2 we will describe the acoustic models and the 

baseline LM employed in the experiments, as well as the 

process for generating word graphs and confusion networks. A 

description of the iterative decoding approach is given in 

Section 4. In Section 4 we describe the MERT approach 

developed for learning the weights of the various models used 

in the rescoring step. Section 5 describes the development/test 

corpora used and reports the experiments and results. Finally, 

Section 6 concludes the paper. 

1.1. Related Works 

The N-gram language model is commonly used in speech 

recognition systems. Simplicity and low computational 

complexity are the most important factors of this type of 

language model which has made it quite popular among the 

researchers. During the years, different extensions have been 

made on top of this model to overcome its deficiencies such as 

data sparseness, generalization and curse of dimensionality. 

The back-off techniques [7] and the discounting methods [8], 

[9] are the main extensions over the N-gram LM which are 

mostly based on making an interpolation between the shorter 

contexts. However, since in the N-gram LM the words are 

seen as discrete entities, computing interpolation between their 

probabilities is, in principle, not possible. 

An attempt to change the representation of the words in 

language modeling was done by Y. Bengio [10], when he 

introduced the neural network LM. In this model, the words 

are represented as the binary vectors. Schwenck [11] added a 

projection layer to the NNLM and named it the continuous 

space language model. The projection layer converts the 

binary word vectors into the real number vectors. He also 

applied this model in a large vocabulary continuous speech 

recognition system. The probability of the words in these feed 

forward NNLMs depends on a limited context (the same as the 

N-gram LMs). T. Mikolov [5] proposed the recurrent neural 

network LM in which the context is not constrained by a 

Markov window. The recursive arcs in the hidden layers work 

as a cache to save the impact of the previous words. 

These neural network approaches have shown better 

performance in terms of Perplexity; however, applying them 



directly in the ASR decoder is costly in computation and 

memory. A common solution is to utilize these models for 

rescoring the N-best list produced by a traditional ASR 

decoder which uses a finite state network constructed from a 

lexicon and an N-gram LM. 

However, N-best list rescoring is not the best way to benefit 

from the high potential of the NNLMs, as the number of the 

hypotheses limited. For example in our case, the oracle word 

error rate of the 1000-best list is around 9.9%, while, the word 

error rate of the 1-best is 10.4%. One could see that there is no 

big gap in-between. Instead of the N-best list, it is also 

possible to rescore word graphs or confusion networks. In our 

case, the oracle word error rate of the word graphs and the 

confusion networks resulted to be 5.5% and 3.4%, 

respectively.  

2. ASR training and CN generation 

For training acoustic models (AMs) we have used audio data 

provided within the EUBRIDGE consortium containing 

recordings of weather forecasts. These recordings come with 

captioning which is not exact transcriptions of the audio so 

that, in order to train tri-phone Hidden Markov Models 

(HMMs) a preliminary  alignment step is carried out between 

automatic transcriptions of the training data and the 

corresponding given captioning. Hence, only the segments of 

audio recordings that align with the corresponding captioning 

are retained for HMM training. After this phase about 30 hours 

of the weather forecasts have been selected for AM training. 

For language modeling, we are given a set of weather 

forecast sentences consisting of about 1 million words. With 

this latter set of sentences we train an in-domain LM which, in 

turn, is used for automatically selecting from a large general 

corpus (see [18]), containing about 1.6 billions of words, the 

sentences with the lowest perplexity. The automatically 

selected sentences, formed by about one hundred million 

words,  are used to train a 4-gram, back-off LM which is 

finally adapted, using the “mix” adaptation method described 

in [2] to the in-domain data. 

From the 4-gram adapted LM, we generate a finite state 

network (FSN), which also embeds the lexicon, that is used in 

two ASR decoding passes (the details of the ASR decoder are 

given in [14]). 

Word graphs (WGs) are generated in the second decoding 

pass. To do this, all of the word hypotheses that survive inside 

the trellis during the Viterbi beam search are saved in a word 

lattice containing the following information: initial word state 

in the trellis, final word state in the trellis, related time instants 

and word log-likelihood. From this data structure and given 

the LM used in the recognition steps, WGs are built with 

separate acoustic likelihood and LM probabilities associated to 

the word transitions. To increase the recombination of paths 

inside the trellis and consequently the density of the WGs, the 

so called word pair approximation [16] is applied. In this way 

the resulting graph error rate was estimated to be around 33% 

of the corresponding WER. 
Consensus decoding, through confusion network (CN) 

generation, allows minimizing the word error rate (WER) of 

sentence hypotheses, instead of maximizing the related 

posterior probability or, equivalently, minimizing the sentence 

error rate [15]. A CN is formed by a concatenation of 

confusion bins, each containing a list of word hypotheses with 

related posterior probabilities. Basically, a CN is generated 

from a given WG  by: 1) identify CN bins inside the WG 

corresponding to the non-overlapped time windows, 2) merge 

all the transitions inside a bin that share the same word (word 

posterior in a bin is the sum of all the corresponding link 

posterior in the original WG).  In this work, the CNs are 

produced using the algorithm described in [15] and the 

software package described in [17]. 

3. Iterative CN decoding 

The method of iterative Confusion Network decoding has 

already been proposed by A. Deoras [4]. Thus, for further 

details, we refer the readers to this paper. Here, we briefly 

describe this method with some variations in our own work. 

As mentioned above, a confusion network is a 

concatenation of bins. The process of iterative decoding, starts 

from the first bin, re-orders the arcs and shifts to the next one. 

In each bin, the decoder generates some hypotheses. The 

number of these hypotheses is equal to the number of the arcs 

in that bin.  Different hypotheses are created by changing a 

word in the sentence with the words of the bin. Thus, all the 

hypotheses in each bin differ in just one word. To each 

hypothesis, the feature functions assign a score. The feature 

functions, in our case, are RNNLM, N-gramLM, Posterior and 

Length (the number of the words). The lengths of the 

hypotheses may differ if there is a null arc in the bin. Then, the 

scores are interpolated and the resulted score is used to re-

order the arcs. After finishing processing a bin, the decoder 

moves to the next bin and repeats this step. By reaching at the 

last bin, the score of the best hypothesis (the one which is 

obtained by concatenating the first arcs) is computed. If this 

score is better than the one obtained from the previous 

iteration, the decoder continues this step, otherwise, it stops. 

To illustrate the process, we assume a confusion network 

(CN) consisting of four bins (A, B, C and D): 

]}..[],..[],..[],..[{: 1111 dcba nnnn ddDccCbbBaaACN  

Here, na is the number of the arcs in the bin A, and so on. 

Each bin contains a number of arcs and some contents which 

are assigned to the arcs. These contents are: a word, a 

posteriori score, an LM score and an acoustic model score. 

Thus, each arc can be seen as a structure: 
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The arcs in each bin are ordered according to their 

posteriori scores. Hence, the 1-best hypothesis (e*) in CN is 

made by concatenating the first arcs: 

wdwcwbwae .,.,.,. 1111

*    

a1.w is the word assigned to the first arc of the bin A. When 

the decoder starts processing the first bin (A), it will generate 

na different hypotheses: 
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Note that the hypotheses are different in just one word. In 

order to compare them, we need to compute the new scores. 



The RNNLM and NgramLM scores can be computed by 

applying the LMs on this set of sentences. For the posteriori 

scores, we can sum up the posteriors of all the words in each 

sentence or just consider the posteriori of the changing words. 

Finally, the total score of a sentence is computed by (i=1..na): 
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The length function should be taken into account to avoid 

being biased towards the short/long sentences. The weights (λ) 

can be estimated on a development set and by using the 

optimization techniques. 

The critical parts of this method are: selection of the feature 

functions, and estimation of the weights. In the next section, 

we describe the MERT algorithm which is a type of machine 

learning approach for estimating the weights. 

4. Minimum Error Rate Training 

The MERT algorithm was first introduced by F. Och [6] for 

using in a statistical machine translation (SMT) task. The 

algorithm is based on training a parameter model on a set of 

N-best targets and optimizing the model. The optimized 

model generates a new set of N-best targets. This set is 

merged with the one from the previous iteration. 

For a reference instane like fs we aim at finding a candidate 

in e (that is the corresponding N-best list) which maximizes 

the total score. 
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In the equation, Cs is the N-best list suggested for fs. The 

parameters hm and λm are the function and weight of the mth 

feature, respectively. In our case, we have four feature 

functions: RNNLM, N-gramLM, Posterior and length. 

The optimized weights for the feature functions can be 

obtained by solving a minimization problem over the error 

function E(rs,es). 
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The value S is equal to the number of the sentences in the 

development set. 

In the extended version of MERT developed by N. Bertoldi 

et al. [12], the algorithm is run in two loops: the outer loop and 

the inner loop. Starting from initial weights in the outer loop, 

the decoder processes the input instances and generates the 

corresponding N-best list. This list is used to feed the inner 

loop where the weights are optimized. The inner loop 

continues optimizing the weights till the time that there is no 

big change in the weights. 

The new weights are again used to run the decoder and 

generate the new N-best lists. In order to make sure that there 

is enough diversity among the N-best lists, the new list is 

combined with the previous one. The outer loop is iterated 

until the time that no considerable change is observed in 

WER. 

4.1. The M-best Extraction Method 

The decoder that is used in our work has been explained in the 

Section 2.1. The output of this decoder is an N-best list which 

is extracted from the confusion network. Given a confusion 

network, one could use a simple A* search algorithm to 

extract the N-best list from the network. This method that is 

already embedded in SRI toolkit uses the posterior scores of 

the arcs in order to output the N-bests. Since, the value of N is 

limited, the number of the hypotheses will be limited. 

Therefore, there would be some words in some bins that can 

never be seen among the hypotheses. It means that, the 

rescoring process might be again entangled in the lack of 

hypotheses. This is exactly the problem that is existed with 

simply rescoring the N-best lists.  

In this paper, we propose an efficient method for extracting 

the candidate list for MERT and we call it “M-best list”. In 

this method, all the possible hypotheses that can be generated 

in each bin are merged and considered as the N-best list of that 

step. Therefore, assuming CN as the decoded confusion 

network, the extracted M-best list includes: 
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Note that the maximum size of M would be equal to: 

)1()1()1(  dcba nnnn   

While, the maximum number of the hypotheses is: 

dcba nnnn    

The advantages of this method are: 1) the MERT algorithm 

can see and process all the possible words in its inner loop; 2) 

there is no boundary for the size of M. According to the size of 

the confusion network, the number of the sentences could be 

different, while in the traditional method, this size is limited to 

N. 

The scores of each of these sentences are computed as 

before. The posterior score of a sentence is also computed by 

summing up all the posteriors of the words in the sentences. 

5. Experiments and Results 

In this section, we first describe the details of the corpus that is 

exploited in this work. Then, we go through the experiments. 

The reported experiments are arranged as follows: 

 Generating the confusion networks on the 

development and test instances. 

 Using Grid search approach for estimating the weights 

 Using MERT approach for estimating the weights 

We perform these experiments on two sets of confusion 

networks: one generated using the Bi-gramLM and the other 

generated using the 4-gramLM.     

5.1. The Corpus 

The dataset that we have used to analyze and evaluate our 

approaches is in the domain of weather forecast news, 



provided for the EU-BRIDGE project. As mentioned in the 

Section 2, in this dataset there is an in-domain text set that is 

around 1 Million words. This data has been used to train the 

RNNLM and also to select the auxiliary data from the out-of-

domain resource. There is also a domain-related text set about 

100 MW that has been selected automatically (see Section 2 

for the method of selection). The latter set is used to train the 

Bi-gramLM and 4-gramLM that are used along with the pre-

trained acoustic models to generate the ASR output and also 

the Confusion Networks. 

The development and test sets contain 32 and 650 

utterances, respectively. The MERT algorithm is run over the 

development set, in order to estimate and optimize the desired 

weights for rescoring. Obtaining the optimized weights, the 

iterative decoding is performed on the test set to rescore the 

confusion networks. 

5.2. Experiments 

By using the IRSTLM toolkit [13], we train a Bi-gram and a 4-

gram back-off, modified shift beta smoothed language models 

on the domain-related set (100MW) and we used them in the 

ASR decoder for generating two different sets of word graphs 

(one with Bi-gram and one with 4-gram LM). The ASR 

engine, used for this task is described in [14]. Afterwards, we 

use the SRI toolkit [17] to convert the word graphs into the 

confusion networks. At the end, we have two different sets of 

confusion networks: one created by using the Bi-gramLM and 

the other by 4-gramLM. The motivation of generating these 

two sets is to assess the performance of the iterative decoding 

approach (by the Bi-gram CNs), and improving the results (by 

the 4-gram CNs). 

The confusion networks created in this way contain lots of 

useless bins with null arcs. This number of useless bins 

dramatically increases the computational cost. Hence, we filter 

the confusion networks according to the posterior of the null 

arcs, i.e. all the bins containing null arcs with higher posterior 

than 0.99 are eliminated. This filtering decreases the average 

number of the bins per CN up to 92 percent (without changing 

the WER). 

The resulted CNs yield 16.4% and 10.4% WER on the 

development set and 20.2% and 14.3% WER on the test set for 

both Bi-gram and 4-gram CN sets, respectively (see Table 1 

and 2). 

In order to rescore the confusion networks, we use a 

RNNLM trained on the in-domain data. The RNNLM is built 

by the toolkit developed by T. Mikolov, et al [5]. For 

combining the scores from RNNLM, 4-GramLM, posterior 

and length, a simple linear interpolation is applied. In order to 

estimate the weights of these feature functions, we chase two 

different methods: Grid search and MERT. 

For applying the Grid search algorithm, we simply consider 

an interval from zero to one to assign a weight to each feature 

function: 
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By each set of the values, we decode the development 

confusion networks and the best set is selected to be used on 

the test set. One could find the results of this method in the 

second row of the Tables 1 and 2.  

Furthermore, we use the MERT algorithm on the 

development set. In this way, we exploit the proposed method 

for extracting the M-best lists at the end of each iteration of 

the decoder. Then, MERT is run to process the M-best list and 

optimize the weights. On this development set, MERT usually 

stops at the fourth of fifth iteration. A reason could be the lack 

of the feature functions. Here, we have just four functions that 

might not be sufficient. Another reason is the lack of the 

development data. Nevertheless, in order to validate the 

weights, suggested by MERT, we ran the algorithm several 

times on the development set and we selected the best one. 

The results of this method can be found in the third row of the 

Tables 1 and 2.   

Table 1: The WER results on the confusion networks created 

by the Bi-gramLM 

 Dev Test 

Baseline 16.4 20.2 

RNNLM-Grid-ItDec 14.1 18.9 

RNNLM-MERT-ItDec 13.5 18.3 

Table 2: The WER results on the confusion networks created 

by the 4-gramLM 

 Dev Test 

Baseline 10.4 14.3 

RNNLM-Grid-ItDec 10.2 14.3 

RNNLM-MERT-ItDec 9.5 14.0 

 

As it can be seen from the tables, the results of the 

confusion networks created by using the 4-gramLM are 

apparently better, because the 4-gramLM is more accurate. 

Note, that the training set and the procedure of training these 

two LMs are completely the same. Exactly because of the 

same reason, the improvement in the experiment on the Bi-

gramLM is higher. Again, note that the RNNLM used for 

rescoring both sets of confusion networks is the same. 

Therefore, one could evaluate the performances of the 

iterative decoding and the MERT algorithm. Finally, we can 

see a slight improvement by using the MERT algorithm over 

the Grid search. It means that the weights suggested by MERT 

are more efficient than the Grid search. Moreover, the number 

of iterations taken by MERT is fewer. For example, in MERT, 

the weights are estimated in 4 or 5 iterations, while for Grid 

search, we need 66 iterations (according to the intervals 

considered for the weights in Eq. 4). 

There are some deficiencies in the experiments: 

 The size of the development set is small and 

insufficient to have a better weight estimation. 

 There are a few feature functions that are not enough 

for MERT to give a reliable estimation. 

 The size of the training set of the RNNLM (1MW) is 

not comparable with the N-gramLM (100MW). 

Considering these deficiencies, we are designing the future 

experiments, in particular by using more RNNLMs. Due to 

the complexity of the RNNLM structure, it’s not efficient to 

build it on the big training sets. A wise solution would be to 

train several RNNLMs on the separated parts of the training 

set, and then use them as the new feature functions. 

6. Conclusion 

A set of approaches were introduced and analyzed for 

improving the process of rescoring the domain-specific ASR 

output. Instead of the common N-best list rescoring, we used 



confusion network rescoring that yields better oracle WER. 

An iterative decoding approach was used for rescoring the 

confusion networks and improving the output. Additionally, 

we applied the MERT algorithm to optimize the weights of 

the feature functions more efficiently. We also introduced a 

novel approach for extracting the N-best list from the 

confusion network that improves the affect of MERT 

optimization process. 
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