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Abstract

This paper describes the MIT-LL/AFRL statistical MT system
and the improvements that were developed during the IWSLT 2013
evaluation campaign [1]. As part of these efforts, we experimented
with a number of extensions to the standard phrase-based model that
improve performance on the Russian to English, Chinese to English,
Arabic to English, and English to French TED-talk translation task.
We also applied our existing ASR system to the TED-talk lecture
ASR task.

We discuss the architecture of the MIT-LL/AFRL MT system,
improvements over our 2012 system, and experiments we ran dur-
ing the IWSLT-2013 evaluation. Specifically, we focus on 1) cross-
entropy filtering of MT training data, and 2) improved optimization
techniques, 3) language modeling, and 4) approximation of out-of-
vocabulary words.

1. Introduction

During the evaluation campaign for the 2013 International Work-
shop on Spoken Language Translation (IWSLT-2013) [1] our exper-
imental efforts centered on 1) cross-entropy filtering of MT training
data, and 2) improved optimization techniques, 3) language model-
ing, and 4) approximation of out-of-vocabulary words.

In this paper we describe improvements over our 2012 baseline
systems and methods we used to combine outputs from multiple
systems. For a more in-depth description of the 2012 baseline sys-
tem, refer to [3].

The remainder of this paper is structured as follows. Section 2
presents our work on the MT task, and discusses language indepen-
dent algorithms. Section 3 discusses our MT algorithms for specific
language pairs. Section 4 describes final systems and results. Sec-
tion 5 presents our work on the automatic speech recognition (ASR)
task.

†This work is sponsored by the Air Force Research Laboratory under
Air Force contract FA8721-05-C-0002. Opinions, interpretations, conclu-
sions and recommendations are those of the authors and are not necessarily
endorsed by the United States Government.

2. Machine Translation
2.1. IWSLT-2013 Data Usage

We submitted systems for the English-to-French, Russian-to-
English, Chinese-to-English, Arabic-to-English, and Farsi-to-
English MT tasks. We used data supplied by the evaluation for each
language pair [2] for training the baseline system, and approved out-
of-domain data for the remainder. Unless otherwise noted, we used
the optimization data set dev2010 supplied by IWSLT 2013.

2.2. Baseline MT System

Our baseline system implements a fairly standard SMT architec-
ture allowing for training of a variety of word alignment types and
rescoring models. It has been applied successfully to a number
of different translation tasks in prior work, including prior IWSLT
evaluations. The training/decoding procedure for our system is out-
lined in Table 1. Details of the training procedure are described
in [4].

Training Process
1. Segment training corpus
2. Compute GIZA++, Berkeley and Competitive Linking

Alignments (CLA) for segmented data [6] [11] [12]
3. Extract phrases for all variants of the training corpus
4. Split word-segmented phrases into characters
5. Combine phrase counts and normalize
6. Train language models from the training corpus
7. Train TrueCase models
8. Train source language repunctuation models

Decoding/Rescoring Process
1. Decode input sentences using base models
2. Add rescoring features (e.g. IBM model-1 score, etc.)
3. Merge n-best lists (if input is ASR n-best)
4. Rerank n-best list entries

Table 1: Training/decoding process

2.2.1. Phrase Table Training

When building our phrase table, we applied Kneser-Ney discount-
ing [5] to the forward and backward translation probabilities of the



phrases extracted during word alignment. In the past, we have com-
bined multiple word alignment strategies, as described in [6]. For
the experiments described here, we used only IBM model 4 or 5 for
word alignment (see [7] and [8]), to keep the statistics appropriate
for discounting.

2.2.2. Baseline Language Model Training

During the training process we built n-gram language models (LMs)
for use in decoding/rescoring. We performed TrueCasing and re-
punctuation using 2-gram language models and disambig from
the SRI toolkit. The MIT Language Modeling Toolkit [10] was
used to create interpolated Kneser-Ney LMs in all cases. Additional
class-based language models were also trained using mkcls [9] for
rescoring. Most systems made use of 7-gram language models for
rescoring trained on the target side of the parallel text.

2.2.3. Optimization, Decoding, and Rescoring

Our translation model assumes a log-linear combination of phrase
translation models, language models, etc.

logP (E|F) ∝
∑
∀r

λrhr(E,F)

To optimize system performance we train scaling factors, λr ,
for both decoding and rescoring features so as to minimize an ob-
jective error criterion. In our baseline systems, this is done us-
ing a standard Powell-like grid search performed on a development
set [13].

A full list of the independent model parameters that we used
in our baseline system is shown in Table 2. All systems generated
n-best lists that are then rescored and reranked using either a maxi-
mum likelihood (ML) or an minimum Bayes risk (MBR) criterion.

Decoding Features
P (f |e)
P (e|f)

LexW (f |e)
LexW (e|f)

Phrase Penalty
Lexical Backoff
Word Penalty

Distortion
P (E) – 6-gram language model

Rescoring Features
Prescore(E) – 7-gram LM

Pclass(E) – 7-gram class-based LM
PModel1(F|E) – IBM model 1 translation probabilities

Table 2: Independent models used in log-linear combination

The moses decoder [14] was used for our baseline system.
This system serves as the starting point for our all experiments sub-
mitted during this year’s evaluation. As described in the follow-
ing sections, we implemented several techniques for generating im-
proved phrase tables and language models, and experimented with
using these techniques both individually and in combination.

2.3. Cross-Entropy Filtering

Based on the success of cross-entropy training data filtering [15]
in last year’s evaluation [16], we have continued experimenting
with the technique across different language pairs. We used a 3-
gram language model based filter, and experimented with LM cross-

Corpus Before Filtering After Filtering
TED 141,387 141,387
FrEn 109 24,116,560 824,698
UN 12,886,831 220,066
Europarl 2,007,723 76,554
News Commentary 137,097 1,735
TOTAL 39,289,598 1,264,441

Table 3: Cross-entropy data sizes, using the minimum-perplexity
method

entropy filtering on each of our systems across different language
pairs.

We train a language model on a random subset of the out-of-
domain corpus, of the same size as the TED training data. We
then sort all sentences in the corpus based on the difference between
their cross-entropy given the out-of-domain model and their cross-
entropy given the TED language model. The filtered data is taken to
be the highest scoringN sentences. We chose the sizeN in two dif-
ferent ways. First, we simply chose N to be some specific fraction
of the data (for example, 5%, 10%, 15%, and 20%). Alternatively,
we used an automated approach [17] that uses an information-
theoretic estimate of the data size. We train new language models
on the best 1/64, 1/32, 1/16, 1/8, 1/4, and 1/2 of the corpus. We
selected the filter size that produced the language model with the
minimum perplexity on the dev2010 dataset. To filter the parallel
data, we combined the perplexity thresholds that produced the best
source and target language models for the dev2010 dataset.

In general, we aggregated together all out-of-domain parallel
data, and performed filtering on the resulting set of sentences; how-
ever, we also ran an experiment where automatic filtering was per-
formed independently on each out-of-domain corpus.

In English-to-French, when running automatic filtering on each
corpus, this resulted in the selection of 3.2 percent of the overall
data for translation model, as shown in Table 3. We also tried man-
ual filtering settings. In all cases, the translation model was fully
generated from all of the filtered data.

Our manual filtering results were tested on tst2010. In
French, we tried 5%, 10%, and 15%. Starting from the system Con-
trast4 (See Sec 4), changing only the percentage of cross-entropy
filtered data, we obtained mean BLEU scores of 31.78, 32.21, and
31.73, respectively. In Russian, we tried 10%, 20%, 30%, and ob-
tained 16.74, 16.64, and 16.62, respectively, compared to a baseline
score of 17.13. In Chinese, the same percentages yielded scores
of 7.61, 7.37, and 6.57, which were all significantly lower than the
baseline average of 10.93. In Arabic, we obtained 24.23, 23.42, and
23.79, with a baseline of 23.90. We stopped increasing the filter
size when either performance significantly deteriorated, or our job
scheduler terminated Moses (typically when it used more than 200
GB of resident memory).

A list of the corpora can be found in Table 4. In the Chinese
and Arabic to English test sets, we used data from the Multi-UN
corpora that we sentence aligned using Champollion [18] to obtain
the results discussed above. Despite the reasonable sentence pairs
produced, we found no significant improvement in the scores.

2.4. Improvements to Optimization

We introduce a new optimization technique, “Derivative-free robust
error minimization”, or DREM. It is distinguished from MERT by
its (a) coordinate system, (b) objective function, and (c) other pro-
cedural features.



Corpus Lang. Num Sent
Europarl-v7 en-fr 1,495,313
UN ar-en 4,743,378
UN ru-en 8,344,467
UN zh-en 5,948,155
UN en-fr 9,018,500
109 en-fr 15,515,787
News Comm. en-fr 107,756
Common Crawl en-fr 2,563,465
Wiki Headlines ru-en 512,000

Table 4: A list of the parallel out-of-domain data used in Cross En-
tropy filtering. Number of sentences is after filtering out sentences
of length > 40.

Optimizer tst2010 tst2011
DREM 32.82 39.35
MERT 32.41 -
PRO 32.79 39.37
Rampion 32.88 39.10

Table 5: Performance of different optimization methods in English-
to-French, for the submission system configuration (system details
described in Section 4)

With regard to the coordinate system, the weights are tuned
on a variance-normalized multi-dimensional unit sphere, rather
than in the standard Euclidean space. This incorporates the scale-
invariance of the weights and reduces the dimension of the search
space by one. Second, it randomizes the coordinate system at ev-
ery step, which allows it to search in multiple random directions
without multiplying the time and effort required.

There are two main novel features of the objective function min-
imized by DREM. First, the estimated decoder score at a new point
considers how far away the new point is from the decode points. A
translation that was produced at the closest decode will get full trust,
and a translation produced at a more distant decode will be penal-
ized. Second, DREM is not an exhaustive search of the error along a
line. Instead, the error function is sampled around the current point
and modeled by a (quadratic or linear) function via least-squares
regression. This model is minimized around the point, subject to
not moving too far away (a “trust-region” constraint). This both
reduces metric computations and prevents a sharp valley or spike
in the objective function from dominating the behavior, making the
result more robust.

Finally, there are two main procedural features of DREM. First,
the search for optimal weights is restarted at a few of the most
promising of the past decode points, preventing a misstep at an
early iteration from having a lingering effect. Second, we have
control of the error function minimized. We can manipulate the
n-best list into the desired format and use our choice of metrics to
define the error function. For this competition, we transformed the
n-best list into human-readable text and chose the error function
1− 1

2
(Expected BLEU score + Expected Meteor score).

We compare our results from using DREM on our best systems
against MERT, and two other optimization techniques: (a) PRO
(Pairwise Ranking Optimization) due to Hopkins and May [19], and
(b) Rampion, a technique based on Structured Ramp Loss due to
Gimpel and Smith [20]. The results per language can be seen in
Tables 5,6,7,8.

Optimizer tst2010 tst2011 tst2012 tst2013
DREM 19.39 21.46 19.28 21.57
MERT 19.24 21.24 19.30 21.70
PRO 19.67 21.32 19.61 21.71
Rampion 18.88 20.57 18.55 20.44

Table 6: Performance of different optimization methods in Russian-
to-English.

Optimizer tst2010 tst2011 tst2012 tst2013
DREM 11.32 15.74 13.91 14.60
MERT 11.13 14.12 12.28 13.21
PRO 11.87 15.34 13.45 14.52
Rampion 11.10 14.19 12.32 13.22

Table 7: Performance of different optimization methods in Chinese-
to-English.

2.5. Language Modeling

For decoding, a number of different language models were used
in various experiments. In general, the procedure was to train a
single language model for each domain and subdomain. For exam-
ple, we would obtain one language model for each news source of
the English/French Gigaword corpora. We then either (a) interpo-
lated several language models together, using the MITLM toolkit,
or (b) let each language model have its own λi to be optimized
by MERT/DREM/PRO/Rampion, or (c) some combination thereof.
Specific submission details can be found Section 4. A list of the
monolingual data used can be found in Table 9.

We rescored our n-best lists using both class language models
(order-7) and recurrent neural network language models (RNNLM)
[21]. The former were trained on the target side of the cross entropy
filtered data, while the latter were trained on the monolingual TED
data (train.fr/train.en). The recurrent neural network contained 160
hidden units, 300 classes and backpropagation through time of 4.
Additionally, some of the Chinese-English systems used a second
RNN that contained 10 hidden units and 100 classes. RNN was
responsible for substantial gains in most cases. For a summary of
its effects, see Table 10.

2.6. Lexical approximation

Morphologically rich languages pose a challenge for machine trans-
lation systems due to the high number of alternate forms each word
may take. Particularly when the size of the training data is small,
this creates a sparsity problem for word alignments and results in a
higher out-of-vocabulary (OOV) rate. Without specific processing,
unknown words are either output without being translated, or are
omitted, both of which hurt translation quality. To translate these
words, we utilized lexical approximation, which generates align-
ments for unknown words by approximating those of the closest
known word in our GIZA++ word alignments [25].

For each OOV word, we find a series of most-likely candi-

Optimizer tst2010 tst2011 tst2012 tst2013
DREM 25.03 25.68 27.65 26.79
MERT 24.71 25.27 27.48 26.50
PRO 24.88 25.52 27.39 26.97
Rampion 24.05 24.83 26.53 25.83

Table 8: Performance of different optimization methods in Arabic-
to-English.



Corpus English French
Europarl-v7 55,730,697 61,888,789
News Commentary 3,404,297 4,928,120
NewsCrawl ’07-’11 2,309,306,270 616,057,716
FrGigaword v2 N/A 827,241,410
EnGigaword v5 4,195,862,612 N/A
UN 361,878,283 421,687,471
TED 2,719,842 2,800,512
109 668,269,385 810,599,307

Table 9: Summary of monolingual training data used.

Test set RNN? French Russian Chinese Arabic
tst2010 N 32.34 19.34 11.24 25.46

Y 32.82 19.39 11.32 25.49
tst2011 N 38.45 21.14 15.72 26.37

Y 39.35 21.46 15.74 26.23
tst2012 N N/A 19.33 13.92 28.41

Y N/A 19.28 13.91 28.47
tst2013 N N/A 21.41 14.65 28.09

Y N/A 21.57 14.60 28.21

Table 10: Performance of various systems with and without Recur-
rent Neural Network language model rescoring. Scores are average
BLEU over 10 iterations.

dates from word alignments utilizing character-based Levenshtein
distance. We experimented with “approximating” only the in-
vocabulary word with the minimum edit distance (1), and the set
under a particular threshold (2). In the latter case, we weighted
the probabilities of each alignment by the edit distance between the
OOV word and its in-vocabulary approximation.

Table 11 shows the reduction in OOV words and the resulting
performance improvement by using the above techniques. Due to its
higher OOV rate, RU-EN translation benefited more than AR-EN.

Russian Arabic
Processing OOV rate BLEU OOV rate BLEU
None 2.8% 21.85 2.2% 24.08
LA (1) 0.2% 21.86 0.1% 24.08
LA (2) 0.0% 21.98 0.1% 24.11

Table 11: OOV Rate and Mean BLEU scores for LA on tst2013.

As seen in table 11, LA with a set of values under a threshold
performs better than a single replacement, though both provide mi-
nor improvement over not processing OOV words. These results
are likely due to the fact that while edit distance finds close word
forms, there is no guarantee that similar word forms have similar
alignments. Further, an OOV word may have no truly similar words
in our vocabulary, making its approximation unrelated. In this light,
thresholding a set of values provides more possibilities from which
a likely alignment to arise.

2.7. Development set selection

In past evaluations we have always used the development data given
to tune the parameters of our system; however, there is no reason to
suspect that tuning performance is independent of the data used,
nor that the given TED talks will produce optimal weights for de-
coding. We try using alternative data for tuning, extracted directly
from the TED training data. The sentences not chosen are used for
the normal training procedure.

System tst2010 tst2011
En-Fr 29.11 35.42
En-Fr + Dev 29.23 35.74
En-Fr C4 32.01 38.75
En-Fr C4 + Dev 32.01 39.22
Ru-En 18.71 21.17
Ru-En + Dev 18.61 20.44
Zh-En 11.27 14.22
Zh-En + Dev 10.31 14.49

Table 12: Results with and without dev set selection, using
tst2010 as a target. Scores are average BLEU over 10 iterations,
case+punc. C4 refers to the submitted system “Contrastive 4.”

Ideally, a development set should resemble the data one expects
to decode. Given a language model describing the expected test
data, the development set should be drawn from the same distribu-
tion. dev2010 and all evaluation data sets are TED talks, so this is
loosely the case already, but we investigate further refinement of the
development set. We built a selection algorithm that, given a test set
as input, extracts the most similar subset of the TED training data.

Since language models are based off of n-gram counts, our al-
gorithm samples from among the training data to match overall n-
gram count frequency. Our algorithm samples to minimize an ob-
jective function that loosely resembles the KL-divergence between
two language models. (In future work, we will use discounting and
explicitly minimize KL divergence.) Let S and T refer to the se-
lection set and input test set, and let CS(j) indicates the count of
n-gram j in the selection set, CT (j) the analogous count in the test
data. The objective function F (S, T ) we used is:

F (S, T ) =
∑
j

a

(
log

CS(j)

CS
− log

CT (j)

CT

)
a(x) = if x > 0 then x else − 1

3
x

This pseudo absolute-value a(x) is used to penalize spurious
n-grams less than missing n-grams. We tracked n-grams up to order
3, and missing counts in the above formula were given the value
0.1. Table 12 gives the performance of this algorithm on several
experiments.

3. MT Language Specific Algorithms
3.1. Arabic-to-English Morphological Processing

In our Arabic-to-English MT systems for prior year evaluations
[22, 23, 24, 25, 26], we normalized various forms of alef and hamza
and removed the tatweel character and some diacritics before apply-
ing a light Arabic morphological analysis procedure that we called
AP5. Last year, [3] we modified the AP5 procedure to more closely
conform to the Arabic Treebank (ATB) segmentation format used
in the MADA Arabic morphological analysis, diacritization, and
lemmatization system, [27]. This year, we compared the AP5 sys-
tem to MADA directly, seen in Table 15.

All systems with the rule-based MADA+TOKAN processing
outperformed the same system on all test sets with AP5. The de-
gree depended both on the test set and on the optimizer, as seen in
Table 15. The most signifant gains were seen using MERT, with a
1.34 BLEU improvement over AP5 on tst2013. While both anal-
yses regularize affixes and perform stemming, MADA more per-
vasively normalizes character variation and segments more heavily
than AP5, reducing the OOV rate from 7.0% with AP5 to 2.2% with
MADA.



Segmenter BLEU
charSeg 10.37
cmuSeg 9.78
stanSegCTB 10.72
stanSegPKU 10.58
charSeg+cmuSeg 10.71
charSeg+stanSegCTB 10.83
charSeg+stanSegPKU 10.66

Table 13: Comparison of baseline MT systems for Chinese-English
based on vaious word segmenters. The BLEU score is an average
over 10 experiments for tst2010.

3.2. Chinese-to-English Character and Word Segmentation

One challenge of building a machine translation system for Chinese
is the absence of spaces between words. We trained systems based
on a few different word segmenters for the machine translation task
and selected the top performer based on average BLEU score to be
our baseline system for this evaluation. The results of our compari-
son are in Table 13.

The Stanford Chinese Word Segmenter [28] was evaluated us-
ing both the Chinese Penn Treebank (CTB) and the Peking Uni-
versity (PKU) segmentation standards. In addition, the CMU LDC
Word Segmenter [30] and simply segmenting each individual char-
acter were evaluated. GIZA++ was trained using sentences from
each segmentation result. Next, the alignment file for each seg-
menter was further character segmented and combined with the
GIZA++ alignments from the character segmenter before being
used to create the phrase table.

The Stanford CTB segmenter out-performed the other indi-
vidual segmenters, and we saw additional gains from combining
GIZA++ alignments for this segmenter with the character seg-
mented GIZA++ alignments. As a result, we chose to use the
char+stanCTB segmenter for this evaluation.

3.3. Russian-to-English Morphological Segmentation

To compensate for the morphological complexity in Russian, we
experimented with segmentation. We utilized Morfessor Cat-MAP
both to process all the data as well as only for word alignments
(WA), [29]. Table 14 shows the mean BLEU scores for individual
Russian-to-English MT systems trained on the 2013 training data
and tested on the 2010 test set. Morfessor categorizes proposed
segments as prefixes, stems, or suffixes. We both kept all generated
segments, as well as only stems.

RUSSIAN
Processing OOV rate BLEU
None 5.0% 17.26
Stems for WA only 3.3% 16.44
Morfessor Stems 4.5% 16.15
Morfessor All Segs 2.4% 16.54

Table 14: Russian-Specific Experiments, OOV rate and BLEU
scores for tst2010.

Though processing the data with Morfessor decreased the OOV
rate by up to 51.6%, BLEU score decreased. Though word align-
ments were improved, it was more difficult to organize a greater
number of target words into meaningful sentences. Before segmen-
tation, source sentences had on average 14.2 tokens per sentence
against 17.12 for English, the relation we would expect given the
morphological complexity of Russian. With the best segmentation

result (see Table 14) we have 19.3 tokens per Russian sentence. An
explanation for poorer performance, then, is that instead of bringing
sentence lengths closer together and making fertility closer to 1:1,
segmentation widened the gap between the two languages.

4. MT Submission Summary
The different experiments we ran in Sections 2 and 3 of this paper
played different roles in the submission systems of different lan-
guages. In this section we describe the systems that were submitted,
and their respective scores. In the tables that follow, the following
abbreviations are used:

• lexDist: Refers to the moses lexicalized reordering model
wbe-msd-bidirectional-allff

• dunk: Drop unknown words

• (corpus 1)· · · (corpus n) LM: Linear interpolation of several
LMs

• RNNx: RNN order x

• FiltLM: Data for language model filtered via Cross Entropy
with TED LM (not interpolated)

• LA: Lex approx

System combinations were trained using the tst2010. We
therefore omit scores for tst2010 on those systems.

It is also worth noting that systems trained at MITLL used man-
ual cross entropy filter sizes, while those at AFRL used minimum
perplexity threshold filter sizes. This is mentioned in the discussion
sections.

4.1. English-to-French

For French, our best system for tst2013 (which was submit-
ted as contrastive) used a single order 5 language model from the
MITLM toolkit, consisting of the following LMs linearly interpo-
lated (using the MITLM toolkit) on dev2010: TED, Europarl-
v7, News-Commentary-v7, News-Crawl2007, News-Crawl2008,
News-Crawl2009, News-Crawl2010, News-Crawl2011, and the
109 corpus. We found inclusion of LDC French Gigaword v2 did
not improve the performance of this language model. The phrase
table was filtered at 10% extra data using cross entropy, without
using Common Crawl. Our other French systems used a combi-
nation of a 6th-order TED language model, and a linearly interpo-
lated language model over LDC Gigaword v2, Europarl, and News
Commentary data set. Results are in Table 15. The phrase ta-
bles were obtained using cross-entropy filtering with minimum per-
plexity thresholds on each of the data sets, and including Common
Crawl.

4.2. Chinese-to-English

Table 15 describes each of the systems we submitted for the
Chinese-English portion of the machine translation task. Our pri-
mary system is a combination of four different systems.

The best-scoring single system on the tst2010 data set was
the PRO-optimized system, so we decided to set the system combi-
nation weights to favor the PRO system over the others. However,
the DREM system scored the best for the other data sets. Our con-
trastive2 submission had a significantly higher weight for the PRO
system compared to the weight for our primary submission. Perhaps
we would have seen even higher scores for the tst2013 data set
if we had set the weights higher for the DREM system. When per-
forming system combination, the primary and contrastive2 systems
used different prior weights during training.



4.3. Russian-to-English

Table 15 describes each of the systems we submitted for the
Russian-English portion of the machine translation task. Our pri-
mary system is a combination of three different systems. Our
best system on tst2013, improperly tokenized when submitted
as Contrast3†, used a single 4th-order language model from the
MITLM toolkit, consisting of the following LMs linearly interpo-
lated (using the MITLM toolkit) on dev2010: TED, MultiUN,
Wikipedia headlines, and LDC English Gigaword v5. The phrase
table kept 20% of extra data using cross entropy filtering, and used
Wikipedia Headlines + United Nations data. Our other Russian sys-
tems used a combination of a 6th-order TED language model, and a
linearly interpolated language model over the LDC Gigaword, Mul-
tiUN, and News-Crawl2007, News-Crawl2008, News-Crawl2009,
News-Crawl2010, News-Crawl2011 corpora. For the cross entropy
filtering, we used News-Commentary-v7 and the News-Crawl cor-
pora with minimal perplexity thresholds.

4.4. Arabic-to-English

Before the deadline, we were only able to submit results for AP5
with various optimization. However, we include in the table results
for MADA, which significantly outperforms the submitted systems.

5. Automatic Speech Recognition
Acoustic training data for our ASR systems were harvested from
838 TED Talks. We applied the same alignment and closed caption
filtering process as IWLST 2011 [26], except that each utterance
was padded by a maximum of 0.25 seconds (instead of 2.0 seconds)
and the filtering threshold was set to 30% WER (Word Error Rate).
This yielded 166 hours of audio.

A GMM-HMM system was trained using Perceptual Linear
Prediction (PLP) features. This system was developed using the
same training procedure as our IWSLT 2011 system, except that
this year we applied mean and variance feature normalization on a
per speaker basis. The updated data partition and feature normaliza-
tion yielded a 1.0% WER reduction on dev2010, tst2010, and
dev2012.

A secondary GMM-HMM (GMM-HMM-2) system was trained
in a similar fashion as the prior, but using the CMU Pronounc-
ing Dictionary [31]. Missing dictionary entries from the training
data were generated by training a grapheme-to-phoneme model us-
ing Sequitur G2P, an open-source grapheme-to-phoneme converter
[32]. This system did not quite reach the performance of the other
GMM-HMM system, however, use of the stress markings included
in the CMU Pronouncing Dictionary are being furthered explored
to evaluate their impact on performance, and initial tests show a de-
crease in WER on dev2010 of approximately 0.3% as compared
to ignoring the stress markings.

A hybrid Deep Neural Network (DNN)-HMM speech recog-
nition system was developed using Theano [33] and a version of
HTK that we modified according to the method of [34]. The DNN
included 5 hidden layers, each of which had 1000 neurons with lo-
gistic activation functions. A context window of 9 frames was used
at the input, and the output included 6000 units corresponding to the
shared states of our GMM-HMM system. The feature set consisted
of 13 PLPs with delta and acceleration coeffcients, and all features
were normalized to zero mean and unit variance on a per speaker
basis. Training was performed using layer growing back propaga-
tion [35] with a minibatch size of 512, and an initial learning rate of
0.008 that was halved after each epoch once the improvement in ac-
curacy on the cross validation partition fell below 0.5%. A second
DNN was trained on PLP features that were transformed using Con-

strained Maximum Likelihood Linear Regression (CMLLR). This
system applied a single transform per speaker.

LM data selection was implemented using the same procedure
as our IWSLT 2012 system [3]. Interpolated trigram and 4-gram
LMs were estimated on TED, 1/8 of Gigaword, and 1/4 of News
2007–2012 using the SRILM Toolkit.1 Compared to a trigram
LM trained on all of the available data, applying data selection re-
duced the WER of our GMM-HMM system by 0.4% on dev2010,
tst2010, and dev2012. Recurrent Neural Network Maximum
Entropy (RNNME) LMs were trained on 1/16 of Gigaword and 1/8
of News 2007–2012 using the RNNLM Toolkit [21]. Each network
included 160 hidden units, 300 classes in the output layer, 4-gram
features for the direct connections, and a hash size of 109. The LM
vocabulary included 95000 words.

A neural network based Speech Activity Detector (SAD) was
developed using Theano. The SAD was trained on 22 hours of TED
data and 5 hours of public domain music downloaded from Wiki-
media Commons,2 the United States Air Force Band,3 and the Open
Goldberg Variations project.4 The network included a context win-
dow of 21 frames on the input, 1 hidden layer of 500 neurons with
logistic activation functions, and 3 output units corresponding to
speech, silence/noise, and music. The feature set consisted of 13
PLPs with delta and acceleration coeffcients, and all features were
globally normalized to zero mean and unit variance. Training was
perfomed using the same procedure as the DNNs.

Automatic segmentation of the test data was performed by eval-
uating the SAD, applying a dynamic programming algorithm to
choose the best sequence of states, and padding the speech end
points by 0.15 seconds. The speech segments from each talk were
clustered using the MIT-LL GMM-based speaker recognition soft-
ware package. Compared to the manual segmentation provided in
the reference files, automatically segmenting the test data increased
the WER of our GMM-HMM system by 0.7% on dev2010,
tst2010, and dev2010.

Initial transcripts of the test data were produced using the hy-
brid DNN-HMM system. Next, CMLLR transforms were estimated
for the GMM-HMM system and the second hybrid DNN-HMM
system. Recognition lattices were produced for each system and
then rescored with the interpolated 4-gram LM. The final transcripts
were produced by rescoring n-best lists with the RNNME LMs.

System combination was performed as in IWSLT 2012 [3] us-
ing a Confusion Network Combination system (CNC). Confusion
networks for combined systems are generated from rescored n-
best lists of size 1000. The confusion networks are aligned with
each other, and this alignment is used to merge the individual
system’s confusion networks into one. Each system is weighted
(weights generated from a Powell-like grid search) and acoustic
model and language model scores of each are combined. Due to
time constraints, tests for our system combination were performed
on dev2010 using the GMM-HMM and DNN-HMM, but results
were not submitted. Table 16 shows WERs for the individual sys-
tems and WER for the combined system using this methodology.

Table 17 shows results on dev2010 for the DNN-HMM sys-
tem, the GMM-HMM system, and the GMM-HMM-2 system be-
fore and after RNNLM rescoring. Table 18 shows the progress of
our current systems against our best submission from IWSLT 2012
[3] on tst2011 and tst2012. Results for tst2013 on our cur-
rent submissions are also shown.

1Available at: http://www.speech.sri.com/projects/srilm
2Available at: http://commons.wikimedia.org
3Available at: http://www.usafband.af.mil
4Available at: http://www.opengoldbergvariations.org



System Description tst2010 tst2011 tst2012 tst2013
English-to-French

primary DREM + UNTen9EuroNCommCC FiltLM + Giga LM + RNN3 + dunk 32.82 39.35 39.76 37.05
contrast1 Ramp + UNTen9EuroNCommCC FiltLM + Giga LM + RNN3 + dunk 32.88 39.10 39.94 37.12
contrast2 Primary + Contrast4 N/A 38.97 39.70 37.32
contrast3 PRO + UNTen9EuroNCommCC FiltLM + Giga LM + RNN3 + dunk 32.79 39.37 39.70 37.41
contrast4 MERT + tedUNTen9NewsCrawlEuro LM + dunk 32.21 38.90 39.83 37.58
contrast5 Primary + Contrast3 N/A 39.27 39.97 37.21

Chinese-to-English
primary contrast5 + contrast3 + contrast6 + contrast4 11.46 15.92 14.05 14.85
contrast1 contrast5 + contrast3 + contrast4 11.40 15.90 13.59 14.77
contrast2 contrast5 + contrast3 + contrast6 + contrast4 11.53 16.00 14.00 14.77
contrast3 PRO + tedGiga LM + RNN3 + lexDist + dropunk 12.03 15.14 13.50 14.36
contrast4 MERT + tedUNGiga LM + RNN5 11.72 14.64 12.35 13.25
contrast5 DREM + tedLM + Giga LM + RNN3 + lexDist + dunk 11.47 15.85 13.93 14.61
contrast6 MERT + tedUNGigaEuroNComm LM + RNN5 + dunk 11.20 14.87 12.63 13.50

Russian-to-English
primary contrast1 + contrast2 + contrast3 N/A 21.49 19.61 21.65
contrast1 PRO + tedNewsCrawlCC FiltLM + Giga LM + RNN3 + LA2 + dunk 19.67 21.32 19.61 21.71
contrast2 MERT + tedNewsCrawlCC FiltLM + Giga LM + RNN3 + LA2 + dunk 19.24 21.24 19.30 21.70
contrast3† MERT + tedUNWiki LM + LA2 + dunk 19.42 21.68 19.58 22.13
contrast4 DREM + tedNewsCrawlCC FiltLM + Giga LM + RNN3 + LA2 + dunk 19.39 21.46 19.28 21.57

Arabic-to-English
primary DREM + lexDist + ted LM + giga LM + RNN3 + AP5 + dunk 25.03 25.66 27.66 26.64
contrast1 PRO + lexDist + ted LM + giga LM + RNN3 + AP5 + dunk 24.88 25.81 27.52 27.27
contrast2 MERT + lexDist + ted LM + giga LM + RNN3 + AP5 + dunk 24.71 24.95 27.27 26.22
contrast3 MERT + lexDist +tedUNGigaEuro LM + AP5 + dropunk 24.36 24.96 26.95 25.77
MADA DREM + lexDist + ted LM + giga LM + RNN3 + MADA + dunk 25.49 26.23 28.47 28.21
MADA1 PRO + lexDist + ted LM + giga LM + RNN3 + MADA + dunk 25.21 26.41 27.92 27.70
MADA2 MERT + lexDist + ted LM + giga LM + RNN3 + MADA + dunk 25.14 26.01 27.97 27.56

Table 15: All Submission Systems. †For this system, fixed tokenization issue after submission.

dev2010
DNN-HMM GMM-HMM Combined

13.9 14.5 13.7

Table 16: WER for individual DNN-HMM and GMM-HMM sys-
tems and their system combination on dev2010 (automatic seg-
mentations, without RNNLM rescoring).

dev2010
without RNNLM with RNNLM

DNN-HMM 14.1 12.9
GMM-HMM 13.8 12.8

GMM-HMM-2 17.2 15.6

Table 17: WER without and with RNNLM rescoring on dev2010
(manual segmentations).
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