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Abstract

This paper reports on the participation of FBK in the IWSLT
2014 evaluation campaign for Automatic Speech Recogni-
tion (ASR), which focused on the transcription of TED talks.
The outputs of primary and contrastive systems were submit-
ted for three languages, namely English, German and Italian.

Most effort went into the development of the English
transcription system. The primary system is based on the
ROVER combination of the output of 5 transcription sub-
systems which are all based on the Deep Neural Network -
Hidden Markov Model (DNN-HMM) hybrid. Before com-
bination, word lattices generated by each sub-system are
rescored using an efficient interpolation of 4-gram and Re-
current Neural Network (RNN) language models. The pri-
mary system achieves a Word Error Rate (WER) of 14.7%
and 11.4% on the 2013 and 2014 official IWSLT English
test sets, respectively. The subspace Gaussian mixture model
(SGMM) system developed for German achieves 39.5%
WER on the 2014 IWSLT German test sets. For Italian, the
primary transcription system was based on hidden Markov
models and achieves 23.8% WER on the 2014 IWSLT Ital-
ian test set.

1. Introduction
This paper describes the English, German, Italian FBK
large vocabulary continuous speech recognition systems
developed for the IWSLT 2014 evaluation campaign
(http://workshop2014.iwslt.org). As the IWSLT 2013 eval-
uation campaign [1], the ASR track of the IWSLT 2014 eval-
uation campaign focused on the transcription of TED talks
(http://www.ted.com). The main challenges for automatic
transcriptions of TED talks include: variability in acoustic
conditions, large variability of topics (hence a large, uncon-
strained vocabulary), presence of non-native speakers and a
rather informal speaking style.

Most effort went into the development of the English
transcription system. The primary system for English is
based on the ROVER combination [2] of the output of 5 tran-
scription sub-systems. Most of the progress demonstrated
for English, w.r.t. the FBK participation into the IWSLT
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2013 campaign [3], is due to the switching from the Hidden
Markov Model - Gaussian Mixture Model (HMM-GMM)
approach to DNN-HMM hybrid systems, the use of an im-
proved n-gram language model, and an N-best list rescoring
strategy based on an interpolation of n-gram and RNN Lan-
guage Models (LMs). In addition, we took advantage by us-
ing the Kaldi open source toolkit for system development [4].

In this paper, more details are reported for the experi-
ments conducted for English than for German and Italian.

The rest of this paper is organized as follow. Section 2
describes the speaker diarization module, while Section 3
describes the ASR systems developed for English and Sec-
tion 4 describes the ASR systems developed for German and
Italian. Section 5 presents the automatic transcription results
achieved on the TED talk data for all languages. Finally,
some conclusions are reported in Section 6.

2. Speaker diarization
The input audio signal is first processed by a speaker di-
arization module which performs: start-end point detection,
speech segment classification and segment clustering based
on Bayesian information criterion [5]. At the end of this pro-
cess, each audio file has assigned a set of temporal segments,
each having associated a label that indicates the cluster to
which it belongs (e.g. female 1, male 1, etc). This process-
ing is common to all transcription systems presented in this
paper and was not changed since the IWSLT 2013 evalua-
tion [3].

3. English Transcription System
3.1. Acoustic data selection

Acoustic Model (AM) training was performed using in-
domain data. To this end, TED talk videos released before
the cut-off date, 31 December 2010, were downloaded with
the corresponding subtitles which are not a verbatim tran-
scription of the speech. Subtitles are, in fact, content-only
transcriptions in which anything irrelevant to the content
is ignored, including most non-verbal sounds, false starts,
repetitions, incomplete or revised sentences and superfluous
speech by the speaker. A simple but robust automatic pro-
cedure was implemented to select only audio data with an
accurate transcription. The approach adopted is that of se-
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lecting only those portions in which the human transcription
and an automatic transcription agree [6]. For details on the
speech data selection procedure adopted the reader can refer
to [3].

The collected data consisted in 820 TED talks, for a total
duration of ∼216 hours, with ∼166 hours of actual speech.
The speech data selection procedure resulted in ∼144 hours
of transcribed speech effectively used for AM training. This
year, for acoustic model training we used only this in-domain
data, while the previous year, in-domain data was augmented
with HUB4 training data [3].

3.2. LM training

Text data used for training the LMs are those released for
the IWSLT2013-SLT Evaluation Campaign. Before training,
texts were cleaned, normalized (punctuation was removed,
numbers and dates were expanded) and double lines were
removed. Training documents come from the following three
sources:

• giga5 GIGAWORD 5-th edition. Contains documents
stemming from seven distinct international sources of
English newswire. It is released from the Linguistic
Data Consortium (see http://www.ldc.upenn.edu). In
total it contains about 4G words.

• wmt13 Formed by documents in WMT12 news
crawl, news commentary v7 and Europarl v7 (see
IWSLT2013 official web site for some more details
about these corpora). In total it contains about 1G
words.

• ted13 An in-domain set of texts extracted from TED
talks transcriptions. It contains about 2.7M words.

Three 4-gram LMs, namely giga5, wmt13 and ted13 were
independently trained on the three sources using the modi-
fied shift-beta smoothing method as supplied by the IRSTLM
toolkit [7]. Then, two additional ”mixture” LMs were
trained using the ”mix” adaptation method implemented in
the IRSTLM toolkit [7]. The two-mix LM is built mixing the
smoothed (with the modified shift-beta approach) n-grams
of both wmt13 and ted13 collections, the all-mix LM is
obtained mixing the smoothed (with improved Kneser-Ney
method [8]) n-grams of all of the three collections aforemen-
tioned: giga5, wmt13 and ted13. We point out that in the
case of all-mix LM training no pruning of singleton 4-grams
was applied.

A further 4-gram LM, namely sel172M, was trained on
172M words automatically selected from giga5 collection in
order to match the in-domain set of documents ted13. Also
in this case the IRSTLM toolkit was employed, together with
the modified shift beta method for smoothing probabilities of
the n-grams not seen in the training set. The method used for
automatically selecting documents from the giga5 collection
is based on ”term frequency inverse documents frequency”

(TFIDF) coefficients and uses the ted13 collection as seed
corpus. Details can be found in [9].

Finally, two different RNN LMs (namely RNNLM1 and
RNNLM2) were trained, using the toolkit described in [10],
on the ted13 collection and on a text corpus including both
the ted13 collection and a subset of documents (contain-
ing around 10M words) automatically extracted from the
giga5 collection, respectively. Hence, the RNNLM2 LM
was trained over around 12.7 M words, mapping the single-
tons into the ”<unk>” symbol. The RNNLM1 LM has 450
hidden neurons in its hidden layer and the RNNLM2 LM has
500 hidden neurons.

Note that, the wmt13 LM is the LM used by ASR sys-
tems developed for the IWSLT 2013 evaluation, while the
two-mix LM is used by all ASR systems developed for
the IWSLT 2014 evaluation. Perplexity (PP) and out-of-
vocabulary (OOV) rates measured on the reference transcrip-
tions of the IWSLT English 2010 development data set (con-
taining 44505 words) are reported in Table 1. We can see
that the two-mix LM exhibits a significant lower perplexity
that the wmt13 LM. Column “Interp.” in the table reports PP
and OOV rate obtained by linearly interpolating the all-mix,
ted13, sel172M, RNNLM1 and RNNLM2 LMs: interpola-
tion weights are estimated in order to minimize the overall
perplexity on the transcriptions of the English 2010 devel-
opment set. Interpolation of these LMs is applied at recog-
nition time for N-best list rescoring, as it will be detailed in
Section 3.4.2.

LM giga5 wmt13 ted13 two-mix Interp.
PP 495 461 223 378 289
%OOV 0.4 1.7 7.5 1.6 0.3

Table 1: Perplexities and % OOV rates measured with several
LMs on transcriptions of IWSLT English 2010 development
data set.

3.3. Lexicon

Word pronunciations in the English lexicon are based on a
set of 45 phones. They were generated by merging different
source lexica for American English (LIMSI ’93, CMU dic-
tionary, Pronlex). In addition, phonetic transcriptions for a
number of missing words were generated by using the pho-
netic transcription module of the Festival speech synthesis
system. The lexicon did not change with respect to the pre-
vious year.

3.4. ASR system development using Kaldi

In the open source software Kaldi [4], there are two separate
setups for neural network training implementation, namely
Dan’s and Karel’s setups or recipes [11, 12]. In both of these
setups, the last (output) layer is a softmax layer whose output
dimension equals the number of context-dependent states of
a pre-trained HMM-GMM system. The neural net is trained
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to predict the posterior probability of each context-dependent
HMM state [13, 14]. During decoding the posterior proba-
bilities are divided by the prior probability of each state to
form a pseudo-likelihood that is used in place of the state
emission probabilities in the HMM. Depending on which of
the two setups is used the performance is different because of
many differences in the recipes. For example, Karel’s setup
uses pre-training but Dan’s setup does random initialization;
Karel’s setup uses early stopping using a validation set but
Dan’s setup uses a fixed number of epochs and averages the
parameters over the last few epochs of training. Many other
aspects of the training procedure are also different (nonlin-
earity types, learning rate schedules, etc.). Two speaker-
adaptive DNN-HMM systems were developed by using the
Dan’s and Karel’s setups.

3.4.1. Acoustic modeling

For acoustic modeling 13 mel-frequency cepstral coefficients
(MFCCs), including the zero order coefficient, are extracted
from the signal every 10ms by using a Hamming window
of 25ms length. These features are then mean/variance nor-
malized on a speaker-by-speaker basis, spliced by +/- 3
frames next to the central frame and projected down to 40
dimensions using linear discriminant analysis (LDA) and
Maximum Likelihood Linear Transform (MLLT). A sin-
gle feature-space Maximum Likelihood Linear Regression
(fMLLR) transform for each training speaker is then esti-
mated and applied to train speaker-adaptively trained (SAT)
triphone HMMs. These SAT triphone HMM have 6,349
tied-states and 130,000 Gaussians. The speaker-adaptive
DNN-HMM hybrid systems are built on top of LDA-MLLT-
fMLLR features and SAT triphone HMMs.

A first DNN is trained using the Karel’s setup. An eleven
frames context window of LDA-MLLT-fMLLR features (5
frames at each side) is used as input to form 440 dimensional
feature vector. The DNN have 6 hidden layers each with
2048 neurons, the resulting architecture can be summarized
as follows: 440x2048x2048x2048x2048x2048x2048x6349.
The DNN is trained in several stages including Re-
stricted Boltzmann Machines (RBM) pre-training, mini-
batch Stochastic Gradient Descent training, and sequence-
discriminative training such as Minimum Phone Error (MPE)
and state-level Minimum Bayes Risk (sMBR).

A second DNN is trained based on the Dan’s setup. A
nine frames context window of LDA-MLLT-fMLLR features
(4 frames at each side) is used as input to form 360 dimen-
sional feature vectors. The DNN is a p-norm DNN with
5 hidden layers and p-norm (input, output) dimensions of
(4000, 400) respectively, i.e. the nonlinearity reduces the di-
mension tenfold [12]. 12000 sub-classes are used, and the
number of parameters is 11.0 million. The Dan’s setup does
not support RBM pretraining. Instead it performs something
similar to the greedy layer-wise supervised training [15] or
the layer-wise backpropagation of [14]. The network is ini-
tialized randomly with one hidden layer, trained for a short

time (typically less than an epoch, meaning less than one full-
pass through the data), then the layer of weights that go to the
softmax layer is removed, a new hidden layer and two sets of
randomly initialized weights are added, and trained again.
This is repeated until we have four layers. The initial and
final learning rates in our training setup are 0.08 and 0.0008
respectively, and during training is decreased exponentially,
except for a five epochs at the end during which it is kept
fixed. Dan’s setup was originally written to support parallel
training on multiple CPUs or GPUs. During training, a data-
parallel method based on a periodic averaging the parameters
of separate Stochastic Gradient Descent runs.

3.4.2. Decoding process

At recognition stage, LDA-MLLT-fMLLR features are first
generated by using auxiliary HMMs. To this end, a decoding
pass with speaker-independent GMM-HMM is conducted to
produce a word lattice for each utterance. A single fMLLR
transform for each speaker is then estimated from sufficient
statistics collected from word lattices with respect to SAT tri-
phone HMMs. These transforms are hence used in the sec-
ond decoding pass with SAT HMM to produce new word lat-
tices. A second set of fMLLR transforms is estimated from
new word lattices and combined with the first set of trans-
forms. Then a decoding pass is conducted on the obtained
fMLLR adapted acoustic features with the DNN-HMM hy-
brid system, where the DNN is trained to provide posterior
probability estimates for the SAT triphone HMM tied-states.

All decoding passes make use of a decoding graph built
using a ”pruned” version of the two-mix LM introduced
above. The word lattice generated for each utterance by the
DNN-HMM hybrid system is rescored with the ”non pruned”
two-mix LM in order to produce the final ASR hypothesis.
Alternatively, as mentioned in Section 3.2, N-best (N=100)
list is generated and rescored. In this case, rescoring con-
sists in recomputing, for each hypothesis in the list, the corre-
sponding LM probability as a linear interpolation of the prob-
abilities given by the all-mix, ted13, sel172M, RNNLM1
and RNNLM2 LMs. Its worthwhile to mention that the in-
terpolation weights are estimated in order to minimize the
perplexity over all the 1-best hypotheses.

3.5. Development of complementary ASR systems

In view of system combination with ROVER, we explored
the way to develop complementary systems. To this end,
acoustic models of the HMM-GMM system for the IWSLT
2013 ASR English evaluation [3] were used to provide tied-
state alignment to train two additional DNN-HMM hybrid
systems which are described below.

3.5.1. Two-pass HMM-GMM system

The two decoding pass HMM-GMM system developed for
the IWSLT 2013 evaluation uses the wmt13 LM [3]. A first
complementary systems developed for the IWSLT 2014 eval-
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uation is obtained using the two-mix LM instead.

3.5.2. DNN-HMM systems

The first DNN-HMM system was trained on the tied-state
alignment obtained with the SAT triphone HMMs used in the
first decoding pass by the 2013 HMM-GMM system. The
DNN was however trained on unnormalized acoustic fea-
tures. The second DNN-GMM system was trained on the
tied-state alignment obtained with the SAT triphone HMMs
used in the second decoding pass by the 2013 HMM-GMM
system and on SAT features. At recognition stage, a two pass
DNN-HMM decoding system is obtained when word tran-
scriptions generated by the DNN-HMM system using unnor-
malized acoustic features are used to supervise the extraction
of the SAT acoustic features for a second decoding pass with
the SAT DNN-HMM system.

First-pass DNN-HMM
The first DNN is trained on 13 MFCC, including the zero
coefficient, without speaker normalization. A 31-frame con-
text window is applied, the 403-dimensional features vec-
tor is then decorrelated with discrete cosine transform (DCT)
and projected on a 208-dimensional feature vector. Average
and covariance normalisations are applied to this later feature
vector and the resulting, normalized, vector is used as input
to the DNN. The DNN is composed of 5 hidden layers with
1500 elements per layer. The DNN is trained with cross-
entropy on 10021 triphone tied-states targets obtained from
time alignment with the first pass models of the 2013 HMM-
GMM system. The resulting architecture can be summarized
as follows: 208x1500x1500x1500x1500x1500x10021.

The TNet software package [16] is used for training. The
training set for the DNN is composed only of TED data as ex-
plained above. The training set is split into two sets with non-
overlapping speaker: training (90%) and cross-validation
(10%). The DNN weights are initialized randomly and pre-
trained with RBM [17, 18]. The first layer is pre-trained with
a Gaussian-Bernoulli RBM trained during 10 iterations with
a learning rate of 0.005. The following layers are pre-trained
with a Bernoulli-Bernoulli RBM trained during 5 iterations
with a learning rate of 0.05. Mini-batch size is 500. For the
back propagation training the learning rate is kept to 0.08 as
long as the frame accuracy on the cross-validation set pro-
gresses by, at least, 0.5% between successive epochs. The
learning rate is then halved at each epoch until the frame ac-
curacy on the cross-validation set fails to improve by at least
0.1%. The mini-batch size is 1024. In both pre-training and
training, a first-order momentum of 0.9 is applied.

Second-pass SAT DNN-HMM
The second DNN is trained on the 39 SAT features as gener-
ated for the second pass triphone HMM of the 2013 HMM-
GMM system. A 31-frame context window is applied. The
resulting 1209-dimensional features vector is decorrelated
with DCT and projected on a 468-dimensional feature vec-
tor. Average and covariance normalization is applied and the

resulting, normalized, vector is used as input to the DNN.
The DNN is composed of 5 hidden layers with 1500 ele-
ments per layer. It is trained with cross-entropy on 10021
triphone tied-states targets obtained from time alignment
with the second pass models of the HMM-GMM baseline.
The resulting architecture can be summarized as follows:
468x1500x1500x1500x1500x1500x10021. The training was
conducted following the same set up as for the first-pass
DNN above.

4. German and Italian transcription systems
For this evaluation, we decided to focus our efforts mostly
on English and to dedicate a limited attention to German and
Italian. For both languages we wanted to compare our in-
house proprietary system with the Kaldi recognizer, but due
to the aforementioned limitations, at the end we did the fol-
lowing submissions:

• Italian primary in-house SAT HMM-GMM system
(see [3] for details);

• Italian contrastive1 SAT Subspace Gaussian Mixture
Model (SGMM) system developed with Kaldi [4];

• German primary SAT SGMM system developed
with Kaldi.

4.1. Acoustic data

Concerning Italian, we could use the following corpora:

• Euronews Italian Data provided by the organizers,
amounting to about 76h:38m of reliable speech. The
corresponding transcription was obtained after a fur-
ther step of light supervision training, using the do-
main dependent AMs trained on the originally pro-
vided data.

• Italian Internal data: about 216h:31m of reliably
transcribed (partly manually, partly with light supervi-
sion techniques) speech collected in the previous years
and belonging to 3 domains: Apasci, a phonetically
balanced corpus; Italian Parliament recordings, TV
news recorded from RAI. All this data were recorded
before June 30th, 2011.

This data amounted to slightly more than 293 hours, but
in order to speed up Kaldi experiments we decided to sample
the data, by keeping only the first 100 sentences for each au-
dio file. This resulted in about 154h:19m of speech (74h:30m
Euronews data + 79h:49m Internal data).

Instead, the in-house proprietary system was trained on
the Italian Internal data only (216h:31m).

Concerning German, we could use the following corpora:

• Euronews German data provided by the organizers,
amounting to about 72h:18m of reliable speech. The
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corresponding transcription was obtained after a fur-
ther step of light supervision training, using the do-
main dependent AMs trained on the originally pro-
vided data.

• German WEB data: about 158h:47m of speech data
transcribed using light supervision techniques, col-
lected before July 2012.

The effective material used for training consisted in about
206h:54m of speech (66h:45m Euronews data + 140h:09m
German WEB data).

4.2. Textual data

To build the German LM we used text data from various
sources, including Europarl data, news from 2005 to June
30th, 2012, and of course the ASR LM Training Data Ger-
man provided by IWSLT organizers. The total amount of
words was about 1,130 million words. These data were pro-
cessed in order to perform a normalization including in par-
ticular number and compound words splitting, which was
performed in a fully automatic way described in [3]. After
normalization, a 4-grams language model was built, result-
ing in about 481.3 millions of 4-grams. A pruned version of
this LM, including about 9,7 millions of 4-grams, was used
to build the FST used to build the lattices during decoding,
while the full LM was used to rescore the lattices. The lexi-
con was fixed to the most frequent 200K words; the phonetic
transcription was generated by our in-house system.

To build the Italian LM we used text data coming from
news collected from 2005 to June 30th, 2011, in addition
to the ASR LM Training Data Italian provided by IWSLT
organizers. The total amount of words was about 985 mil-
lion words. After text normalization and number splitting, a
4-grams language model was built, resulting in about 427,6
millions of 4-grams. For the contrastive system using Kaldi,
a pruned version of this LM, including about 6,5 millions of
4-grams, was used to build the FST used to build the lattices
during decoding, while the full LM was used to rescore the
lattices. For the primary in-house system a static FSN was
built using a pruned version of the LM, including was built
15,3 million 4grams. In both cases, the lexicon was fixed
to the most frequent 200K words; the phonetic transcription
was generated by our in-house system.

4.3. Decoding process

Both for German and Italian, we performed a two stage
recognition. For the two Kaldi SGMM systems (German pri-
mary and Italian contrastive1) the two stage recognition was
followed by a linguistic rescoring stage, obtained using the
full LM over the generated lattices.

For the in-house system (Italian primary), no final LM
rescoring was performed. Details about the AM adaptation
performed for the second step decoding are described in [3].

5. Recognition Experiments
5.1. Results on English TED talks

Recognition experiments were carried out on the IWSLT
2014 English ASR development and evaluation data sets
listed in Table 2. These data sets were released over sev-
eral IWSLT evaluation campaigns. Recognition experiments
on dev2012, tst2013 and tst2014 were always conducted in
fully automatic mode. Instead, recognition experiments on
all the other data sets (dev2010, tst2011 and tst2012) were
conducted exploiting the provided manual segmentation.

Data Set N. of Talks Duration
dev2010 19 4h:00m
tst2011 8 1h:07m
dev2012 10 1h:57m
tst2012 11 1h:45m
tst2013 28 4h:38m
tst2014 15 2h:24m

Table 2: Details of the IWSLT 2014 English ASR develop-
ment (dev) and evaluation (tst) data sets.

As a reference, Table 3 reports results achieved with
the 2013 HMM-GMM system [3]. Column “Pruned LM”
gives results obtained by the second decoding pass (see Sec-
tion 3.5.1) using a pruned version of the LM, that is the
wmt13 LM introduced in Section 3.2. Column “Rover” in
Table 3 reports results achieved with a combination, using
ROVER, of 4 recognition outputs resulting from rescoring
the word lattices generated by the second decoding pass by
using different unpruned LMs [3]. The 23.7% WER reported
on tst2013 data set is the result achieved by the FBK 2013
primary system in the IWSLT 2013 ASR evaluation cam-
paign.

Data Set System 2013
Pruned LM Rover

dev2010 17.5 16.1
tst2011 15.6 13.6
dev2012 19.3 -
tst2012 17.6 16.1
tst2013 25.2 23.7

Table 3: % WER achieved by the HMM-GMM 2013 system
on several English data sets. Results were obtained by: de-
coding with the pruned wmt13 LM and performing ROVER
combination of 4 different rescored outputs.

5.1.1. Experiments with Kaldi systems

Table 4 reports results with two SAT DNN-HMM systems
developed with the Kaldi toolkit. “Dan” and “Karel” indicate
the recipe, provided within the Kaldi toolkit, used to train the
DNN.
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Data Set Kaldi DNN implementation
“Dan” “Karel”

(Pruned LM/Rescoring) (Pruned LM/Rescoring)
dev2010 14.8/13.4 13.4/12.5
tst2011 12.8/11.5 11.5/10.7
dev2012 18.0/17.0 16.3/15.3
tst2012 12.7/11.7 11.7/10.8
tst2013 19.4/18.0 17.5/16.4

Table 4: Results, in % WER, achieved by two different DNN-
HMM systems on several English data sets. For each system
and data set, it is reported the result achieved by: decoding
with the pruned two-mix LM and performing rescoring of
word lattices with the corresponding unpruned LM.

From results reported in Table 4 we can conclude that the
“Karel” recipe allows to train a DNN which is consistently
more effective than the DNN trained with the “Dan” recipe.
In addition, performing rescoring of word lattices with the
unpruned LM provides tangible benefit, for example drop-
ping the WER, on the dev2010 data set, from 13.4% to 12.5%
when using the the “Karel” DNN-HMM system.

The comparison of results reported in Tables 3 and 4, al-
lows to appreciate the net improvements of the 2014 DNN-
HMM systems over the 2013 HMM-GMM system. We be-
lieve that this major improvement can be attributed to the
adoption of the deep learning paradigm for acoustic model-
ing, a better LM and a more comprehensive training proce-
dure offered by the Kaldi development toolkit.

Data Set Kaldi DNN implementation
“Dan” “Karel”

(N-best rescoring) (N-best rescoring)
dev2010 12.9 11.9
tst2011 10.7 10.0
dev2012 15.5 14.2
tst2012 11.0 10.4
tst2013 16.5 15.2

Table 5: % WER achieved by two different DNN-HMM
systems on several English data sets by performing N-best
(N=100) list rescoring using an interpolation of 4-gram and
RNN LMs.

Table 5 reports results performing N-best list rescoring
using an interpolation of 4-gram and RNN LMs, as described
in section 3.4.2. By comparing these results with those in
Table 4, we can notice the effectiveness of the N-best list
rescoring method.

5.1.2. Experiments with complementary systems

Table 6 reports recognition results obtained with the 2014
HMM-GMM and DNN-HMM systems described in Sec-
tion 3.5 without performing word lattice rescoring. Rows

p1-GMM and p1-GMM+p2-GMM report results achieved
performing one and two passes of decoding with the 2013
HMM-GMM system (see Section 3.5.1). Performing a sin-
gle decoding pass 17.8% and 25.7% WER are achieved on
the dev2010 and tst2013 data sets, respectively. While per-
forming two decoding passes 16.3% and 23.4% WER are
achieved on the dev2010 and tst2013 data sets, respectively.
These latter results can be directly compared with the 17.5%
and 25.2% WER, achieved by the 2013 HMM-GMM sys-
tem as reported in the ”Pruned LM” column of Table 3.
The performance improvement can be attribute at the use
of a better LM (that is two-mix Vs. wmt13 LM). Results
achieved performing one and two decoding passes with the
DNN-HMM systems are reported in rows p1-DNN and p1-
DNN+p2-DNN, respectively. We can see that performing a
single decoding pass 16.5% and 21.9% WER are achieved
on the dev2010 and tst2013 data sets, respectively. While
performing two decoding passes 15.4% and 20.7% WER are
achieved on the dev2010 and tst2013 data sets, respectively.
These results confirm, once again, the effectiveness of the
DNN-HMM hybrid approach. However, they are not as good
as those obtained with DNN-HMM systems developed with
the Kaldi toolkit and reported in Table 4 (”Pruned LM” con-
dition).

Complementary System dev2010 tst2013
p1-GMM 17.8 25.7
p1-GMM+p2-GMM 16.3 23.4
p1-GMM+p2-DNN 15.6 20.1
p1-DNN 16.5 21.9
p1-DNN+p2-GMM 15.5 22.0
p1-DNN+p2-DNN 15.4 20.7

Table 6: Results, in % WER, with different complementary
system configurations on the dev2010 and tst2013 English
data sets.

Table 6 reports also results obtained alternating recog-
nition passes conducted with HMM-GMM and DNN-HMM
systems. For example, row p1-DNN+p2-GMM reports re-
sults obtained performing the first pass with the DNN-HMM
system and the second pass with the HMM-GMM system,
this results in 15.5% and 22.0% WER on the dev2010 and
tst2013 sets, respectively. In the following, we will refer to
this system as “AltSystem1”. One additional combination
we have tried was as follows. The AltSystem1 was used to
generate a word lattice which was acoustically rescored using
the p2-DNN systems: we will refer to this system as “AltSys-
tem2”. The AltSystem2 resulted in 15.2% and 20.3% WER
on the dev2010 and tst2013 data sets, respectively. The out-
put of systems AltSystem1 and AltSystem2 were considered
for system combination in the hope that they were different
one each other enough.
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Sub-systems dev2010 tst2013
DNN-HMM “Dan” 12.9 16.5
DNN-HMM “Karel”1 11.9 15.3
DNN-HMM “Karel”2 11.9 15.2
AltSystem1 15.5 22.0
AltSystem2 15.2 20.3

ROVER
11.7 14.7

Table 7: Results, in % WER, achieved by individual sub-
systems, and performing ROVER-based system combina-
tion, on the dev2010 and tst2013 English data sets.

5.1.3. System combination

The 2014 primary system for English is based on the prin-
ciple of system combination by means of ROVER. Table 7
reports recognition results achieved by the 2014 primary
system, which combines the outputs of 5 sub-systems pre-
viously introduced. Results achieved by individual sub-
systems are also reported. DNN-HMM “Karel”1 and DNN-
HMM “Karel”2 denotes two sub-systems that differ only
for the number of iterations in training of the corresponding
DNN.

For the tst2013 data set we can see that an improvement
of 0.5% WER is achieved with the ROVER combination
w.r.t. the best sub-system entering in the combination: from
15.2% to 14.7% WER. The obtained 14.7% WER can be di-
rectly compared with the 23.7% WER obtained by the 2013
primary system on the same data (see Table 3). This repre-
sents a substantial improvement in terms of performance.

On the 2014 IWSLT English test set the official evalua-
tion result achieved by the primary system is 11.4% WER,
with an improvement of 0.7% WER w.r.t. the performance
of the best sub-system entering in the ROVER combination,
that is 12.1% WER.

5.2. Results on German TED talks

The subspace Gaussian mixture model system developed for
German achieves 39.5% WER on the 2014 IWSLT German
test sets.

5.3. Results on Italian TED talks

For Italian, the primary transcription system was based on
hidden Markov models and achieves 23.8% WER on the
2014 IWSLT Italian test set. The contrastive1 transcription
system, based on SGMM, achieves 24.6% WER.

6. Conclusions
In this paper we have presented the systems we developed for
the participation in the IWSLT 2014 ASR evaluation cam-
paign: we developed systems for the English, German and
Italian ASR tracks.

For English, substantial progress, with respect to our pri-

mary system submission to IWSLT 2013 campaign [3], was
demonstrated. This progress is due to the switching from the
pure HMM-GMM approach to the adoption of DNN-HMM
hybrid systems, the adoption of a better n-gram language
model, and an N-best list rescoring strategy based on an inter-
polation of n-gram and RNN language models. In addition,
we took advantage by using the Kaldi open source toolkit for
system development.
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