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Abstract
This paper describes the systems submitted by FBK for the
MT and SLT tracks of IWSLT 2014. We participated in
the English-French and German-English machine translation
tasks, as well as the English-French speech translation task.
We report improvements in our English-French MT systems
over last year’s baselines, largely due to improved techniques
of combining translation and language models, and using
huge language models. For our German-English system, we
experimented with a novel domain adaptation technique. For
both language pairs we also applied a novel word trigger-
based model which shows slight improvements on English-
French and German-English systems. Our English-French
SLT system utilizes MT-based punctuation insertion, recas-
ing, and ASR-like synthesized MT training data.

1. Introduction
FBK’s machine translation activities in the IWSLT 2014
Evaluation Campaign focused on the speech recognition and
translation of TED Talks1, a collection of public speeches on
a variety of topics and with transcriptions available in multi-
ple languages. In this paper, we describe our participation in
the English-French and German-English Machine Transla-
tion tasks as well as in the English-French Spoken Language
Translation task.

After a brief introduction to the baseline MT system in
Section 2 employed for all tasks, in Section 3 we overview
the data selection techniques used to extract TED-related
data from the available huge and generic monolingual and
bilingual corpora. Then, in Section 4 we describe the meth-
ods applied to combine translation models, reordering mod-
els, and language models trained on multiple corpora. Sec-
tions 5-7 give details about the actual MT and SLT systems
built for evaluation task.

2. Baseline SMT system
All our task-specific systems rely on the well-known and
state-of-the-art phrase-based Moses toolkit [1]; and exploit
the huge amount of parallel and monolingual training data

1http://www.ted.com/talks

provided by the organizers. Our common baseline system
features a statistical log-linear model including a phrase-
based translation model (TM), a lexicalized phrase-based re-
ordering models (RM), one or more language models (LMs),
as well as distortion, word and phrase penalties.

Tuning of the baseline system is performed on tst2010
by optimizing BLEU using Minimum Error Rate Training
[2]. However, all available development data sets, namely
dev2010 and tst2010-2012, are included in the in-domain
training data to build the systems actually employed for the
2014 evaluation campaign. The task-specific systems differ
in the way training data are processed and filtered, and how
the models are trained and combined.

3. Data Filtering
The idea of data selection is to find the subset of sentences
within an out-of-domain corpus that better fits with a given
in-domain corpus. To this purpose, we follow the procedure
described in [3], implementing the bilingual cross-entropy
difference [4], i.e. an adaptation of the cross-entropy differ-
ence scoring technique introduced by [5] toward bitext data
selection, by means of XenC toolkit [6].

First, all sentence pairs of the out-of-domain corpus are
associated with source- and target-side scores, each of which
are computed as the basic technique proposes for the cor-
responding monolingual scenarios. We use the in-domain
(TED) data as a seed and LMs of order 2.2 Then, the sen-
tences are sorted according to the sum of these two scores.
Finally, the optimal split between useful and useless sen-
tences is found by minimizing the source-side perplexity of
a development set on growing percentages of the sorted cor-
pus. In our experiments, dev2010 and tst2010 are concate-
nated and used as the filtering development set.

4. Domain Adaptation
In this section, we summarize several well-known techniques
for domain adaptation we applied to build high-performance
models for our SMT submissions.

2This small LM order permits a very fast computation of the scores, with-
out losing performance.
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4.1. Translation model combination

Three methods are applied in our submissions to combine the
TM built on the available parallel training corpora: namely,
fill-up [7, 8], back-off, and interpolation.

4.1.1. Fill-up

In the fill-up approach, out-of-domain phrase pairs that do
not appear in an in-domain (TED) phrase table are added,
along with their scores – effectively filling the in-domain ta-
ble with additional phrase translation options. The fill-up
process is performed in a cascaded order, first filling in miss-
ing phrases from the corpora that are closest in domain to
TED. Moreover, out-of-domain phrase pairs with more than
four source tokens are pruned.

Following [7, 8] the fill-up approach adds k-1 provenance
binary features to weight the importance of out-of-domain
data, where k is the number of phrase tables to combine.

4.1.2. Back-off

The back-off approach works similarly to the fill-up tech-
nique, but does not add any provenance binary features.

4.1.3. Linear interpolation

Linear interpolation of component models is a widely used
approach for building a domain adapted multi-model. Ap-
proaches such as using monolingual data or pairwise rank-
ing optimization to set interpolation weights [9, 10], per-
plexity minimization [11], and combining lemmatized and
non-lemmatized models [12] have been used in the past for
improved domain adaptation. In this paper, we leverage a
recent work of [13] which exploits the use of source-side of
the parallel in-domain corpus for domain adaptation. This
approach calculates a similarity score (known as BLEU-PT)
for each of the out-domain translation models on the source
in-domain data. We use these similarity scores and further
normalize them by the number of phrases seen in each of the
corresponding out-domain phrase tables. These normalized
scores are then used as linear interpolation coefficients.

In this paper, we perform linear interpolation of out-of-
domain models which results in one translation model. The
in-domain translation model is then filled-up with the afore-
mentioned interpolated out-domain translation model giving
us a single domain adapted model.

4.2. Reordering model combination

All techniques available for combining the TMs can be ap-
plied straightforwardly to combine the RMs. The only dif-
ference regards the fill-up technique: the additional binary
feature is discarded, since it is already present in the corre-
sponding filled-up TM. Hence, a filled-up RM is exactly the
same as a backed-off RM.

4.3. Language model combination

Language models are built from the monolingual training
data, as well as the target language of the parallel data. As
the corpora available in the IWSLT evaluation come from a
number of sources, we apply several methods to combine the
LMs built on the available target language training corpora,
rather than concatenating the data.

4.3.1. Mixture

Monolingual subcorpora can be combined into one mixture
language model [14] by means of the IRSTLM toolkit [15].
The optimization of the internal mixture weights is achieved
through a cross-validation approach on the same training
data; hence no external development set is required. The
mixture LM type can be loaded by Moses as any other LM
type.

4.3.2. Log-linear interpolation

This technique, provided directly within the Moses toolkit,
consists in the log-linear interpolation of the n-gram proba-
bilities from all component LMs. The weight optimization is
performed during the tuning of all Moses features.

4.4. Factored Trigger Models

Cross-lingual lexical triggers have been already studied in
natural language processing [16] and in machine translation
[17]. The latter defined cross lingual triggers as a setup of a
trigger word (fi) in the source language sentence, triggering
a number of words (e0, e1, . . . , en) in the target language sen-
tence. For each trigger source word fi, we calculate point-
wise mutual information (PMI) between that word and the
target triggered words (ej) as shown in Equation 1.

PMIlex(fi, ej) = log
P (fi, ej)

P (fi) · P (ej)
(1)

In this paper, we extend these lexical triggers with ad-
ditional factors such as POS tags and lemmas. Similar to
computing the PMI for lexical triggers we compute corre-
sponding PMIs for the POS tags and lemmas of the trigger
and the triggered words in question. This is shown in the
following equations:

PMIpos(fi, ej) = log
P (POS(fi), POS(ej))

P (POS(fi)) · P (POS(ej))
(2)

PMIlemma(fi, ej) = log
P (LEM(fi), LEM(ej))

P (LEM(fi)) · P (LEM(ej))
(3)

where POS(x) is the part of speech tag of the word x and
LEM(x) is the lemma of the word x. These PMI are com-
puted for all word pairs and then normalized over the whole
parallel corpus. In the end, a factored trigger model (hence-
forth, FTM) contains three different features for each of the
source/target word pair.
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At decoding time, when a phrase-based machine trans-
lation system requests feature values from the FTM for a
phrase pair (fi,...,j , ek,...,l), it returns the average sum of
all the feature values for all word pairs possible within the
phrase pair. Mathematically, it can be denoted as the follow-
ing:

FTMlex(fi,...,j , ek,...,l) =

j∑

z=i

l∑

y=k

PMIlex(fz, ey). (4)

Similarly, POS and Lemma features are also calculated at the
run-time and fed directly to the decoder providing a seamless
integration of factored trigger model in a phrase based ma-
chine translation system. This integration also allows us to
use any tuning algorithm (e.g. MERT, MIRA) easily.

5. English-French MT task
In order to adapt the English-French MT system to the TED-
specific domain and genre, as well as to reduce the size of
the models, data selection (see Section 3) is carried out on
several parallel English-French corpora provided by the or-
ganizers, namely Europarl, CommonCrawl, UN, News Com-
mentary, News Crawl, and Giga, and using the whole WIT3

[18] training corpus as in-domain data.
Different amount of texts were selected from each corpus

ranging from 2% to 30%, which are concatenated together to
build one large parallel corpus containing 2.6M sentences for
a total of 57M English and 63M French running words.

The system for FBK primary submission is built as fol-
lows. Two TMs and two RMs are trained independently
on the parallel in-domain and selected data, using the stan-
dard Moses procedure and MGIZA++ toolkit [19] for word-
alignment; TMs and RMs were combined using the back-off
technique (for both TM and RM), taking WIT3 as the pri-
mary component, for a total of 168M phrase pairs.

The French side of the in-domain and selected data are
also employed to estimate a two-component mixture lan-
guage model (see Section 4.3). A second huge French LM is
estimated as an 8-component mixture on all permitted mono-
lingual French data: namely, the target side of the parallel
training corpora,3 consisting of about 1.4G running words.
Both LMs have order 5 and are smoothed by means of the in-
terpolated Improved Kneser-Ney method [20]; they include
57M and 661M 5-grams, respectively. Finally, the three ad-
ditional features provided by the factored trigger model (see
Section 4.4) are included in the log-linear combination.

Minimum Bayes Risk (MBR) [21] decoding is applied
with its default values.

As already mentioned in Section 2, all available devel-
opment data sets, namely dev2010 and test2010-2012, are
included in the in-domain training data to build the primary
system.

3The monolingual French Gigaword Third Edition replaces the French
side of the parallel Giga English-French corpus employed in the TM and
RM model training.

In order to evaluate the contribution of the individual
components of the FBK system, we submitted several con-
trastive runs.

• contrastive-7: derived from primary system, this sys-
tem does not exploit the factored trigger model;

• contrastive-6: derived from contrastive-7, this system
exploits the stack decoding instead of the MBR decod-
ing;

• contrastive-5: derived from contrastive-6, this system
does not exploit the huge French LM.

Moreover, we submitted 4 runs (contrastive 1-4) which
differ from contrastive 5-7 and the primary run just in one
aspect: contrastive 1-4 do not include the development data
sets in the training data. The aim was to measure the impact
of a limited amount of additional TED talks on the translation
quality.

Finally a ninth run (contrastive-9) was submitted with
a system built on top of the primary, which tests the as-
sumption made during translation modeling that each of the
features in the translation model are independent from one
another. Generalized linear models can be constructed in
a manner that models interactions between predictors (e.g.
[22]). As a preliminary experiment, we test for interactions
between the forward and backward phrase probabilities in
our phrase table, expressed as a multiplication between the
log probabilities.

Several observations can be drawn from the analysis of
the figures reported in Table 1, also supported from prelimi-
nary experiments performed during the development phase.4

• The biggest performance improvement is due to the
use of the large French LMs.

• MBR decoding gives a small but consistent boost in
quality with respect to the stack decoding at the ex-
pense of a limited increase of decoding time.

• The factored trigger model gives a limited, sometimes
negligible, improvement.

• The addition of the dev and test data has little and in-
consistent impact; for tst2014 it slightly tends to im-
prove performance, vice-versa for tst2013. This be-
havior is probably due to small differences among the
data sets; we will investigate this issue, when we will
get the references.

• Our first experiment testing for interactions suggests
that the discriminative model performs better under the
assumption that each phrase table feature is indepen-
dent from one another.

4During the system development many more combinations of the con-
sidered elements were tested.
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task run tst2013 tst2014
BLEU TER BLEU TER

MT En-Fr pr 38.20 44.83 34.24 46.75
cn7 38.13 44.83 34.18 46.61
cn6 37.88 45.05 33.79 47.02
cn5 36.27 47.48 32.07 50.02
cn4 38.16 44.90 33.98 47.03
cn3 38.04 44.93 34.02 46.87
cn2 37.95 45.08 33.67 47.24
cn1 36.73 46.44 32.49 48.81
cn9 37.89 44.98 34.03 46.86

MT De-En pr 25.45 55.59 20.52 63.54
cn 25.76 55.80 20.37 63.37

Table 1: Case-sensitive BLEU and TER results for FBK’s submis-
sions to the English-French and German-English MT tasks.

The contrastive run 5, was also applied into the joint sub-
mission by the EU-Bridge project5 partners; details about the
EU-Bridge system are available in a companion paper [23].

6. German-English MT task
Our German-English systems are built on top of the baseline
system (see Section 2. Each system contains one translation
model, reordering model, language model, the factored trig-
ger model and operation sequence model; these models are
then combined in a standard log-linear fashion.

The training data is composed of several publicly avail-
able corpora provided in the IWSLT MT and the WMT 2014
translation tasks. As parallel data the following corpora were
taken into account: WIT3 (version 2014-01) (TED) [18],
German-English Europarl (version 7) (EP), Common Crawl
(CC), MultiUN (UN), and the News Commentary (NC) cor-
pus as distributed by the organizers of the WMT 2014. We
used all the available monolingual corpora provided by the
WMT 2014 translation task. The target side of the parallel
corpora is also used to train our LMs.

unselected selected
De En De En

Corpus Segm Words Words Segm Words Words
TED 171K 3.3M 3.46M 171K 3.3M 3.46M
CC 2.4M 56M 58M 462K 10.5M 10.7M
EP 1.9M 52M 53M 188K 3.58M 3.64M
UN 162K 5.8M 5.66M 45K 1.59M 1.52M
NC 200K 5.25M 5.0M 59K 1.4M 1.3M

Table 2: Statistics of the parallel and monolingual data exploited
for training our German-English systems. For the parallel data,
statistics before and after data selection are reported. Symbols ”M”
and ”K” stand for 106 and 103, respectively.

Table 2 shows the statistics of the German-English data.
The average number of words per sentence in all of the
above corpora is relatively lower on German side than on

5http://www.eu-bridge.eu

the English side. This is largely due to compounding, where
Noun-Verb, Noun-Noun, Adjective-Noun pairs, for example,
are combined together to form a larger compound. Models
trained using raw German text could lead to a high out-of-
vocabulary rate on unseen texts [24]. We leverage a trainable
compound splitter [25], which splits a compound based on
a frequency based metric. We train one compound splitter
model on TED monolingual corpus (German) which contains
3.35M running words and another on the source (German)
side of the TED parallel corpus, which contains 3.2M run-
ning words. The first splitter is aggressive while the sec-
ond model is more passive. Each of the selected corpora
goes through these splitter models resulting in two different
systems for German-English task.
Primary: We select different amount of texts from each
corpus ranging from 10% to 30% of each corpus’ original
size. Aggressive splitting is done on source side (German) of
all training, development and test corpora. As the German-
English language pair shows a high amount of reordering we
have used the hierarchical phrase reordering model as de-
scribed by [26]. Each system has one TM and one RM that
are built on each domain, comprising a total of 5 TMs and
RMs. Linear interpolation as described in Section 4.1.3 is
used to combine the out-of-domain models (CC, EP, UN and
NC), resulting in a single background TM and RM. The TED
TM and RM are then filled-up with the background TM and
RM and a binary provenance feature is added to the TM. An-
other model that we use is a lexically driven 5-gram opera-
tion sequence model (OSM) [27] with a standard feature set.
The OSM model is built on the concatenation of all five par-
allel corpora. As the factored trigger model usually results
in a big phrase table, we use just the TED domain to build
the model. TreeTagger [28] assigns a lemma and POS-tag to
each word which are included as two factors in the factored
trigger model.
Contrastive: The contrastive system is configured similarly
to the Primary system, except that we use the passive splitter
model to split the German compounds.

Evaluation results show that both systems are at par with
one other on 2013 and 2014 test sets. On comparing just the
BLEU scores on both test sets, we see that a passive split-
ter is useful for 2013 test set while an aggressive splitting
is required on the 2014 test set. The factored trigger model
was useful for German-English pair; an offline evaluation on
the development set (tst2010) showed that the primary sys-
tem with the FTM gave a jump of 0.2 BLEU points over the
system where we do not use FTM.

7. English-French SLT task
The sections below describe the steps followed to perform
English-French speech translation. Each of the submitted
translations are drawn from machine translation systems de-
rived from the contrastive-6 MT system (Section 5), which
uses stack decoding. We briefly describe the techniques ap-
plied to normalize and preprocess the ASR outputs to make
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them suitable for translation. We additionally provide a brief
summary of a text normalization technique relying on phone-
mic confusion to synthesize ASR outputs for MT training.
Finally, we describe our experimental results.

7.1. Preprocessing

Prior to translating ASR outputs, we perform the follow-
ing normalization steps to make them compatible with our
phrase-based SMT system.

Similar to the MT track, we tokenize ASR outputs using
the scripts provided by Moses. After tokenization, we recase
the outputs. The recaser system is trained using the Moses
scripts and a 3-gram LM. The recaser model and language
models are trained on a concatenation of TED and WMT
News Commentary data. Finally, we insert punctuation via
monotonic machine translation, similar to the approach of
[29].

7.2. Phoneme-motivated Text Normalization

A SMT system trained only on transcripts and other text data
results yields a search space that is inaccessible by ASR out-
puts that may contain errors and text normalization issues. In
an ideal scenario, we would train our spoken language trans-
lation system on a combination of text corpora and speech
recognition outputs with reference translations; however, a
sufficiently large amount of such speech corpora is not read-
ily available. In order to make our machine translation sys-
tem more tolerant of potential ASR errors, we use a similar
phoneme-motivated text normalization approach as outlined
in our previous year’s submission [30] to generate additional
bilingual training data from the text corpora provided in the
evaluation.

We adapt the MT training data into ASR-like output to
anticipate ASR errors and text normalization issues during
SMT model training. We do this by leveraging several com-
ponents from a target ASR system. In our experiments, we
use the FBK’s Kaldi English ASR system, which was used
in our ASR submission [31]. Similar to [32], we transform
the text corpora into synthetic ASR outputs by first convert-
ing the text corpora into phonemes and then “translating”
each phoneme sequence back into words that more closely
match the output of our ASR system. Following the expo-
sition described in [30], we use the Festival text-to-speech
engine6 to convert each word in our ASR system’s pronunci-
ation lexicon into phoneme sequences. The word to phoneme
sequence mappings are used to generate a phrase table that
translates from phoneme sequences to words. We augment
the word to phoneme sequence mappings with the original
pronunciation entries in the ASR lexicon. We assign uniform
forward and backward phrase probabilities to each phoneme
sequence to word mapping in the phrase table and omit the
lexical probabilities from the model. We use the phrase ta-
ble and the original ASR system’s 4-gram English language

6http://www.cstr.ed.ac.uk/projects/festival

run BLEU TER
pr 25.39 59.53
cn1 25.29 59.64
cn2 25.08 60.15
cn3 24.23 61.63
cn4 24.28 61.65
cn5 24.00 62.02

Table 3: Case-sensitive BLEU and TER results for FBK’s tst2014
submissions to the English-French SLT task.

model [31] as components in a Moses phrase-based SMT
system.

The system is tuned on the tst2010 data set: the reference
transcript is converted to phonemes using the TTS system de-
scribed above. Since our goal is to convert clean transcripts
into synthetic ASR output, it serves as our source text. Our
reference set consists of the 1-best ASR outputs from our
best Kaldi ASR system, which transcribed the audio corre-
sponding to the tst2010 transcripts. Tuning is performed to
optimize BLEU via MERT.

After tuning, we convert all of the out-of-domain text
corpora, aside from Common Crawl, into ASR-like output
using the trained system. Each ASR-like corpus is tokenized
and recased according to the steps described above. The new
damaged corpora are concatenated together and used to train
an English-French phrase table and reordering model, using
the same training pipeline as described in Section 2. After
the phrase table and reordering models are trained, we use
the fill-up technique with the models trained in the MT task
(Section 5).

We additionally train a monotonic phoneme-to-phoneme
phrase-based SMT system to generate additional confusable
pronunciations for each of the lexical entries, using a 4-gram
phoneme language model and the default Moses parameters.
The training is performed in a similar manner as in [32].

7.3. Experiments

We submitted six alternative translations of the ASR out-
puts on tst2014. Our first set of translations (pr, cn1, cn2)
use the 1-best ROVER system combination provided by the
organizers. Our primary system uses all of the techniques
listed above. Our first contrastive system (cn1) omits the
phoneme-to-phoneme pronunciation generation. Our sec-
ond contrastive system (cn2) does not include any synthetic
phrase table entries. Our second set of translations (cn3-5)
use the same sequence of steps as those listed above. Rather
than using the ROVER ASR hypothesis, we use the ASR hy-
pothesis corresponding to FBK’s primary submission in the
English ASR track. Results are shown in Table 3.

In particular, we note an increase of 1 BLEU by us-
ing the ROVER outputs instead of FBK’s primary system.
Additionally, we see an improvement of approximately 0.3
BLEU when using our phoneme-based text normalization
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techniques.
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