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Abstract
In this paper we explore various adaptation techniques for
continuous space translation models (CSTMs). We consider
the following practical situation: given a large scale, state-
of-the-art SMT system containing a CSTM, the task is to
adapt the CSTM to a new domain using a (relatively) small
in-domain parallel corpus. Our method relies on the defini-
tion of a new discriminative loss function for the CSTM that
borrows from both the max-margin and pair-wise ranking ap-
proaches. In our experiments, the baseline out-of-domain
SMT system is initially trained for the WMT News transla-
tion task, and the CSTM is to be adapted to the lecture trans-
lation task as defined by IWSLT evaluation campaign. Ex-
perimental results show that an improvement of 1.5 BLEU
points can be achieved with the proposed adaptation method.

1. Introduction
Domain adaptation (DA) is an important and active research
topic in Statistical Natural Language Processing [1, 2]. In a
nutshell, domain adaptation aims to mitigate the well-known
problem of covariate shift which stems from statistical dis-
tribution differences between train and test samples. This
often happens in NLP, especially when train and test docu-
ments correspond to different genres, registers or domains.
Domain adaptation is often expressed in terms of finding an
optimal combination of a small in-domain dataset with large
amounts of out-of-domain data.

To avoid the dilution of domain-specific knowledge,
most approaches consider various kinds of data weighting
schemes in order to balance the importance of in-domain vs
out-of-domain data. In such adaptation scenarios, the NLP
component needs to be retrained, entirely or partly, to inte-
grate these new samples, which can be very time consum-
ing or even unrealistic in many situations. This is especially
problematic for SMT systems, that are typically made of sev-
eral layers of statistical models. DA for SMT has therefore
received considerable attention in the recent years (for in-
stance [3, 4, 5, 6]). This situation is compounded when, as we
do here, SMT systems rely on Continuous Space Language
Models (CSLMs) or Translation Models (CSTMs), which
have recently gained a lot of popularity [7, 8, 9, 10, 11, 12].

As demonstrated for many NLP tasks [13], such as lan-
guage modelling [7, 14, 15, 16], syntactic parsing [17] and
machine translation [8, 9, 18, 19], CSLMs and CSTMs can

remedy to two well-know issues of statistical modelling for
linguistic data. Typical statistical models use discrete ran-
dom variables to represent the realization of words, phrases
or phrase pairs. The corresponding parameter estimates are
based on relative frequencies and are unreliable for rare
events. Furthermore, the resulting representations ignore
morphological, syntactic and semantic relationships that ex-
ist among linguistic units. This lack of structure hinders the
generalization power of statistical models and reduces their
ability to adapt to other domains. By contrast, continuous
models manipulate numerical representations of linguistic
units that are automatically trained from large corpora and
that implicitly capture some similarity relationships, thereby
introducing some smoothing in the probability estimates.

The adaptation of Continuous Models for SMT has thus
far received little attention. We study here the following
practical situation: a large scale, state-of-the-art SMT sys-
tem is available and needs to be ported to a new domain,
using a small in-domain parallel corpus. In this setting, our
main contribution is the definition and evaluation of new loss
functions, that aim at discriminatively adapting the CSTMs
to the new data. These objective functions derive from both
the max-margin [20, 21] and pair-wise ranking [22, 23] ap-
proaches. In our experiments, the baseline, out-of-domain
system is preliminarily trained for the News translation task,
and the CSTMs must be adapted to the lecture translation
task as defined in recent IWSLT evaluation campaigns [24].

The rest of the paper is organized as follows. Section 2
briefly describes the model structure that will be used in our
experiments. Section 3 proposes new discriminative loss
functions on N -best lists, along with the corresponding adap-
tation algorithms. The next section gives details about our
experimental conditions and analyzes our main results. We
finally provide a short review of similar works both on Dis-
criminative Machine Translation and on Continuous Space
Translation Models, before concluding with some perspec-
tives for future work.

2. Continuous space translation models

This section provides an overview of the CSTM used in our
baseline system and subsequently adapted. This model was
introduced and fully described in [9].
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Figure 1: Extract of a French-English sentence pair segmented in bilingual units. The original (org) French sentence appears at
the top of the figure, just above the reordered source s and target t. The pair (s, t) decomposes into a sequence of L bilingual
units (tuples) u1, ..., uL. Each tuple ui contains a source and a target phrase: si and ti.

2.1. The n-gram translation model

n-gram translation models (TMs) rely on a specific decom-
position of the joint probability P (s, t), where s is a se-
quence of I reordered source words (s1, ..., sI )1 and t con-
tains J target words (t1, ..., tJ ). This sentence pair is as-
sumed to be decomposed into a sequence of L bilingual
units called tuples defining a joint segmentation: (s, t) =
(u1, ..., uL). In this framework, the basic translation units
are tuples, which are the analogous of phrase pairs, and rep-
resent a matching u = (s, t) between a source s and a target
t phrase (Figure 1). Using the n-gram assumption, the joint
probability of a synchronized and segmented sentence pair is:

P (s, t) =

L∏

i=1

P (ui|ui−1
i−n+1), (1)

where ui−1
i−n+1 denotes the tuple sequence ui−n+1, . . . , ui−1.

The complete model for a sentence pair thus involves latent
variables that specify the reordering applied to the source
sentence, as well as its segmentation into translation units.
These latent variables define the derivation of the source sen-
tence that generates the target sentence. They are omitted
for the sake of clarity. During the training step, the segmen-
tation is a by-product of source reordering, and ultimately
derives from initial word and phrase alignments (see [25, 26]
for details). During the inference step, the SMT decoder will
compute and output the best derivation.

In this model, the elementary units are bilingual pairs,
which means that the underlying vocabulary, hence the num-
ber of parameters, can be quite large, even for small trans-
lation tasks. Due to data sparsity issues, such models face
severe estimation problems. Equation (1) can therefore be
factored by decomposing tuples in two (source and target)
parts and in two equivalent ways:

P (ui|ui−1
i−n+1)

= P (ti|sii−n+1, t
i−1
i−n+1)P (si|si−1

i−n+1, t
i−1
i−n+1)

= P (si|tii−n+1, t
i−1
i−n+1)P (ti|si−1

i−n+1, t
i−1
i−n+1)

(2)

1In the context of the n-gram translation model, (s, t) thus denotes an
aligned sentence pair, where the source words are reordered.

Each decomposition involves two bilingual conditional dis-
tributions that can also be decomposed at the level of words,
using again the n-gram assumption.

2.2. Continuous translation modeling with SOUL

The n-gram distributions described in Section 2.1 are defined
over potentially large vocabularies. As proposed in [9], these
distributions can be estimated using the SOUL model intro-
duced in [27]. Following [28], the SOUL model combines
the feed-forward neural network approach for n-gram mod-
els [7] with a class-based prediction [29]. Structuring the out-
put layer with word-class information makes the estimation
of distributions over the entire vocabulary computationally
feasible. Neural network architectures are also interesting as
they can easily handle larger contexts than typical n-gram
models. In the SOUL architecture, enlarging the context
mainly consists in increasing the size of the projection layer,
which corresponds to a simple look-up operation. Increasing
the context length at the input layer thus causes only a linear
growth in complexity in the worst case [14].

2.3. Training and initialization issues

The word-based translation model described in section 2.1
involves two different languages and thus two different vo-
cabularies: the predicted unit is a target or source word,
whereas the context is made of both source and target words.
As proposed in [9], the SOUL architecture is modified to
make up for mixed contexts by considering two different
sets of word embeddings, one for each language. Training
this kind of model can be achieved by maximizing the log-
likelihood on some parallel corpus. Following [9], this opti-
mization is performed by stochastic back-propagation, while
the derivation (source reordering and segmentation in trans-
lation units) are derived by the usual procedure (see [30]).

However, for multi-layered neural networks, the non-
convexity of the objective function implies that the param-
eter initialization can highly impact the training process in
terms of its convergence speed and of its performance. In
the bilingual context of translation modeling, two monolin-
gual language models can first be estimated for initialization
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purpose2. In a domain adaptation context, we assume that
an existing CSTM –trained on the out-of-domain data– al-
ready exists. This model is thus well suited to bootstrap the
adaptation process.

3. Objective functions for adaptation
In most previous works (eg. [8, 9]), CSTMs are estimated by
maximizing the regularized conditional log-likelihood (CLL)
on parallel training corpora. This estimation procedure is
used to train a baseline CSTM on the out-of-domain cor-
pus, producing a baseline model that will serve as an initial
point for domain adaptation. Given a small in-domain par-
allel corpus, the same training procedure can also be used.
A straightforward adaptation algorithm consists in running
a few epochs of the standard back-propagation algorithm on
the in-domain data to maximize the conditional likelihood
using, as initial parameters, the out-of-domain model.

There is however only a loose relationship between the
CLL criterion and the final translation quality. The CSTM is
usually integrated in the translation process through a rerank-
ing step, the goal of which is to reorder a reduced set of
candidate translations, called N -best list. Therefore, to bet-
ter take advantage of the small amount of in-domain data,
we propose to explore alternative objective functions that are
more directly related to the translation quality (as reflected by
the BLEU score) after reranking. We first present the general
learning algorithm, then the various objective functions.

3.1. Rescoring N -best lists with CSTMs

Due to the high computational cost of normalizing the output
layer, continuous models are in most cases3 introduced in a
post-processing step called N -best reranking.

We thus assume that for each source sentence s, the de-
coder can generate an N -best list {h1,h2, ...,hN} of N top
translation candidates. Each hypothesis hi = (ti,ai) is as-
sociated with the decoder score Fλ(s,h) computed as:

Fλ(s,h) =
K∑

k=1

λkfk(s,h), (3)

where K feature functions (fk) are weighted by a set of co-
efficients (λk). The n-gram approach differs from other ap-
proaches by the hidden variables associated to derivations,
such as the source word reordering and the segmentation of
the resulting parallel sentence. The basic feature functions
used in this study are very similar to those used by standard
phrase-based SMT systems (see [30] for instance).

When reranking with a continuous space model, Fλ(.)
is augmented to also include an additional feature denoted
fθ(s,h). As explained in Section 2.2, fθ(s,h) typically

2The following parameters can be initialized given a source and target
language monolingual models: the source and target word embeddings re-
spectively, and the structured output layer’s structure.

3See however [31, 32, 19] for early attempts to integrate Neural Network
Translation Models within the decoder.

Algorithm 1 Joint optimization procedure for θ and λ

1: Initialize θ and λ
2: for each iteration do
3: for M mini-batches do ⊲ λ is fixed
4: Compute the sub-gradient of L(θ, s) for all s in

the mini-batch
5: Update θ
6: end for
7: Update λ using dev set ⊲ θ is fixed
8: end for

corresponds to the negated log-probability of the derivation:
fθ(s,h) = − logPθ(s,h), where θ is the vector containing
the CSTM’s free parameters. The scoring function used in
reranking is then:

Gλ,θ(s,h) = Fλ(s,h) + λK+1fθ(s,h) (4)

This scoring function depends on the CSTM’s parame-
ters θ, as well as on the coefficients λ of the scoring func-
tion. In the approach proposed here, optimizing the rerank-
ing step will thus requires to alternatively tune the vector of
coefficients λ and to adapt the CSTM’s weight vector θ: the
former procedure uses the development data, while the latter
will use the in-domain parallel corpus.

The corresponding proposed optimization procedure
splits the in-domain set in mini-batches of a fixed size (typ-
ically 128 subsequent sentence pairs). As sketched in Algo-
rithm 1, each mini-batch is used to update the parameters θ
of the CSTM while keeping λ fixed. The vector λ is updated
every M mini-batches.

In our study, tuning λ is performed using standard tools
(here, the K-Best Mira algorithm described in [21] as imple-
mented in MOSES 4). The training of CSTMs (with fixed λ)
is more interesting and we compare two discriminative ob-
jective functions, which aim at better taking the translation
quality into account. These two objectives are in turn com-
pared to the conventional maximization of the conditional
likelihood criterion on parallel data.

3.2. A max-margin approach

As explained above, each hypothesis hi produced by the
decoder is scored according to (4). Its quality can also be
evaluated by the sentence-level approximation of the BLEU
score sBLEU(hi). Let h∗ denote the hypothesis with
the best sentence BLEU score. A max-margin loss func-
tion [33, 34, 20] for estimating θ can then be formulated as
follows:

Lmm(θ, s) = −Gλ,θ(s,h
∗)

+ max
1≤j≤N

(Gλ,θ(s,hj) + costα(hj)) , (5)

where costα(hj) = α
(
sBLEU(h∗) − sBLEU(hj)

)
. The

parameter α mitigates the contribution of the cost function
4http://www.statmt.org/moses/
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to the objective function. When alpha > 0, the objective
defined in (5) is a general max-margin training criterion; tak-
ing α = 0 corresponds to the structured perceptron loss [35].
This objective function aims to discriminatively learn to give
the highest model score to the hypothesis h∗ having the best
sentence level BLEU. Moreover, the margin term enforces
the scoring difference between h∗ and the rest of the N -best
list to be greater than the margin.

However, a source sentence can have, among the N -best
list, several good translations that differ only slightly from
the best hypothesis. The max-margin objective function de-
fined above nevertheless considers that all hypotheses, except
the best one, are wrong. The ranking-based approach defined
below tries to correct this weakness.

3.3. Pairwise ranking

Inspired by [22], we define another objective function that
aims to learn the ranking of a set of hypotheses with respect
to their BLEU scores. Assuming that ri denotes the rank of
the hypothesis hi when the N -best list is reordered according
to the sentence-level BLEU, this objective is defined as:

Lpro(θ, s) =
∑

1≤i,k≤N

I{ri+δ≤rk,Gλ,θ(s,hi)<Gλ,θ(s,hk)}

(−Gλ,θ(s,hi) +Gλ,θ(s,hk)) . (6)

Note that this loss function only involves a subset of the
N(N − 1)/2 pairs of hypotheses, since two hypotheses are
included in the sum only if they are sufficiently apart in
terms of their ranks: formally, the absolute difference of
ranks should be greater than a predefined threshold δ. As
in PRO [22], the ranking problem is thus reduced to a bi-
nary classification task taking candidate translation pairs as
inputs. A major difference to PRO though, is the fact that
we use this loss function to train the CSTM’s parameters θ,
rather than the feature weights λ.

This ranking criterion can finally be generalized again
with the notion of margin: for a pair of hypotheses (hi,hk)
such as ri + δ < rk, the scoring difference Gλ,θ(s,hi) −
Gλ,θ(s,hk) should exceed a positive margin. As in sec-
tion 3.2, the margin is based on the sentence-level BLEU
score via the use of the cost function costα. Let us define the
set of all critical pairs of hypotheses as:

Cα
δ ={(i, k) : 1 ≤ i, k ≤ N, ri + δ ≤ rk, (7)

Gλ,θ(s,hi)−Gλ,θ(s,hk) < costα(hk)− costα(hi)}.

The objective function that combines both the pairwise rank-
ing and max-margin criterion is defined as follows:

Lpro−mm(θ, s) =
∑

(i,k)∈Cα
δ

costα(hk)− costα(hi)

−Gλ,θ(s,hi) +Gλ,θ(s,hk). (8)

Taking α = 0, this function is equivalent to the pairwise
ranking criterion (6).

4. Experiments

We now turn to an experimental comparison of the adaptation
methods described in Section 3. In our experimental frame-
work, the lecture translation task defines the targeted (or in)
domain, while the baseline system corresponds to a state-of-
the-art SMT system, intensively trained for the News trans-
lation task, as defined by the WMT evaluation. The goal is
therefore to quickly and efficiently adapt this out-of-domain
system by only updating the CSTM.

4.1. Task and corpora

The task considered here is derived from the text trans-
lation track of IWSLT 2011 from English to French (the
TED Talks task [24]), where a (in-domain) training dataset
containing 107, 058 aligned sentence pairs was made avail-
able. As explained above, this corpus only serves to adapt the
continuous space translation models, i.e to adapt the param-
eters θ. The baseline and out-of-domain system is trained
in the condition of the shared translation task of WMT 2013
evaluation campaign.5 This system includes CSTMs that will
be used as starting points for adaptation.

The official development and test sets respectively con-
tain 934 and 1, 664 sentence pairs. Following [9], these sets
are swapped, the tuning of the feature weights λ is carried
out on 1, 664 sentences of the latter, while the final test is on
934 sentences of the former. Translations are evaluated us-
ing the BLEU score [36]. For a fair comparison, all BLEU
scores reported are obtained after a tuning phase on the dev
set, including the baseline system. For Algorithm 1, (θ,λ)
are selected by maximizing the BLEU score on the dev set
(line 7).

4.2. Baseline system and models

The n-gram-based system used here is based on an open
source implementation6 of the bilingual n-gram approach to
Statistical Machine Translation [37]. In a nutshell, the trans-
lation model is implemented as a stochastic finite-state trans-
ducer trained using an n-gram model of (source, target) pairs
as described in section 2.1. Training this model requires to
reorder source sentences so as to match the target word order.
This is performed by a non-deterministic finite-state reorder-
ing model, which uses part-of-speech information generated
by the TreeTagger to generalize reordering patterns beyond
lexical regularities.

In addition to the TM, fourteen feature functions are in-
cluded that are similar to the standard phrase-based system:
target-language model; four lexicon models; six lexicalized
reordering models; a distance-based distortion model; and fi-
nally a word-bonus model and a tuple-bonus model. A more
detailed description is in [30].

5http://www.statmt.org/wmt13/
6perso.limsi.fr/Individu/jmcrego/bincoder
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Figure 2: Evolution of BLEU scores on the dev set using
three discriminative criteria described in (5), (6) and (8).
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Figure 3: Evolution of BLEU scores on the dev set with
different values of α. Lpro−mm is used in all cases.

4.3. Experimental results

The baseline, out-of-domain, system is used to generate the
300-best list for the in-domain corpus. It takes approxima-
tively an half an hour if this process is parallelized by divid-
ing the corpus in about 50 parts of 20, 000 sentences. δ is set
to 250 (equations (6) and (7)) in all our experiments with the
pairwise ranking criterion.

As reflected in equation (2), 4 translation models can
be defined by various factorizations of P (s, t). For the
sake of clarity, we focus our study on models estimating
P (ti|sii−n+1, t

i−1
i−n+1) and P (ti|si−1

i−n+1, t
i−1
i−n+1). We first

compare the different objective functions defined in Section 3
and examine the impact of the margin on the former model.
We then choose the best configuration to adapt the latter.
Similar trends were observed with other CSTMs.

Figure 2 compares the three discriminative criteria re-
spectively defined by (5), (6) and (8) in terms of BLEU
scores on the dev set when adapting P (ti|sii−n+1, t

i−1
i−n+1).

System dev test
Baseline systems (out-of-domain)

n-code 33.9 27.6
n-code + CSTM WMT 34.4 28.5

Adapted systems
n-code + CSTM CLL adapted 35.0 29.1
n-code + CSTM Lmm adapted α = 100 35.1 29.4
n-code + CSTM Lpro adapted 35.4 29.5
n-code + CSTM Lpro−mm adapted α = 100 35.8 29.6

Table 1: BLEU scores obtained for different adapta-
tion schemes of the CSTM for P (ti|sii−n+1, t

i−1
i−n+1) with

WMT baselines: maximum conditional likelihood (CLL)
vs discriminative adaptation. Log-linear coefficients of the
baseline systems are re-tuned using the in-domain dev set.

Table 1 gives BLEU scores on both dev and test sets. Ac-
cording to these results, the pairwise ranking criterion, with
or without max-margin((6) and (8)) clearly outperforms the
max-margin approach (5) on the dev set. Further analyses
(not detailed here) on each criterion’s behaviour on the train-
ing set suggest that continuous space models quickly overfit
the training data when adapted with the max-margin crite-
rion. This result may outline the benefit of using criteria
based on multiples hypotheses from different parts of the
N -best list, rather than only on the best hypothesis and the
most critical one as does the max-margin loss. Because of
the superiority of the pairwise ranking approach, the rest of
this section focuses on this criterion.

To assess the impact of the margin in Lpro−mm, we plot
on Figure 3 the evolution of the BLEU score on the dev set
as a function of α. When α = 0, the objective function only
considers the pairwise ranking criterion Lpro. By increasing
α, we observe an improvement of 0.4 BLEU point, while
beyond α = 100, the performance starts to drop.

The results of adapting P (ti|sii−n+1, t
i−1
i−n+1) are in Ta-

ble 1. The upper part reports the baseline BLEU scores.
Initial results were obtained with the out-of-domain one-
pass system, and a 0.9 BLEU point improvement was ob-
tained when reranking its output with the out-of-domain
CSTM. The lower part of Table 1 summarizes the results
obtained with various adaptation methods: the conditional
likelihood (CLL) adaptation technique yields an additional
increase of 0.6 BLEU point, which is nearly doubled when
using the discriminative objective function Lpro−mm to per-
form adaptation. As showed in the middle part of Table 2,
similar improvements are obtained with the adaptation of
P (ti|si−1

i−n+1, t
i−1
i−n+1).

Finally, the lower part of Table 2 compares the perfor-
mance obtained by our discriminative adaptation method to
the one published in [9] for the same experimental setup. In
our experiment (the last line), in-domain data are only used
in two phases: the retuning of feature weights λ; and the
separate discriminative adaptation of two CSTMs. In [9], the
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System dev test
Baseline systems (out-of-domain)

n-code 33.9 27.6
n-code + CSTM WMT 34.6 28.2

Adapted systems
n-code + CSTM CLL adapted 35.1 28.7
n-code + CSTM Lpro−mm adapted α = 100 35.3 29.4

Model combination
n-code (+TED) + all CSTMs CLL adapted [9] 36 29.7
n-code + all WMT CSTMs + 2 CSTMs
Lpro−mm

36.4 29.9

Table 2: BLEU scores obtained for different adaptation
schemes of the CSTM for P (ti|si−1

i−n+1, t
i−1
i−n+1) in the mid-

dle part, and with model combination in the lower part. The
notation n-code (+TED) emphasizes that for this system the
baseline SMT system is re-trained with out-of-domain and
in-domain data, while in all other cases the baseline system
only uses out-of-domain data.

SMT system is entirely re-trained from scratch to integrate
in-domain data (from word alignments to the large scale tar-
get language model), and all four CSTMs defined by (2) are
adapted using the CLL criterion. This experiment shows that
we can achieve slightly better performance by only adapting
two CSTMs with the proposed objective function.

5. Related work
Most recent works in domain adaptation for SMT focuses
on the modification of the sufficient statistics required by
conventional discrete models [3, 4, 38], or on data se-
lection [5, 6]. Our work owes much to recent contribu-
tions in discriminative training and tuning of SMT systems.
While perceptron-based learning has been first introduced
in [39, 40], margin-based algorithms such as MIRA [20, 21]
are nowadays considered as more efficient to train Feature-
Rich Translation systems. This property is especially rele-
vant in our case, since we intend to learn a large set of pa-
rameters (θ). Another trend considers the optimization prob-
lem as ranking [41, 39, 22, 23]. Note that the ranking task
corresponds to the integration of the CSTM that is actually
used for N -best reranking. In this work, the proposed ob-
jective functions borrow from these two lines of research to
both adapt the CSTM (θ) and tune its contribution (λ) to the
whole SMT system.

To the best of our knowledge, the most similar work on
discriminative training or adaptation of neural network mod-
els is [12]. In this article, the authors propose to estimate the
parameters of a neural network towards the expected BLEU
score, while tuning λ by standard tools. Algorithm 1 is
very similar to the optimization algorithm they describe, ex-
cept that in our case, the feature weights λ are regularly up-
dated for a better and tighter integration of the CSTM into
the SMT system. Moreover, their proposed model only con-

siders phrase pairs in isolation, while we use a probabilistic
model of the joint distribution of sentence pairs. Expected
BLEU training was also applied to recurrent neural network
language model in [42].

In [13], the authors also introduce a ranking-type objec-
tive function that only aims to estimate word embeddings in
a multitask-learning framework. Furthermore, [17] inves-
tigates the use of a large-margin criterion to train a recur-
sive neural network for syntactic parsing. Interestingly, their
model is also used to rerank N -best derivations generated by
a conventional probabilistic context-free grammar. However,
as showed by experimental results, the max-margin criterion
alone is less adapted to machine translation. One explanation
is that the N -best lists generated by the SMT system are not
sufficiently diverse.

6. Conclusions

This paper has proposed and evaluated the use of discrimi-
native criteria to adapt continuous space translation models.
Instead of using a standard maximum likelihood method, the
newly proposed algorithm discriminatively contrasts good
and bad hypotheses from an N -best list produced by the
baseline system into which the CSTM will be incorporated.
A new adaptation method has been tested, consisting in
jointly optimizing parameters from the neural network and
from the SMT system so that the algorithm directly improves
the system’s overall quality. BLEU-based margins have also
been included into these new loss functions and are proved
to be useful. Our experiments consist in adapting out-of-
domain CSTMs using a small quantity of in-domain parallel
data, while keeping intact the out-of-domain baseline sys-
tem. Our conclusions are two-fold. Firstly, we prove em-
pirically the effectiveness of using discriminative criteria to
adapt CSTMs, compared to the traditional maximum like-
lihood method. Secondly, our comparison shows that the
pairwise ranking criterion is more suitable to Discriminative
Reranking task in SMT than the max-margin approach, and
that combining both criterion can deliver additional gains. In
general, this work confirms the effective use of neural net-
works in Domain Adaptation for SMT systems.

For future work, we plan to combine our framework with
other objective functions on N -best lists, such as expected
BLEU [43]. We will also try an intensified use of the pro-
posed algorithm by iteratively adding multiple feature func-
tions into the SMT system; each model is trained using base-
line system’s N -best lists rescored with previously added
models, in the hope that each model will capture comple-
mentary information and correct errors of the previous pass.
Moreover, even though this work focuses on probabilistic
n-gram translation models, our framework could be applied
to any model structure [44, 18, 11] giving a score to each
translation hypothesis.
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