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Abstract
This report summarizes the MITLL-AFRL MT and

ASR systems and the experiments run using them dur-
ing the 2014 IWSLT evaluation campaign. Our MT
system is much improved over last year, owing to in-
tegration of techniques such as PRO and DREM op-
timization, factored language models, neural network
joint model rescoring, multiple phrase tables, and devel-
opment set creation. We focused our eforts this year on
the tasks of translating from Arabic, Russian, Chinese,
and Farsi into English, as well as translating from En-
glish to French. ASR performance also improved, partly
due to increased eforts with deep neural networks for
hybrid and tandem systems. Work focused on both the
English and Italian ASR tasks.

1. Introduction
During the evaluation campaign for the 2014 Inter-
national Workshop on Spoken Language Translation
(IWSLT’14) [1] our experimental eforts in machine
translation (MT) centered on 1) decoding with factored
language models [2], 2) neural network joint model [3]
rescoring, 3) multiple phrase tables, and 4) development
set creation. Other algorithms in our toolbox included
the recurrent neural network language model [4], and
the operational sequence models [5].

Experimental eforts for the automatic speech recog-
nition (ASR) task focused on the use of deep neural net-
works for use in both hybrid and tandem conigurations.
Updated language models also improved performance
compared to our 2013 system.

†This work is sponsored by the Air Force Research Labora-
tory under Air Force contract FA8721-05-C-0002. Opinions, in-
terpretations, conclusions and recommendations are those of the
authors and are not necessarily endorsed by the United States
Government.

We here describe improvements over our 2013 sub-
mission systems. For a more in-depth description of the
2013 system, refer to [6]. This paper is structured as fol-
lows. Section 2 presents our work on the MT task, and
discusses each of the techniques mentioned above, end-
ing with a discussion of submitted systems. Our work
on the ASR task is discussed in Section 3.

2. Machine Translation
2.1. Data usage

Unless otherwise noted, data described in this section
originates from the WMT14 website1. We used the in-
domain data supplied by WIT3 [7] for all language pairs.
In English-French, our parallel data included the 109

corpus, News Commentary v8, Europarl v7, and the
UN corpus. In Russian to English, we used the Yandex
corpus2, Common Crawl, Wiki Headlines, News Crawl,
and UN data. In Arabic to English, we used only the
UN data, which was sentence-aligned via Champollion
[8].

Extra monolingual data (in addition to parallel data)
included the News Crawl corpus 2007-2011 (English and
French), LDC Gigaword English v5 [9], and LDC French
Gigaword v3 [10].

2.2. Data Preprocessing and Cleanup

The TED datasets were examined for repetition errors,
in which English sentences or sentence-internal phrases
are translated multiple times. These errors derive from
the TED website. When repetition errors occur in train-
ing data, they cause alignment problems; when they oc-
cur in test data, they degrade the machine translation.

1http://www.statmt.org/wmt14/translation-task.html
2https://translate.yandex.ru/corpus?lang=en
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Repeated phrases of more than 10 words were detected
and removed. If parallel text was available, phrases were
only removed when there was no corresponding repeti-
tion in the English sentence. The Farsi test sets con-
tained substantial repetition; lesser amounts were found
in the Chinese dev and test data, and in the French dev
data. Arabic and Russian dev and test sets were also ex-
amined, but did not contain these repetitions. Remov-
ing the repetitions from the Farsi tst2014 ile improved
BLEU +1.53, based on last year’s IWSLT system. We
expect to see some improvement for Chinese as well, but
due to time constraints defer that comparison to future
work. Repeat statistics for the dev and test sets are
outlined in Table 1, and for the train sets in Table 2.

Lang. Set Repeats Length
French dev2010 11 887

Chinese
dev2010 87 887
tst2010 81 1570
tst2014 13 1068

Farsi

tst2010 1 885
tst2011 22 1132
tst2012 343 1375
tst2013 187 923
tst2014 53 1131

Table 1: Repeated sentences per dev/test set

Lang. Year Repeats Length

Arabic 2013 3 155,047
2014 5 186,467

Chinese 2014 550 177,901

Farsi 2013 5,749 81,872
2014 8,987 112,704

French 2013 173 162,681
2014 373 186,510

Russian 2013 109 135,669
2014 145 185,205

Table 2: Repeated sentences per training set

2.3. Baseline MT System

Our system implements a fairly standard phrase-based
SMT [11] architecture. It consists of the following:

• Training corpora iltered for maximum sentence
length of 40.

• MADAMIRA Beta 1.0 [12] tokenization for Ara-
bic, Stanford Segmenter [13] + character segmen-
tation for Chinese, Moses tokenizer for Russian
and English.

• GIZA++ word alignments, using 100 word classes,
Models 2-4 + HMM and optionally Model 5.

• Order 6 TED language model.
• Maximum extracted phrase length of 9.

• Monotone-at-punctuation, drop-unknown.
• Phrasetable with KN smoothing [14].
• Word-based [15] or hierarchical [16] monotone-

swap-distort lexical reordering.
• Moses decoder [17], no reordering over punctua-

tion, n-best list size 200.
• Rescore n-best-lists using order-7 class-based TED

LM. Default is 80 word classes.
• Pairwise rank optimization [18] or Derivative-Free

Robust Error Minimization (DREM) [6] over cu-
mulative n-best lists.

• One-best result (we saw no consistent beneit to
using Minimum Bayes Risk).

In addition to the tokenizers listed above, in English-
French and the English component of the Arabic task,
we used simple in-house tokenizers that separate out
punctuation and common language speciic construc-
tions (e.g. l’ in French). Reported scores are case-
sensitive BLEU scores with separated punctuation (via
MTEval3). To account for variance, unless otherwise
stated, scores are averages over 10 optimizations. Base-
line systems are tuned on dev2010.

2.3.1. Language Modeling

Language models on in-domain or target-side parallel
data were trained using either MITLM [19] or SRILM
1.7 [20]. With the Gigaword dataset, we typically used
lmplz [21]. All LMs were binarized using KenLM [22].
Word classes were trained using mkcls [23].

2.4. Additional Phrase Table Training

The use of extra phrase table training data was indis-
pensible in the English to French and Russian to En-
glish tasks. For each of these, we used Moore-Lewis [24]
cross-entropy iltering cE) and kept 10% of the out-of-
domain data. We also experimented with a 2nd phrase
table in Arabic to English and Russian to English using
the MultiUN and Yandex datasets, respectively. These
were tested in addition to a cross-entropy iltered PT.

Lang. Baseline cE PT + 2nd PT +Backof PT
en-fr 38.25† 41.39† – –
ar-en 30.94 31.55 31.53 30.66
ru-en 21.13 22.47 22.15 21.25

Table 3: Comparison of mean BLEU on tst2013 with
additional PT training. (†=tst2012)

2.5. Neural Network Joint Model

We replicated the architecture described in Devlin et al.
Neural Network Joint Model [3], which is similar to a

3http://www.itl.nist.gov/iad/mig/tests/mt/2009/
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continuous space language model, but conditioned on
words in the source language as well. Each target side
word is considered to be “ailiated” with a source word
(via word alignments included in the phrase table). The
ailiated word, the 5 words before and after it, and a 3-
gram on the target side are input to the neural network;
the outputs are posterior probabilities over the entire
target language vocabulary.

We implemented this to rescore 200-best lists. Our
results were promising; we saw modest gains on a variety
of language pairs. Devlin et al. claim gains more than
double when this is integrated into the decoder itself.
This is future work for us.

We implemented the NNJM within Theano [25], and
ran training and rescoring on a Tesla K40 GPU. We
trained a vocabulary by taking words seen in TED 4
or more times. Additional words in the phrase table
(such as from out-of-domain data) were mapped to word
classes using mkcls. Training was done on the output
of grow-diag-inal-and alignments. In the case where
out-of-domain data was available and useful, we irst
trained the network on only the out-of-domain data,
then switched to in-domain data only. In building the
phrase table, sub-phrase alignments for a given phrase
pair were taken from the extracted phrase pair with
maximum scoring lexical p(f |e).

Lang. RNNLM NNJM-In Out+In
ar-en 30.59 30.87 30.88
en-fr 40.85 39.75 41.39
ru-en 20.81 21.21 21.27

Table 4: Efects of neural joint model rescoring, mean
BLEU over tst2012

2.6. Factored Models

Following the success of Edinburgh’s Target Sequence
Model [2] (and our own rescoring n-best lists via mkcls),
we enabled factored language models within Moses. In
theory this should be better than rescoring, because it
will alter the search space the decoder traverses. For
class-based LMs, we compared mkcls to Percy Liang’s
brown-cluster4. We saw that the optimal number of
word classes varied, but once tuned, BLEU varied only
0.2% on ru-en. All numbers reported here use mkcls.

Lang. Baseline 50 200 600 1000
ar-en 29.61 29.70 29.58 29.70 29.71
fa-en 16.68 16.26 16.54 16.62 16.87
ru-en 18.75 19.03 19.32 19.45 19.16
zh-en 15.06 14.95 14.64 14.80 15.00

Table 5: nClasses with factored LMs, tst2013.
4 https://github.com/percyliang/brown-cluster

We saw further gains of 0.41, 0.37 and 1.2 with ad-
ditional class-based Gigaword LMs in ar-en, fa-en, and
ru-en, respectively. However, the results for zh-en were
inconsistently bad. For instance, we saw a gain of 0.29
with 200 classes, a loss of 0.39 with 1000 classes, and
all experiments were worse than the baseline score. Ad-
ditional factored LMs, such as POS tags, were tried in
Russian to English, but produced a loss in performance
of 0.6 BLEU.

We also experimented with the operational sequence
model over word classes. We saw signiicant gain in
English to French using only TED data (+0.69 on
tst2010 using 100 classes), but using the full out-of-
domain data, we did not see the same gains (+0.16).
Translating into English, we saw limited gains, but OSM
with classes reduced std. deviation >1.0 BLEU.

Lang. Baseline 100 250 500 1000
en-fr 41.39 41.56 40.21 – –
zh-en 12.85 12.89 12.76 12.83 12.98

Table 6: nClasses with OSM w/WCs, tst2012 for en-fr,
tst2013 for zh-en.

2.7. Russian Morphological Preprocessing

We used a variation of the Yandex technique for re-
ducing data sparsity [21], stemming nouns and adjec-
tives and inserting a case element as a separate word
before each noun. We used mystem5 to identify lem-
mas and grammatical information; nouns were anno-
tated for number, and adjectives were annotated for
degree. Noun forms that could represent singular or
plural were annotated as singular. For nouns with am-
biguous case, the irst possible case element was selected
from the continuum of nominative, accusative, genitive,
dative, instrumental, ablative. Examples are shown in
Table 7.

Noun Case/Number Output
дням dat-pl DAT день.N+PL
день nom-sg, acc-sg NOM день.N+SG

Table 7: Examples of Yandex-style morphological pro-
cessing

Table 8 shows average BLEU gains over 10 runs by
preprocessing the Russian source data in this way. Max
scores increased less, on average 0.27, while standard
deviation decreased signiicantly. These trends extended
to experiments with extra data, and were exaggerated
with the addition of NNJM rescoring.

5https://api.yandex.ru/mystem/
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System BLEU Gain ∆ Stdev
Baseline 21.13 +0.32 -0.2
+outd 23.29 +0.82 -0.3
+RescoreNNJM 23.56 +1.45 -1.14

Table 8: Mean BLEU scores with Yandex-style prepro-
cessing, tst2013.

2.8. Farsi-English System

Our system this year was a factored phrase-based system
built using supplied in-domain data for the phrase table
with 3 language models built using Gigaword, in-domain
data, and Google-book n-grams. Gains were obtained
by replacing non-printable characters with spaces, utiliz-
ing class-factors with 600 classes, using the cleaned test
sets as described in Section 2.2, and optimizing with a
development set as described in Section 2.9. We selected
the number of sentences for these sets based on the max-
imum Tversky score. Three sets were created, one each
to match tst2013 and tst2014 and one to match
the combination. Non-printing characters were replaced
and repeated phrases (Section 2.2) removed before the
devset selection occurred. Systems were optimized with
PRO using each of these devsets and the best score on
tst2012 of 10 runs was selected as the coniguration
for submission (see Table 9).

Dev Set Length tst2012
Mean Stdev Max

dev2010 885 20.52 0.22 20.16
tst2012 1375 20.48 0.09 20.60

tst2013devsel 931 20.94 0.16 21.23
tst2014devsel 888 21.22 0.10 21.34

tst2014+13devsel 1245 20.99 0.16 21.23

Table 9: Farsi-English system BLEU scores on regular
and Tversky-selected devsets

Based on these results, the system optimized with
tst2014devsel was used to decode tst2013 and
tst2014 for submission.

2.9. Development Set Creation

Following the experiments from last year, as well as
uncertainty in performance via optimizing dev2010 or
tst2011, we implemented a dev set creation mechanism
which extracts the most promising segments from the
available data. We choose to select the dev set based on
maximizing the Tversky similarity measure [26] between
the dev set source segments and the test set source seg-
ments. We employ Tversky similarity with unit weights,
making it equivalent to Jaccard similarity and Tanimoto
similarity: our Tversky score is the number of unique
words in the intersection of the dev and test sets di-

vided by the number of unique words in the union.
We create the dev set via greedy optimization. Start-

ing with an empty dev set, we iteratively add the seg-
ment that provides the largest bang-for-your-buck im-
provement, i.e., the largest increase in Tversky similarity
divided by the number of words in the segment. The re-
sult is a dev set with segments ordered by relationship
to the test set. We can choose a ixed dev set size based
on available resources, a dev set size that maximizes
Tversky similarity, or use another heuristic.

In order to test efectiveness of the Tversky met-
ric, baseline systems were trained using only in-domain
data for Arabic-English, Russian-English, and Chinese-
English language pairs. These systems were then op-
timized using dev2010, tst2012 and Tversky-selected
dev sets of varying length (e.g. tvdev1188 for Arabic
indicating a dev set selected from the irst 1,188 lines of
the selected data). The pool of possible sentence pairs
for the Tversky-selected dev sets is the concatenation of
dev2010, tst2010, tst2011, and tst2012. The length
of these selected sets is set by maximizing the score for
the source-side of tst2014. (It is worth mentioning that
the references play no role in the entire process.) Results
are shown in Table 10.

Lang. dev set avg BLEU max BLEU

ar-en
dev2010 20.42 20.96
tst2012 20.64 20.94

tvdev1188 21.15 21.52

ru-en
dev2010 16.98 17.03
tst2012 16.81 17.03

tvdev2500 17.00 17.13

zh-en
dev2010 12.60 12.90
tst2012 12.33 13.03

tvdev1500 11.30 12.92

Table 10: Results of Baseline systems using standard
and Tversky-score selected dev sets.

2.10. MT Submission Systems

A brief description and results for all of our MT submis-
sion systems can be found in Table 11.

3. ASR
3.1. English ASR

A hybrid Deep Neural Network (DNN)-HMM speech
recognition system was developed on 166 hours of TED
data, 128 hours from the HUB4 corpus [27, 28], and 96
hours from the Euronews corpus provided by the orga-
nizers. This system was trained using the same pro-
cedure as our IWSLT 2013 system [6]. The DNNs in-
cluded 7 hidden layers with 1000 units each and 8000
output units. Compared to our IWSLT 2013 hybrid
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System Description tst2012 tst2013 tst2014
English-to-French

primary cE apw/afp/ted/news LMs, NNJMout+in, OSM o9, opt tvDev1500 42.62
contrast1 primary – tvDev + opt dev2010 41.80

Arabic-to-English
primary 2PTs, hier-msd, nyt+news LM, NNJMin, ted-200 cLM, nyt-600 cLM 30.86 31.80 27.70
contrast1 primary – dev2010 + opt tvDev1200 31.11 31.72 27.39

Chinese-to-English
primary nyt LM, dLimit-8, hier-msd LR, max sent len 32 13.83 15.67 12.90
contrast1 primary + ltw LM + 150 classes GIZA 14.20 15.44 13.25
contrast2 primary + tvDev1500 14.09 15.43 12.92
contrast3 primary + hier-mslr LR 13.28 15.59 12.64

Farsi-to-English
primary PRO, cleaned source data, 600 cLM o7, hiero LR reordering, nyt LM 21.13 19.49 18.45

o7, google book o5, opt tvdev2014
contrast1 primary – tvdev2014 + opt tvdev2013 21.12 19.24 18.56
contrast2 primary – tvdev2014 + opt tvdev2013+2014 21.11 19.14 18.27

Russian-to-English
primary PRO, cE PT, ted LM o7, outd LM o7, giga LM o5, ted+outd cLM o7, 21.30 24.42 19.45

giga nyt cLM o7, yandex parsing, NNJMout+in, opt on dev2010
contrast1 primary – yandex parsing 21.27 24.10 19.08

Table 11: MT Submission Systems.

DNN-HMM system trained on TED, the additional data
yielded a 1.2% Word Error Rate (WER) improvement
on dev2012 prior to LM rescoring, and a 0.4% WER
improvement after LM rescoring.

A bottleneck [29] DNN system for use with a tandem
GMM-HMM [30] was trained using 135 hours of TED
data. The Theano library for Python [25] was leveraged
during DNN training to enable use of the GPU. The i-
nal DNN had 4 hidden layers with 1000 units, plus an
additional bottleneck layer with 60 units placed between
the last two hidden layers. The DNN was trained with
12 Perceptual Linear Prediction features, along with the
zeroth coeicient and irst, second, and third order dif-
ferentials. Features were combined with a frame window
of 13 to give a total input size of 676. Outputs corre-
sponded to 6000 shared states. A minibatch size of 256
and initial learning rate of 0.3 was used for training the
DNN. The “newbob” learning rate schedule as used in
[31] was followed.

A tandem GMM-HMM was trained with the bot-
tleneck features, which were run through PCA. The i-
nal tandem model included approximately 7000 shared
states with 32 Gaussians per state. This sytem did not
perform as well as the hybrid system, but was successful
in system combination.

LM data selection was implemented using the same
procedure as our IWSLT 2012 system [32]. Interpolated
trigram and 4-gram LMs were estimated on TED, 1/8 of
Gigaword, and 1/8 of News 2007–2013 using the SRILM
Toolkit [20].A Recurrent Neural Network (RNN) max-
imum entropy LM was estimated on the same set of

training texts using the RNNLM Toolkit [4]. The net-
work included 160 hidden units, 300 classes in the out-
put layer, 4-gram features for the direct connections,
and a hash size of 109. The LM vocabulary included
100000 words.

In addition to the hybrid DNN-HMM and tandem
systems described above, we also used our IWSLT 2013
HMM acoustic models (AMs) with the updated LMs.
This system was cross adaptated using the initial tran-
scripts from the hybrid DNN-HMM system.

Automatic segmentation of the test data was per-
formed using the same procedure as IWSLT 2013.
Recognition lattices were produced for each system and
then rescored with the interpolated 4-gram LM. Next,
1000-best lists were extracted from each lattice and
rescored with the RNN LM. The inal LM scores were
obtained by linearly interpolating the log probabilities
from the 4-gram and RNN LM. Lastly, system combi-
nation was perfomed using N-best ROVER.

Table 12 shows the WER of each system on dev2012
after evaluating the second pass decoder, rescoring with
the 4-gram LM, and interpolating the 4-gram and RNN
LM scores. Note that the irst pass hybrid DNN-HMM
and tandem systems yielded a 16.7% and 23.1% WER
on dev2012, respectively. N-best ROVER of all three
systems yielded a 12.4% WER.

3.2. Italian ASR

An Italian pronunciation dictionary was manually cre-
ated for the most frequent 28000 words from the Eu-
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System Decode-2 4-gram 4-gram + RNN
DNN-HMM 14.8 14.2 13.3
HMM-2013-AM 15.3 14.6 13.7
Tandem 20.8 20.0 18.3

Table 12: English dev2012 WER. Results are shown
for each system after evaluating the second pass decoder,
rescoring with the 4-gram LM, and interpolating the 4-
gram and RNN LM scores.

ronews corpus. This was done by a member of our
group who speaks Italian as a second language. The
51 phone set included 24 non-geminated consonants, 20
geminated consonants, and 7 vowels. A second pro-
nunciation dictionary with 32 phones was created by
ignoring gemination.6 Lastly, a multilingual (ML) pro-
nunciation dictionary was created from the Italian dic-
tionary that ignored gemination and version 0.7a of the
English CMU pronunciation dictionary. Italian and En-
glish phones were merged when they shared the same
IPA symbol;7 this dictionary included 48 phones.

HMM and hybrid DNN-HMM systems were trained
on the Euronews Italian data set using the same pro-
cedure as the English systems. One HMM system was
trained using the 51 phone set (denoted as HMM-51),
and a second HMM system was trained using the the
32 phone set (denoted as HMM-32). HMM-51 included
6000 shared states with an average of 28 mixtures per
state, and HMM-32 included 4000 shared states with
an average of 24 mixtures per state. The hybrid DNN-
HMM system was developed using HMM-51, and the
DNNs included 3 hidden layers with 1000 units each
and 6000 output units. A inal HMM system (denoted
as HMM-ML) was developed on Euronews Italian and
TED English using the ML pronunciation dictionary;
HMM-ML included 6000 shared states with an average
of 28 mixtures per state.

Interpolated trigram and 4-gram LMs were esti-
mated on the provided TED training data, Google
Books Ngram corpus, and Web 1T 5-gram corpus.
Words from the TED data set were split on apostro-
phes, and N-grams from Google Books were ignored if
the source was published prior to the year 2000. The LM
vocabulary included 100000 words. An RNN maximum
entropy LM was estimated on TED using the RNNLM
Toolkit. The network included 320 hidden units, 300
classes in the output layer, 4-gram features for the di-
rect connections, and a hash size of 109.

Initial segments of the test data were created using
the English neural network SAD. On the dev2014 parti-
tion, it was discovered that the SAD was misclassifying

6Palatal nasal consonants were always geminated in our dictio-
nary.

7The ARPAbet to IPA mappings used in this work are available
at: http://en.wikipedia.org/wiki/Arpabet

non-speech sections as speech on several TEDx talks. To
alleviate this problem, we reprocessed any speech seg-
ment longer than 20 seconds with a second SAD that
was trained on English telephone speech from the Fisher
corpus [33].

Each system was evaluated using HDecode and LM
rescoring was performed using the same procedure de-
scribed in Section 3.1. Cross adaptation was applied to
the HMM systems using the initial transcripts from the
hybrid DNN-HMM system. The inal hypothesis was
selected via N-best ROVER of the DNN-HMM, HMM-
32 and HMM-ML systems. This combination yielded a
29.5% WER on dev2014. Table 13 shows the WER at
each decoding stage; for comparison purposes, we have
included the results obtained without cross adaptation
of the HMM systems.

3.3. ASR Submission Systems

Final submissions on English tst2014 and tst2013 and
Italian tst2014 are shown in Table 14.
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