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Abstract
Most of the reliable language resources are developed via human supervision. Developing supervised annotated data is hard and tedious,
and it will be very time consuming when it is done totally manually; as a result, various types of annotated data, including treebanks, are
not available for many languages. Considering that a portion of the language is regular, we can define regular expressions as grammar
rules to recognize the strings which match the regular expressions, and reduce the human effort to annotate further unseen data. In this
paper, we propose an incremental bootstrapping approach via extracting grammar rules when no treebank is available in the first step.
Since Persian suffers from lack of available data sources, we have applied our method to develop a treebank for this language. Our exper-
iment shows that this approach significantly decreases the amount of manual effort in the annotation process while enlarging the treebank.
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1. Introduction
Supervised grammar induction is the task of learning a for-
mal grammar from the observed data and building a model
based on this data. Generally, grammar induction is a
search space problem and stochastic modeling is widely
used to propose a model as a hypothesis for unseen data
from the trained, observed data. The input data to build the
model and to learn the grammar is a corpus constructed of
syntactically annotated sentences like a treebank.
Using the annotated data of a treebank is a great help to
induce the grammar of a language with high confidence.
Such a rich data source, however, is not available for many
languages, and its development is very expensive and time
consuming. As a result, a supervised grammar induction
will face a barrier for languages with less developed data
sources.
Persian, which is an Indo-European language, is less de-
veloped in terms of availability of data sources including a
treebank. Having no already developed and available tree-
bank results in not being able to create statistical parsers or
evaluate against a gold standard. To develop a treebank for
Persian, we propose a grammar induction method which
extracts the grammar rules from the annotated data to an-
notate further unseen data in a condition that there is no
available treebank in the first step to build the model1. In
this method, a bootstrapping algorithm helps the process of
treebank development in parallel with a component which
extracts the grammar rules from the annotate data. In other
words, extracting the grammar rules and treebanking feed
each other via a bootstrapping process. The challenge of
this approach in contrast to previous studies on grammar
induction is that there is no already developed treebank in
the first step.
This paper is organized as follows: we express our contri-
bution to develop a treebank for Persian in Section 2. In
Section 3, we describe the data source and the annotation

1The annotated data set is freely accessible from this URL:
http://hpsg.fu-berlin.de/∼ghayoomi/PTB.html

tool used in our study. Section 4 brings up the challenge
how we can extract grammar rules when there is no already
developed treebank. Section 5 is devoted to the algorithm
for the bootstrapping approach used in the development of
the treebank. Experimental results are reported in Section
6; and the paper is summarized in Section 7.

2. HPSG-based Treebank for Persian
Treebank development can be theory independent or de-
pendent on a linguistic theory. King and Simov (1998),
Simov (2001; 2002) have shown a finite theory defined as
a set of feature graphs is suitable for the representation of
HPSG (Pollard and Sag, 1994). The treebank developed
based on this assumption will not have feature structures
similar to the normal HPSG, but it is composed of phrase
structure trees such that the trees are enriched with basic
properties of HPSG such as morphosyntactic lexical knowl-
edge, structure sharing, sort hierarchy, dependency rela-
tions with schemas (subject, complement, or adjunct), and
binding off the slashed elements.
The recent available methodologies for Persian HPSG at
both theoretical and system development levels (Tagh-
vaipour, 2005; Samvelian, 2007; Samvelian and Tseng,
2010; Müller, 2010; Müller and Ghayoomi, 2010; Müller
et al., In Preparation) motivated us to select HPSG as the
backbone of our treebank. Figures 1 and 2 show two tree
representations from our developed HPSG-based treebank
for sentences (1) and (2) respectively2.

(1) . كرد مهاجرت پراگ شهر به ش اقوام از يكي اتفاق به بورن

born
Born

be
to

ettefāqe
company.EZ

yeki
one.INDEF

?az
from

aqvām
relatives

aš
CL.3SG

be
to

šahre
city.EZ

perāg
Prague

mohājerat
move

kard.
did.3SG

‘Born moved to the city of Prague in company with
one of his relatives.’

2Since Persian is a right-to-left language, the trees in Figures 1
and 2 should be read right-to-left.
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Figure 1: Tree representation of example (1)

(2) انجام 1963 سال در كه است تحقيقي به مربوط نتايج

شدهاست.

natāyej
results

marbud
related

be
to

tahqiqi
investigation.REST

?ast
is

ke
that

dar
in

sāle
year.EZ

1963
1963

?amjām
perform

šode
become

?ast.
is

‘The results are related to an investigation that was
done in the year 1963.’

In the annotation process of our treebank, we used a mod-
ified version of the annotation scheme utilized in Bul-
TreeBank, an HPSG-based treebank for Bulgarian (Simov,
2003; Osenova and Simov, 2003). In the annotation, the
dependency relations are defined explicitly with these la-
bels: A for head-adjunct relation; C for head-complement
relation; F for head-filler relation; S for head-subject re-
lation; SD for head-subject-drop relation. The extraposed
elements are labeled with DiscE (Discontinuous Extraposi-
tion); and the scrambled elements are labeled with DiscA
(Discontinuous Adjunct). nid (not immediate dominance)
defines the canonical position of the extraposed or scram-
bled elements; and co-referential IDs are used to link nids
to the extraposed or scrambled elements.
In Figures 1 and 2, the dependency relations are expressed
explicitly. Figure 1 is a simple tree in which all the linguis-
tic elements are in their canonical positions; while Figure 2

is a complex tree since a relative clause is extraposed to a
non-local position.

3. The Data Source and the Annotation Tool
The data used for our study consists of the 1000 first sen-
tences of the Bijankhan Corpus3. The Bijankhan Corpus
is a sub-corpus of Peykare, a big balanced corpus for Per-
sian (Bijankhan, 2004; Bijankhan et al., 2011). The Bi-
jankhan Corpus contains more than 2.5 million word to-
kens, and it is part-of-speech (POS) tagged manually with
a rich set of 586 tags. Following the EAGLES guide-
lines (Leech and Wilson, 1999), there is a hierarchy on the
assigned tags such that the first tag expresses the main syn-
tactic category of a word followed by a set of morphosyn-
tactic and semantic features. Mohseni (2008) and Mohseni
and Minaei-bidgoli (2010) developed a morphological ana-
lyzer for automatic POS tagging and reduced the tag set to
105 tags. The accuracy of the morphological analyzer for
inflected words was 95.1%. In our treebank, we used the
modified version of the Bijankhan Corpus with the reduced
tag set.
Because of two problems in the formatting of the POS tags
in the Bijankhan Corpus, even in the modified version, we
converted the tags into the MulText-East4 framework: (1)

3http://ece.ut.ac.ir/dbrg/bijankhan/
4http://nl.ijs.si/ME/
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Figure 2: Tree representation of example (2)

the length of the tags with respect to each syntactic cate-
gory varies; (2) the position of a certain information is not
fixed. Table 1 shows examples for the conversion. The in-
formation in the MulText-East framework is compressed.
Appendix 1 decompresses the information of the tags used
in Table 1.

Table 1: Conversion of original POS tags in the Bijankhan Cor-
pus into the MulText-East framework

Persian Latin English Original Converted
word transliteration meaning POS tag POS tag
دفتر daftar notebook N,COM,SING Ncsp−−−
دفتر daftar-e notebook of N,COM,SING,EZ Ncsp−−z
دفتر daftar office N,COM,SING,LOC Ncspk−−
دفتر daftar-e office of N,COM,SING,LOC,EZ Ncspk−z

To develop the treebank, we benefited from the CLaRK sys-
tem. CLaRK is an XML-based system for data annotation
and corpus development (Simov et al., 2001). Grammar
rules are defined as regular expressions in the system man-
ually. Each regular expression is compiled automatically
into a deterministic finite state automaton in CLaRK to ap-
ply the grammar rules to a document. Since the grammar
rules should be applied to XML documents, they should
be rewritten as queries with the XPath language. DTDs in

XML documents define a document structure with a list of
legal elements and attributes. DTDs play several roles in
the CLaRK system: (1) they represent the sort hierarchy
similar to TRALE (Penn, 2004); (2) they function as a con-
straint on dominance schemas in HPSG; (3) they monitor
and check the consistency during the annotation process.

The CLaRK system supports the cascaded regular grammar
introduced by Abney (1996). As a result, the grammar rules
in the system will recognize only a portion of a string and
not the whole, and the product of one grammar rule is the
input to another grammar rule. The result of the cascaded
regular grammar is a hierarchical ordering of the grammar
rules. In CLaRK, the hierarchy of the grammar rules is
constructed manually.

There are several reasons that we decided to use the CLaRK
system for our data annotation task: (1) since, to the best
knowledge of the author, there is no accessible treebank for
Persian, the data annotation process should be started from
scratch; as a result, we required a tool that provides us an
environment to define regular grammar rules to ease and re-
duce the manual annotation task; (2) the tool supports Uni-
code, therefore it nicely handles the Persian script, which is
a modified version of the Arabic script; (3) since the back-
bone of the BulTreeBank (Simov et al., 2003) is similar to
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Table 2: Bigram samples for multi tokens written as regular expression in CLaRK

Pattern Absolute Freq. Sample Absolute Freq. Translation RE in CLaRK
E− Ncsp−−z 184283 اتفاق به 118 with Left RE

RE: <“ به ”>,<“ اتفاق ”>
Right RE
Return Markup: <MP r=“1-001”> \ w< /MP>

Ncsp−−− Vpyssht−−−− 39213 كرد مهاجرت 10 moved Left RE
RE: <“Ncsp−−−”>,<“V@ys@@t−−−−”>
Right RE
Return Markup: <MV r=“1-001”> \ w< /MV>

Ncsp−−− Vpyssh−f−−− 12011 شدهاست انجام 138 was done Left RE
RE: <“Ncsp−−−”>,<“V@ys@@−f−−−”>
Right RE
Return Markup: <MV r=“1-002”> \ w< /MV>

Table 3: Bigram samples for phrasal constituents written as regular expression in CLaRK

Pattern Absolute Freq. Sample Absolute Freq. Translation RE in CLaRK
Ncspk−z Naspk−−− 11260 پراگ شهر 1 the city of Prague Left RE

RE: <“Ncspk−z”>,<“Naspk−−−”>
Right RE
Return Markup: <NPC r=“1-001”> \ w< /NPC>

Ncspt−z Urns−−− 6976 1963 سال 11 the year 1963 Left RE
RE: <“Ncspt−z”>,<“Urns−−−”>
Right RE
Return Markup: <NPC r=“1-002”> \ w< /NPC>

Nclp−−− Cez−−nshc 1910 ش اقوام 1 his relatives Left RE
RE: <“Nc@p−−−”>,<“Cez−−nshc”>
Right RE
Return Markup: <NPC r=“1-003”> \ w< /NPC>

our treebank, it was a strong motivation to use this tool for
our task; (4) the data structure of the system’s output is an
XML document, as a result it makes the annotation flexible
to add several linguistic knowledge including named enti-
ties, lemmas, and verb stems to the words in addition to the
POS tags.

4. Grammar Rule Extraction for
Treebanking

Recalling from the introduction, stochastic modeling is fre-
quently used in supervised grammar induction. From the
previous section we found out that the CLaRK system does
not support stochastic modeling for the cascaded regular
grammars, and defining the regular grammars and their hi-
erarchical ordering are done manually. But the mentioned
reasons in the previous section persuaded us to use this
system to develop a treebank for Persian. To profit more
from the CLaRK system, to ease the annotation task, and
to decrease the human intervention in developing the data
source, we introduced a non-stochastic grammar induction
approach to learn the grammar rules from the Persian anno-
tated data in order to annotate further unseen data.
In our view, grammar induction is a task that recognizes the
grammar G of a sentence S in a language L. This grammar
is composed of a set of grammar rules R (r ∈ R), which is
manually defined in CLaRK and organized in a hierarchical
order, to analyze unseen data. Compiling the grammar rules
R in the system, each rule r is transformed into a determin-
istic automaton within the system automatically. Giving an
unseen sentence S′ to the system, if the local condition de-
fined for r is satisfied, then the grammar rule r is applicable

on S′. The result is a robust analysis for sequences that sat-
isfy the local conditions.
In the very beginning step to annotate the set of sentences
from the Bijankhan Corpus, we needed to define very basic
grammar rules in CLaRK to shallow process the sentences.
For initialization, basic grammar rules with high coverage
are defined in the system. Since we want to have binary
branching in the trees and define the relations between the
elements, either adjunct or complement, we extracted bi-
grams from the Bijankhan Corpus. To this aim, bigrams of
the POS tags only, and the words with their corresponding
POS tags are extracted from the whole corpus, and the most
frequent sequences are defined as regular grammars in the
system.
Checking the data from bigrams, we defined a number
of regular expressions to handle multi tokens in the pre-
processing step such as compound prepositions and com-
pound verbs. Then, we defined another set of regular
expressions to recognize the most frequent phrasal con-
stituents and to initialize our data annotation task. Ta-
ble 2 displays sample bigrams for multi tokens, and Table 3
shows sample bigrams for frequent phrasal constituents
with their corresponding absolute frequencies from the Bi-
jankhan Corpus written as regular expressions in CLaRK5.
As shown in the tables, the available morphosyntactic and
semantic information of words in their POS tags is used
to define the grammar rules as regular expressions. It is
possible to write productive grammar rules with a sequence

5CLaRK can process regular expressions bidirectional, either
left-to-right or right-to-left, such that the direction of processing
should be set firstly.
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of POS tags, relatively productive grammar rules with par-
tially lexicalized sequences, and less productive grammar
rules with fully lexicalized sequences to recognize frozen
strings. To make the grammar rules more general and pro-
ductive, wild card symbols can be used in the regular ex-
pressions: such as @ for zero or one symbols, % for zero
or more symbols, and # for one or more symbols.
The first 50 sentences of our data set are shallow processed
with the regular expressions defined for initialization. Af-
ter automatic annotation of this set of sentences, their an-
notations are finished manually to have trees like Figures 1
and 2. The result is a very small treebank.
In the next step, we extract all the grammar rules from this
set of annotated sentences (50 sentences). The extracted
rules are distinguished from this respect whether they are
already defined in the system, or the annotator applied man-
ually. To make this distinction explicit, the attribute ‘r’ is
added to the grammar rules defined as regular expressions
in CLaRK. Absence of attribute ‘r’ means that the rule is
applied manually. Now we have two sets of rules: (1) a set
of grammar rules which was already defined in CLaRK as
regular expressions and it is not required to define it again;
and (2) another set of grammar rules are added in the man-
ual annotation step and they should be defined as new reg-
ular expressions in the system to further annotate new sen-
tences. To select the grammar rules from the second set,
this question may raise: “Which of the extracted grammar
rules has a priority over the other rules to be defined as reg-
ular expressions in the CLaRK system?”
In cascaded regular grammar, the product of one rule is
the input into another rule and in each rule only a por-
tion and not the whole string is recognized. The property
of the cascaded regular grammar is that there is an order-
ing on the hierarchy of the grammar rules; and the next
rule is not applied unless the local conditions are satisfied.
Thus, after defining the extracted grammar rules manually
as new grammar rules in CLaRK, they are ordered hierar-
chically. Since the parsing strategy in CLaRK is bottom-up,
the grammar rule extraction approach and ordering are also
bottom-up; i.e. the grammar rules belonging to the higher
level of the hierarchy are extracted and defined in CLaRK
in a condition that the grammar rules belonging to the lower
level of the hierarchy are already extracted and defined. As
a result, the grammar rules in the lower level of the hierar-
chy have priority over the grammar rules in the higher level
of the hierarchy. After finding the grammar rules which be-
long to the lower level of the hierarchy, a second filtering
should be done in order to find the most frequent grammar
rules frequently used by a human annotator and to assign a
priority to them based on their frequency.
Figure 3 illustrates this idea on example (1). After extract-
ing the grammar rules from the tree structures, they are or-
dered hierarchically. As can be seen in the figure, the ex-
tracted grammar rules from the tree structures are organized
into several hierarchical levels in the bottom-up strategy. In
the first step, the grammar rules of the lower level of the
hierarchy are extracted. In the figure, the grammar rules of
this level are shown with a solid-line triangle. The grammar
rules of this level are the ones added to the system in the ini-
tialization step to handle multi-tokens and frequent phrasal

constituents. After completion of extracting the grammar
rules at this level, the grammar rules of the next level in the
hierarchy are extracted. The result of the grammar rule ex-
traction process is that the rules are classified into several
hierarchical levels with respect to their seen constructions.
The process of extracting the grammar rules continues iter-
atively until it reaches to the highest level of the hierarchy
which is labeled S where it halts.
Since not all grammar rules are equally effective, we do not
treat the grammar rules of each level equally. As a result,
the grammar rules which are very productive and have high
frequency of usage should be defined in the system. Based
on this idea, the extracted grammar rules are sorted in a de-
scending order of their frequencies, and the most frequent
rules which have satisfied all the prerequisites are defined
in CLaRK. The prerequisites are in fact the grammar rules
in the lower levels of the hierarchy which are already ex-
tracted.

5. Bootstrapping Process for Treebanking
Algorithm 1 is used to bootstrap defining the grammar rules
in CLaRK for further data annotation.

Algorithm 1 Bootstrapping Process in Treebank Develop-
ment

Input: Set of Sentences from the Bijankhan Corpus,
Set of Seed Grammar Rules Rs defined in CLaRK

while all sentences are added to the treebank do
Choose N sentences S from the corpus
Use Rs to annotate S automatically
Complete the annotation of S manually
Add the annotated S to Treebank T
Extract all applied manual grammar rules Rm from T
Select the K most frequent grammar rules from Rm

Define the K grammar rules as regular expressions in
CLaRK
Augment Rs with the K grammar rules and remove them
from Rm

end while

In this approach, firstly the set of 1000 sentences are pre-
processed to realize multi tokens. Then, the seed gram-
mar rules (Rs), the phrasal constituent grammar rules con-
structed from the bigram information, are defined as regu-
lar expressions in the system to start the annotation process.
Applying Rs to 50 sentences provides a shallow processing
of this set of data. The production of Rs is checked not to
over-generate. In case of over-generation, constraints are
imposed on it to limit its domain to the local context. Then,
the annotation of these 50 sentences are completed manu-
ally. The bootstrapping process is started after defining the
seed grammar rules in the system. To this aim, the remained
sentences (950 sentences) are segmented into sets contain-
ing N sentences (N=10). In each iteration of the process,
the set of 10 sentences is annotated with the seed grammar
rules. The next step is the manual annotation to have a com-
plete analyses of the sentences. In this step, based on what
is described in Section 4, we extract the grammar rules ap-
plied manually (Rm) from the annotated sentences; then
they are classified into several hierarchical levels, and in
each level they are sorted in a descending order of their fre-
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Figure 3: Extracting the grammar rules and ordering them wrt to their hierarchical levels

quency. Then, the K most frequent grammar rules (K=5)
of one level which have satisfied all the prerequisites are
defined as new regular expressions in CLaRK. Rs is aug-
mented with the newly selected grammar rules from Rm.
Finally, the modified version of Rs is used for the anno-

tation of the next iteration. After extracting the grammar
rules in each iteration, they are checked whether they are
already defined in the system or not. If yes, they are re-
moved from the list of extracted grammar rules to increase
the chance of the grammar rules which are not defined in
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the system yet. The bootstrapping process continues iter-
atively, and it terminates when the whole set of selected
sentences (1000 sentences) are annotated completely. The
result is a treebank which is developed with a bootstrapping
process via defining new grammar rules extracted from a
small set of annotated data. It needs to be added that after
applying the grammar rules automatically and before start-
ing the manual annotation, a rule might over-generate; and
since in HPSG the argument structure of a lexicon plays the
most important role to define the type of the dependents, the
parse results should be corrected manually.

6. Experimental Results
Using the model described in Algorithm 1, we built a tree-
bank for Persian composed of 1000 sentences. In average,
the length of each sentence in the treebank is 27.67 words.
To annotate each of these sentence completely, 28.03 gram-
mar rules are required generally, out of which 12.19 gram-
mar rules are applied automatically and the rest manually.
Table 4 summarizes the information about the developed
treebank.

Table 4: Summary of the information about the developed
treebank for Persian

num. of average length average num. of average num. of
sentences of sentences (words) automatic rules manual rules

1000 27.67 12.19 15.84

To evaluate the overall performance of the grammar rules
used in our method for data annotation, precision and recall
are computed. To compute precision, the correct grammar
rules (GR) which are applied automatically against the total
number of grammar rules applied automatically are mea-
sured:

precision =
# of correct automatic GR

total number of automatic GR

To compute recall, the correct grammar rules which are ap-
plied automatically are measured against the sum of correct
automatic grammar rules and the manual grammar rules:

recall =
# of correct automatic GR

# of correct automatic GR + manual GR

f -score is used to weight the average of precision and recall:

Table 4: Summary of the information about the developed
treebank for Persian

num. of average length average num. of average num. of
sentences of sentences (words) automatic rules manual rules

1000 27.67 12.19 15.84

To evaluate the overall performance of the grammar rules
used in our method for data annotation, precision and recall
are computed. To compute precision, the correct grammar
rules (GR) which are applied automatically against the total
number of grammar rules applied automatically are mea-
sured:

precision =
number of correct automatic GR

total number of automatic GR

To compute recall, the correct grammar rules which are ap-
plied automatically are measured against the sum of correct
automatic grammar rules and the manual grammar rules:

recall =
number of correct automatic GR

number of correct auto. GR + manual GR

f -score is used to weight the average of precision and re-
call:

f1 − score =
2 ∗ precision ∗ recall

precision + recall

The summary of the result is reported in Table 5. As can
be seen from the results, 86.20% of the automatic gram-
mar rules are correctly applied which has the coverage of
45.65% over all the correct automatic grammar rules used
to annotate sentences.

Table 5: Evaluation results

Precision Recall f -score
86.20 45.65 59.69

Based on the result, precision is relatively high; but recall
is low because of two reasons: (1) there are contexts that
are not seen so far, and the relevant grammar rules are not
defined in the system as a result; (2) even if a grammar rule
is defined, there is no grantee that it is added to the system
via our bootstrapping process because of its low frequency.
Of course annotating more sentences is a help to increase
recall, since having more annotated data and more grammar
rule definition increase the coverage of the total rules.
To verify this statement, we measured recall of our method
for each 5 iterations and presented it in Figure 4. As can
be seen in this figure, recall is constantly increasing which
is a signal that newly defined grammar rules in each itera-
tion has a positive effect on the coverage, and even higher
recall can be achieved in further iterations. There are two
considerable drops in the graph. Consulting the data, we
found that scrambling, and ellipses frequently happened in
these portions of data extraposition, and a higher amount of
human intervention was required to complete the analyses.
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Figure 4: Recall in each 5 iterations

Moreover, errors in the assigned POS tags had a negative
effect on applying the grammar rules. Additionally, chang-
ing the genre and domain of the text from politics to econ-
omy or sport news was another factor that affected recall.

7. Summary
This paper described a grammar rule extraction task which
helped to develop a treebank via a bootstrapping process.
The introduced method is very useful and practical for lan-
guages that suffer from lack of available data sources like
Persian. The advantage of this method is increasing au-
tomation while decreasing human intervention in data an-
notation.
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Figure 4: Recall measured every 5 iterations

is defined, there is no grantee that it is added to the system
via our bootstrapping process because of its low frequency.
Of course annotating more sentences is a help to increase
recall, since having more annotated data and more grammar
rule definition increase the coverage of the total rules.
To verify this statement, we measured recall of our method
for every 5 iterations and presented it in Figure 4. As can
be seen in this figure, recall is constantly increasing which
is a signal that newly defined grammar rules in each it-
eration have a positive effect on the coverage, and even
higher recall can be achieved in further iterations. There
are two considerable drops in the graph. Consulting the
data, we found that extraposition, scrambling, and ellipses
frequently happened in these portions of data, and a higher
amount of human intervention was required to complete the
analyses. Moreover, errors in the assigned POS tags had a
negative effect on applying the grammar rules. Addition-
ally, changing the genre and the domain of the texts from
politics to economy or sport news were other factors that
affected recall.

7. Summary
This paper described a grammar rule extraction task which
helped to develop a treebank via a bootstrapping process.
The introduced method is very useful and practical for
languages like Persian that suffer from lack of available
data sources including treebanks, and the data annotation
task has to be started from scratch. The advantage of this
method is a constant increase on the automatic annotation
which results in the reduction of human intervention during
the data annotation process.
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Appendix 1

• Ordered Information of POS tags for Clitics: cate-
gory(Clitic(C)); type(enclitic(e)/ proclitic(p)); minor
POS(pronoun(z)/ verb(v)/ post-position(p)/ conjunc-
tor(j)/ preposition(e)/ adverb(d)/ determiner(t)); po-
larity(positive(p)/ negative(n)); verb-type(copula(k));
host (adjective(a)/ noun(n)/preposition(e)/ ad-
verb(d)/ pronoun(z)/ number(u)/ conjunctor(j)/
past-participle(p)/ abbreviation(b)/ residual(s)/ punc-
tuation(o)/ determiner(t)/ cimperfect(q)/ imperfect(i)/
classifier(l)/ interjection(r)/ clitic(c)/ perfect(f)/ post-
position(m)/ verb(v)); number(singular(s)/ plural(l));
person(first(o)/ second(t)/ third(h)); final letter of the
host(consonant(c)/ vowel(v))

• Ordered Information of POS tags for Nouns:
category(Noun(N)); type(common(c)/ proper(a));
number(singular(s)/ plural(l)); polarity(negative(n)/
positive(p)); semantic(location(k)/ time(t)/ day(d)/
month(m)/ season(e)/ title(f)/ vocalic(v)/ direction(c));
abbreviation(b); clitics(Ezafe(z)/ indefininite(y))

• Ordered Information of POS tags for Numbers: cate-
gory(Number (U)); type(ordinal(o)/cardinal(r)); local
function(adjective(a)/ noun(n)); number(singular(s)/
plural(l)); fusion(adjective(a)/ classifier(l)); cli-
tics(Ezafe(z)/ indefininite(y)); semantic(time(t))

• Ordered Information of POS tags for Preposi-
tions: category(Preposition(E)); clitics(Ezafe(z)/ in-
defininite(y))

• Ordered Information of POS tags for Verbs: cat-
egory(Verb (V)); polarity(positive(p)/ negative(n));
auxiliary or main verb(auxiliary(x)/ main(y));
type(simple(s)/ copula(k)/ infinitive(i)/ light(b));
number(singular(s) /plural(l)); person(first(o)/
second(t)/ third(h)); tense(present(s)/ past(t)/
future(u)); aspect(perfect(f)/ imperfect(i)/ cim-
perfect(q)); mood(subjunctive(u)/ imparative(m)/
(past-participle(p)); clitics(Ezafe(z)/ indefininite(y));
impersonal modal(n)
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