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Abstract
Whenever the quality provided by a machine translation system is not enough, a human expert is required to correct the
sentences provided by the machine translation system. In such a setup, it is crucial that the system is able to learn from
the errors that have already been corrected. In this paper, we analyse the applicability of discriminative ridge regression
for learning the log-linear weights of a state-of-the-art machine translation system underlying an interactive machine
translation framework, with encouraging results.

Keywords: Interactive translation prediction, online learning, adaptive systems

1. Introduction
Adaptability is an important feature whenever statisti-
cal machine translation (SMT) systems are to be used
within a computer assisted translation (CAT) frame-
work. In such cases, the user expects the system to
learn dynamically from its own errors, so that errors
corrected once do not need to be corrected over and
over again. Hence, the models need to be adapted on-
line, i.e. without a complete retraining of the model
parameters, since such retraining would be too costly.
In this paper we will focus on adapting only the log-
linear weights λ present in every state-of-the-art SMT
system. Hence, the standard SMT equation (Brown et
al., 1994) is complemented with a superindex denot-
ing the current instant t:

ŷ = argmax
y

M∑
m=1

λtmhm(x,y)

= argmax
y

λt ·h(x,y) = argmax
y

g(x,y) (1)

To simplify notation, we will omit subindex t from
input sentence x and output sentence ŷ, although it
is always assumed. hm(x,y) represents an important
feature for the translation of x into y,M is the number
of models (or features) and λm are the weights acting
as scaling factors of the score functions. g(x,y) rep-
resents the score of a hypothesis y given an input sen-
tence x, and is not treated as a probability since the
normalisation term has been omitted. Common fea-
ture functions hm(x,y) include translation models,
re-ordering models or the target language model. h
and λ are estimated by means of training and develop-
ment sets, respectively. However, the domain of such
sets has an important impact on the final translation

quality (Callison-Burch et al., 2011), and adaptation
arises as an efficient way of alleviating this fact by us-
ing very limited amounts of in-domain data. We focus
on two different CAT scenarios: standard post-edition
(PE), and the more sophisticated interactive machine
translation (IMT) (Barrachina et al., 2009) scenario.
The main difference between PE and IMT is that in
IMT the system provides improved completions af-
ter each user interaction, while in PE the system re-
mains passive after providing the initial translation of
the source sentence.
Similar work was performed in (Ortiz-Martı́nez et
al., 2010), where an incremental version of the
Expectation-Maximisation algorithm is used. How-
ever, such work focuses in the feature functions, while
the present one focuses on the log-linear weights.
Online adaptation of such weights is also studied in
(Martı́nez-Gómez et al., 2012), although only applied
to a conventional PE setup. As we will see later, the
IMT setup yields challenges of its own.

2. Discriminative ridge regression
The main purpose of discriminative Ridge regres-
sion (Martı́nez-Gómez et al., 2012) (DRR) is that
good hypothesis within a given N -best list score
higher, and bad hypotheses score lower. It imple-
ments the estimation of λ as a regression problem be-
tween g(x,y), with y ∈ nbest(x) (i.e., the set of n
best hypotheses which can be derived from x), and the
translation quality of y, µ(y). Let y∗ be the hypoth-
esis with the highest quality, but which might yield
a lower score in Eq. 11. Our purpose is to adapt the

1y∗ does not necessarily match the reference translation
yτ due to eventual coverage problems.
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model parameters so that y∗ is rewarded and achieves
a higher score according to Eq. 1.
We define the difference in translation quality between
the proposed hypothesis ŷ and the best hypothesis y∗

in terms of a given quality measure µ(·):

l(ŷ) = |µ(ŷ)− µ(y∗)|, (2)

where the absolute value has been introduced in order
to preserve generality. We also define the score differ-
ence between ŷ and y∗ as:

φ(ŷ) = g(x,y∗)− g(x, ŷ). (3)

Ideally, we would like differences in l(·) to correspond
to differences in φ(·): if hypothesis y has a transla-
tion quality µ(y) that is very similar to the translation
quality of µ(y∗), we would like this to be reflected
in translation score g, i.e., g(x,y) is very similar to
g(x,y∗).
For computing the new scaling factors λt, the pre-
viously learnt λt−1 is combined, for a certain learn-
ing rate α, with an appropriate update step λ̌t, yield-
ing (Martı́nez-Gómez et al., 2012):

λt = (1− α)λt−1 + αλ̌t. (4)

2.1. Discriminative ridge regression in PE
In a conventional post-editing scenario where the hy-
potheses are provided by a regular SMT system, the
DRR algorithm requires an N -best list of hypotheses
in decreasing order of score. Let nbest(x) be such
a list computed by our models for sentence x. For
adapting λ, we define an N ×M matrix Hx, where
M is the number of features in Eq. 1, containing the
feature functions h of every hypothesis:

Hx = [h(x,y1), . . . ,h(x,yN )]′ . (5)

Additionally, let H∗x be a matrix such that

H∗x = [h(x,y∗), . . . ,h(x,y∗)]′ , (6)

where all rows are identical and equal to the feature
vector of the best hypothesis y∗ within theN -best list.
Then, Rx is defined as

Rx = H∗x −Hx . (7)

The key idea is to find a vector λ̌t such that differences
in scores are reflected as differences in the quality of
the hypotheses. That is,

Rx · λ̌t ∝ lx , (8)

where lx is a column vector of N rows such that

lx = [l(y1) . . . l(yn) . . . l(yN )]′ , ∀yi ∈ nbest(x).
(9)

The objective is to find λ̌t such that

λ̌t = argmin
λ
|Rx · λ− lx| (10)

= argmin
λ
||Rx · λ− lx||2, (11)

where || · ||2 is the Euclidean norm. Although Eqs. 10
and 11 are equivalent, Eq. 11 allows for a direct im-
plementation thanks to the ridge regression2, such that
λ̌t can be computed as the solution to the overdeter-
mined system Rx · λ̌t = lx, given by

λ̌t =
(
R′x · Rx + βI

)−1
R′x · lx , (12)

where a small β is used as a regularisation term to sta-
bilise R′x · Rx. β = 0.01 was used in the experiments
described in this paper.

2.2. Discriminative ridge regression in IMT
In an IMT setting the quality metric to be used is no
longer inherent to a single hypothesis, but to a com-
plete wordgraph. In fact, it is quite common to mea-
sure the quality of a given IMT system by computing
the amount of interactions required in order to modify
the system’s hypothesis so that it matches the refer-
ence. Once a single word has been introduced, the
IMT system modifies the suffix, which implies that
the number of interactions cannot be computed as a
function of the hypothesis, but must be computed by
first simulating the interaction procedure and is a func-
tion of a given wordgraph. Hence, since the metric to
be optimised by online learning does not depend on a
single-best hypothesis, the formulation of DRR needs
to be reviewed.
At this stage, it would be reasonable to consider in-
stead of a list of N -best hypotheses a list of N -
best wordgraphs. However, the concept of N -best
wordgraph is somewhat fuzzy. For this reason, in-
stead of computing a true list of N -best wordgraphs
we will obtain a set of N scaling factors λ, Λ =
{λ1, . . . ,λn, . . . ,λN}, and compute the wordgraph
Wλn(x) associated to a given input sentence x and
obtained for a certain set of scaling factors λn. The
resulting wordgraphs will not constitute a true list of
N -best wordgraphs, but since the purpose of DRR is
to reward those hypotheses (in this case wordgraphs)
that score well, and penalise those that score worse,
what is really important is to have wordgraphs with
good quality, and others with worse. Hence, ly will be
a column vector of N rows such that

ly =
[
l(Wλ1(x)) . . . l(Wλn(x)) . . . l(WλN (x))

]′
(13)

2Also known as Tikhonov regularisation.
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where l(Wλn(x)) is the quality metric associated to
wordgraph Wλn(x).
In addition, when considering DRR within an IMT
setting matrix Hx also needs to be redefined, since
the features that need to be considered in this case
no longer correspond to hypotheses in the N -best list,
but to the wordgraphs generated with Λ. Since a cer-
tain wordgraph Wλn(x) does not have a single set of
features, but rather one feature vector for each one of
the paths through the wordgraph, we will consider for
building Hx the feature vector h of the best path in
Wλn(x), i.e., the feature vector of the best hypothesis
in Wλn(x). Abusing notation and with the purpose of
keeping notation unclogged, let hλn be such feature
vector. Then, Hx is defined for the IMT case as

Hx =
[
hλ1 , . . . ,hλN

]′
. (14)

Equivalently, H∗x is defined in this case as

H∗x = [hλ∗ , . . . ,hλ∗ ] , (15)

with hλ∗ being the feature vector of the best hypothe-
sis of wordgraphWλ∗(x), andWλ∗(x) the wordgraph
with the best performance from among those derived
from Λ.
In the present work, we explored two different strate-
gies for computing Λ:

1. Sampling Λ from a Gaussian distribution with
the mean centred on the set of weights obtained
in training time.

2. Running a Simplex optimisation procedure to
compute the best set of weights for each sen-
tence. Since the Simplex algorithm is an iterative
algorithm, Λ will be composed of those weights
that arise in each one of the iterations.

3. Experiments
The experiments conducted in this work were per-
formed by using the English-Spanish data provided
for the 2013 Workshop on Machine Translation 3.
The initial set of log-linear weights was adjusted by
means of MERT (Och, 2003) on the development sets
of 2008-2010. This initial system will be referred to
as baseline. Since a true IMT experiment is too
costly for experimentation purposes because it would
require a human evaluation, we simulated this proce-
dure by evaluating the system with the 2011 test set,
and adapting the weights online after the system’s per-
formance was assessed for each bilingual sentence.
System performance was evaluated by means of the

3http://www.statmt.org/wmt13

Table 1: Results in KSMR of the different online
learning strategies studied

Method α N KSMR
baseline — — 40.6
original 0.01 5000 42.8
gaussian 0.001 201 40.9
simplex 0.0001 70 40.4

Key Stroke Mouse Action (Barrachina et al., 2009)
(KSMR) ratio, which measures the amount of key
strokes and mouse actions that a user would need to
perform in order to transform the original hypothesis
provided by the system into the reference.
The open-source SMT toolkit Moses (Koehn et al.,
2007) was used for building the initial SMT system,
and the wordgraphs produced by the decoder were
then used for producing the completion hypotheses by
using an in-house IMT engine. Note that, by tuning
the SMT system on the same domain as the test data,
the improvements reported in this paper are not a prod-
uct of a topic-adaptation process, but rather are inher-
ent to the online process itself, seen as the ability of
the system to adapt itself to the current test set being
translated.
The results of the different online learning approaches
can be seen in Table 1, together with the optimal learn-
ing rates for each one of them and the size of the N -
best list used (|Λ| in the case of the Gaussian and sim-
plex strategies). In this table, baseline displays the
KSMR achieved without any online learning proce-
dure enabled. original refers to the online learning
of the log-linear weights as originally defined for PE
(see Section 2.1.). Gaussian refers to the sampling
strategy based on sampling from a Gaussian distribu-
tion (Section 2.2.). Finally, simplex refers to the
Simplex strategy described in Section 2.2.. The learn-
ing rates were established previously in preliminary
investigation. Note that the size of N is different in
each one of the methods. The reason for this is that,
while generating a large amount of N -best translation
hypotheses and assessing their quality by means of
conventional SMT metrics is relatively cheap, build-
ing N -best word-graphs, as described in Section 2.2.,
and assessing their quality is fairly expensive, since
it requires a full IMT simulation for finding out the
amount of corrections required. Furthermore, the size
of Λ in simplex is not a meta-parameter which can be
fine-tuned, since the simplex algorithm was run until
convergence. This means that the value of 70 was an
average, i.e., not the actual amount of Λ considered
for every sentence.
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Concerning the results shown in Table 1, it can be seen
that the Simplex strategy is the one that yields the best
results and the only one that is able to improve over
the initial baseline. Note that previous work (López-
Salcedo et al., 2012) also reported improvements with
the Gaussian strategy. However, such improvements
were obtained by considering |Λ| = 500. In the
present work, similar improvements are obtained by
considering only |Λ| = 70.

4. Conclusions

In the present paper we have presented two possible
adaptations of the discriminative Ridge regression al-
gorithm for its application in an interactive machine
translation framework. First, we have empirically
shown that the original definition is not valid in such a
framework, and then we have evaluated two possible
alternatives. Among them, the one providing the best
results and with the least amount of computational re-
sources is a strategy that relies on the iterations per-
formed by the simplex algorithm when computing the
optimum set of weights for each individual sentence.
The results obtained do not provide large gains, but
prove that there is room for improvement in this direc-
tion.
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Francisco-Javier López-Salcedo, Germán Sanchis-
Trilles, and Francisco Casacuberta. 2012. On-
line learning of log-linear weights in interactive
machine translation. Advances in Speech and
Language Technologies for Iberian Languages,
328(2012):277–286.
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