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So far so good,

but....
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Problems

|. Source language inflectional richness.
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Problems

2. Target language inflectional richness.
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Problems

3.Source language sublexical semantic compositionality.
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General Solution

MORPHOLOGY
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But...Ambiguity!

® Morphology is an inherently ambiguous
problem

® Competing linguistic theories
® | exicalization
® Morphological analyzers (tools) make mistakes

® Are minimal linguistic morphemes the optimal
morphemes for MT?

32
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Problems

4. Ambiguity everywhere!
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General Solution

MORPHOLOGY
=
PROBABILITY




Why probability?

Probabilistic models formalize uncertainty

e.g., words can be formed via a morphological
derivation according to a joint distribution:

p(word, derivation)

The probability of a word is naturally defined as the
marginal probability:

p(word) = Z p(word, derivation)

derivation

Such a model can even be trained observing just words
(EM!)

35
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p(derived) =
p(derived, detrive+d) +
p(derived, derived+Q) +
p(derived, derive+d) +
p(derived, derivted) + ...
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Qutline

® |ntroduction: 4 problems
® Three probabilistic modeling solutions

® Embracing uncertainty: multi-segmentations for
decoding and learning

® Rich morphology via sparse lexical features

® Hierarchical Bayesian translation: infinite
translation lexicons

® Conclusion
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Qutline

® Embracing uncertainty: multi-segmentations for
decoding and learning
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Iwo problems

® \We need to decode lots of similar source
candidates efficiently

® |attice / confusion network decoding

Kumar & Byrne (EMNLP, 2005), Bertoldi, Zens, Federico
(ICAASP, 2007), Dyer et al. (ACL, 2008), inter alia
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Two problems

® \We need to decode lots of similar source
candidates efficiently

® |attice / confusion network decoding

Kumar & Byrne (EMNLP, 2005), Bertoldi, Zens, Federico
(ICAASP, 2007), Dyer et al. (ACL, 2008), inter alia

® We need a model to generate a set of
candidate sources

¢ What are the right candidates?

4]
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Uncertainty is everywhere

Requirement:a probabilistic
model p(f’|f) that transforms f — 1’

Possible solution:a discriminatively
trained model, e.g.,a CRF

Required data: example (f,1’) pairs
from a linguistic expert or other source

42
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Uncertainty is everywhere

What is the best/right analysis ... for MT?
AlAntxAbAT

43
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Uncertainty is everywhere

What is the best/right analysis ... for MT?
AlAntxAbAT

Some possibilities:  sadat & Habash (NAACL, 2007)
AlAntxAb +At

Al+ AntxAb +AtC
Al+ AntxAbAT
AlAntxAbAT
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Uncertainty is everywhere

What is the best/right analysis ... for MT?
AlAntxAbAT

Some possibilities:  sadat & Habash (NAACL, 2007)
AlAntxAb +At

Al+ AntxAb +AtT
Al+ AntxAbAT
AlAntTxADAL

Let’s use them all!
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Wiait...multiple references?!?

® T[rain with EM variant

® |attices can encode very large sets of references
and support efficient inference

Dyer (NAACL, 2009), Dyer (thesis, 2010)

44
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Wiait...multiple references?!?

® T[rain with EM variant

® |attices can encode very large sets of references
and support efficient inference

Dyer (NAACL, 2009), Dyer (thesis, 2010)

® Bonus: annotation task is much simpler

® Don’t know whether to label an example with A
or B!

® |abel it with both!

45
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Reference Segmentations

i i

freitag Q reitag ’@

tonbandaufnahme Q\tjnband ’Q >@>
aufnahme
ton
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good phonotactics!
J N
/Rijcken + schmerzen

Ruckenschmerzen
\

O

Ruckensc + hmerzen
Ru + cke + hschme + rzen

N

bad phonotactics!

» Phonotactic features!

47

Tuesday, January 25, 2011



Just 20 features

® Phonotactic probability

® | exical features (in vocab, OOV)
® | exical frequencies

® |s high frequency!?

® Segment length

https://github.com/redpony/cdec/tree/master/compound-split 48
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Input: tonbandaufnahme
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Input: tonbandaufnahme
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‘/
\ ’
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_
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N——
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ndaufnahme (p=-1.50)
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Translation Evaluation

Input BLEU | TER
Unsegmented| 20.8 61.0

|-best segmentation| 20.3 60.2
Lattice (2a=0.2)| 21.5 | 59.8

in police raids found illegal guns , ammunition stahlkern ,

laserzielfernrohr and a machine gun .
in police raids found with illegal guns and ammunition steel core ,a

laser objective telescope and a machine gun .

REF:
police raids found illegal guns , steel core ammunition , a

laser scope and a machine gun .
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Qutline

® Rich morphology via sparse lexical features
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What do we see when we look
inside the IBM models?
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What do we see when we look
inside the IBM models?

old | altes 0.3 | car | Wagen 0.2
alte 0.1 Auto 0.6
alt 0.2 PKW 0.2
alter 0.1

gammelig O0.I
gammeliges 0.1
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What do we see when we look
inside the IBM models?

old | altes 0.3 | car | Wagen 0.2
alte 0.1 Auto 0.6
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alter 0.1

gammelig O0.|
gammeliges 0.1
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DLVM for Translation

Addresses problems:
|. Source language inflectional richness.

2. Target language inflectional richness.

How?
|. Replace the locally normalized multinomial
parameterization in a translation model p(e | f) with a
globally nhormalized log-linear model.

2.Add lexical association features sensitive to sublexical
units.
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ONONORENO

Fully directed model (Brown et al., 1993;
Vogel et al., 1996; Berg-Kirkpatrick et al., 2010)
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ONONORENO

Fully directed model (Brown et al., 1993;
Vogel et al., 1996; Berg-Kirkpatrick et al., 2010)

Our model
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old | altes 0.3 | car | Wagen 0.2
alte 0.1 Auto 0.6
alt 0.2 PKW 0.2
alter 0.1
gammelig O]
gammeliges 0.1

R T i R e e T T R e S L T
New model:

score(e,f) = 0.2h1(e,f) + 0.9h:(e,f) old | alt+ (l0.2]
+1.3m(e,f) + ... gammelig+(l0:2
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old | altes 0.3 | car
alte 0.1
alt 0.2
alter 0.1
gammelig O]
gammeliges 0.1

Wagen 0.2

Auto 0.6
PKW 0.2

New model:

score(e,f) = 0.2h1(e,f) + 0.9h2(e,f)
+ 1.3n1(ef) + ...

old

alt+ Q[072]
gammelig+([0:2!

(~ Incremental vs. realizational)
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Sublexical Features

kazdorocni — annual

|IDkazdoroc¢ni annual

PREFIXKkaz ann
PREHXkaid_annu
PREFIXkazdo annua

SUFFIX; |
SUFFIXni al
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Sublexical Features

kazdorocCni — annually

|IDkazdorocni_annually

PREF'Xkai_ann
PREHXkaid_annu
PREFIXkazdo annua

SUFFIX; y
SUFF'Xni_Iy
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Sublexical Features

kazdorocCniho —» annually

|IDkazdoroé¢niho_annually

PREF'Xkai_ann
PREHXkaid_annu
PREFIXkazdo annua

SUFFIXo y
SUFF'Xho_Iy

65




Sublexical Features

kazdorocCniho —» annually

|IDkazdoroé¢niho_annually

PREFIXKkaz ann
PREFIX . Abstract away from
Kazd_annu inflectional variation!

PREFIXkazdo annua

SUFFIXo y
SUFF'Xho_Iy
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Evaluation

® Given a parallel corpus (no supervised
alignments!), we can infer

® The weights in the log-linear translation
model

® The MAP alignment

® [The model is a translation model, but we
evaluate it as applied to alignment

67
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Alignment Evaluation

Model 4

Czech-English, 3.1 M words training, 525 sentences gold alignments.
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Translation Evaluation

Alignment | BLEU T | METEOR 1 TER |

Model 4 16.3020.2 46.1(,:().;_ 67.4(7:().3
Our model | 165,01 | 46.8,—01 | 67.0,—0 2
Both 17.40:(). 1 47.7020. 1 66.3020.5

Czech-English, WMT 2010 test set, | reference
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Qutline

® Hierarchical Bayesian translation: infinite
translation lexicons
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Bayesian Translation

Addresses problems:

2. Target language inflectional richness.

How?
|. Replace multinomials in a lexical translation model
with a process that generates target language lexical
items by combining stems and suffixes.

2. Fully inflected forms can be generated, but a
hierarchical prior backs off to a component-wise
generation.

71
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Chinese Restaurant Process




Chinese Restaurant Process

_ New customer




Chinese Restaurant Process

OéP()
7——04 7+oz 7——04 7+oz 7+a




Chinese Restaurant Process

OéP()

7——04 7+a 7——04 7—|—Oé 7+oz

a  “Concentration” parameter

Py(z) Base distribution
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old | altes 0.3 | car | Wagen 0.2

alte 0.1 Auto 0.6
alt 0.2 PKW 0.2
alter 0.1

gammelig O]
gammeliges 0.1

R T i R e e T T R e S L T
New model:

suffixes | @ @ old
o

®,
O
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Modeling assumptions

® Observed words are formed by an unobserved process
that concatenates a stem & and a suffix B, yielding ot

® A source word should have only a few translations &f8

® translate into only a few stems &

® The suffix B occurs many times, with many different stems
® 3 may be null

® B will have a maximum length of r

® Once a word has been translated into some inflected
form, that inflected form, its stem, and its suffix should be
more likely (“rich get richer”)
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Synthesis
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Task:
Translate the word old
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Task:

Translate the word old

old

gammelig

inflected|old
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Task:

Translate the word old

alt

old

gammeligH

inflected|old

=SNG

stem|old

suffix|old
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Task:

Translate the word old

alt +

old

gammeligH

inflected|old

® ®
stem\olc» ‘
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alt +

inflected|old

stem|old
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alt + en

old

06 |
&
®
©

ammeI|g+

inflected|old

stem|old

86

Tuesday, January 25, 2011




Evaluation

® Given a parallel corpus, we can infer

® The MAP alignment

® The MAP segmentation of each target
word into <stem+suffix>
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Alignment Evaluation

Model | - EM

Model | - HPYP

Model | - EM

Model | - HPYP

English-French, | | 5k words, 447 sentences gold alignments.
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Frequent suffixes

Suffix Count
+ 20,837
+s 334
+d 217
+e 156
+n 156
+y 130
+ed 121
+ing 119
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Assessment

® Breaking the “lexical independence assumption”
is computationally costly

® The search space is much, much larger!

® Dealing only with inflectional
morphology simplifies the problems

® Sparse priors are crucial for avoiding degenerate
solutions
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In conclusion ...
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Why don’t we have
integrated morphology?
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Why don’t we have
integrated morphology?

Because we spend all our time
working on English, which
doesn’t have much morphology!
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Why don’t we have
integrated morphology?

® Translation with words is already hard: an n-word
sentence has n! permutations

® But, if you're looking at a sentence with m letters
there are m! permutations

® Search is ... considerably harder
® m>npn =) gl >SS g
® Modeling is harder too

® must also support all these permutations!
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Take away messages

® Morphology matters for MT

® Probabilistic models are a great fit for the
uncertainty involved

® Breaking the lexical independence
assumption is hard
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Thank you!

Toda!
$krAF!

https://github.com/redpony/cdec/
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https://github.com/redpony/cdec/tree/master/compound-split
https://github.com/redpony/cdec/tree/master/compound-split

n ~ Poisson(\)
a; ~ Uniform(1/|f])
€; | fai ™~ Tfaz-
Ty, | a,b,M ~ PYP(a,b,M(- | fq,;))
Me=a+ 8| f)=G¢la) x He(B)
Gysl|a,b, f,Py~PYP(a,b, Py())
Hf ‘ a, b, f,H() ~ PYP(CL b HO( ))
Ho | a,b,Qy ~ PYP(a, b, Qq(-))
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