
MT Server Land
DFKI LT’s open-source MT network architecture

Christian Federmann, Andreas Eisele

1

Overview

! Python-based network architecture for MT

! central “broker server” dispatches requests

! distributed “worker servers” handle MT tasks

! Browser-based access for end users

! API access for integration into custom apps

! Open-source project hosted at GitHub

2



Our Vision

3

Motivation

! Make MT from ongoing research accessible 
to everyone

! Build up a shared MT infrastructure for our 
projects at DFKI’s LT lab

! Allow easy translation using multiple MT 
engines and/or configurations

! Connect to external applications

4



Core Requirements

• Single entry point to multiple MT engines for 
multiple users

• Many language pairs, multiple engines per pair

• Simple web-based access and APIs

5

Important Features

• Scalability via distributed implementation

• Robustness wrt. failures in all modules

• Keep administrative effort low 

• Management of user roles and privileges

6



Advanced Functionality

• Give access to intermediate results

• Allow fine-grained influence on behaviour of 
MT engines

• Make auxiliary processing steps (segmentation, 
normalisation) accessible via uniform interface

• Support needs of interactive translation, 
incremental training, and other hot topics of 
ongoing research 

7

System Architecture

8



System Architecture

worker serversbroker serverend users

API access

9

End User Access
! Browser-based interface

! Password protected

! Allows to create new, 
view finished or delete 
translation requests

! Results downloadable

! Implemented in django

! Hosted using lighttpd

10



API Access

! Token-based authentication for security

! Uses HTTP connections (GET, POST, DELETE)

! Several export formats (JSON, YAML, XML)

! Can be used with non-Python frameworks

! It is possible to throttle access to functions

! Uses Google protocol buffer serialization

11

API Access, cont’d

! API methods either available directly from 
the django application via HTTP calls

! Or via an XML-RPC service wrapper

! We also plan to extend the export formats 
to include protocol buffer messages (as 
these are used anyway by the application)

! Implemented in dashboard/api

12



Object Models

13

Object Models

! Defined in dashboard/models.py and 
dashboard/api/models.py

! 2 central models:

! WorkerServer, models an external worker 
server that exports MT functionality via 
XML-RPC

! TranslationRequest, models a translation 
request, including related information

14



Worker Servers

! WorkerServer implementation includes 
information on supported language pairs 
and status methods (is_alive, is_busy...)

! Translation requests are serialized into a 
Google protocol buffer “message” which 
allows for easy serialization of data

! Our .proto definition contains request id, 
source/target language, source/target text 
and additional “packet data”

15

Translation Requests

! TranslationRequest implementation allows 
to create a translation “job” on a suitable 
worker server

! We first generate an “underspecified” 
protocol buffer and send the serialized data 
to the worker server

! All communication relies on base64 
encoded, serialized protocol buffers

! .message files: “backups” in case of crashes

16



Translation Request Messages

! Each TranslationRequest first generates a 
so called “Translation Request Message”

! TRMs encode request id, source/target 
languages, source text and (once ready) the 
final translation

! Each TRM can also have (optional) “packet 
data”, a list of key"value pairs which may 
encode additional data obtained from the 
translation worker server

17

Current State of Things

18



Supported MT Systems

We have implemented worker servers for:

! Google Translate (all language pairs!)

! Microsoft Translator

! Yahoo! Babelfish

! Lucy RBMT (output includes parse trees!)

! Moses SMT " we have a related project

19

Get the source code!

Source code is freely available from

!http://github.com/cfedermann/mt-serverland

Includes bug tracker, wiki, documentation. We 
will be happy to include your code extensions!

Happy branching!

20



Conclusion

We have implemented a MT server network:

! with central access for users and API calls

! worker servers for many different systems

! flexible object models allow easy extension

! system plays nicely with other frameworks

! open source development envisaged!

21

Thank you!
Any questions or comments?!

22



Publication

Federmann, Eisele. MT Server Land:

An Open-Source MT Architecture.

Prague Bulletin of Mathematical Linguistics, 
No. 94: pages 57-66, September 2010.

23


