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虽然  北  风  呼啸  ,  但  天空  依然  十分  清澈  。

However , the sky remained clear under the strong north wind .



The Tower of Babel

Pieter Brueghel the Elder (1563)



Georges Artsrouni’s “mechanical brain”, 
patented 1933 (France)



ENIAC (1946)



When I look at an article 
in Russian, I say: “This 

is really written in 
English, but it has been 
coded in some strange 
symbols. I will now 
proceed to decode.”

Warren Weaver (1949)



Because we want to provide everyone with access to 
all the world's information, including information 

written in every language, one of the exciting projects 
at Google Research is machine translation... Now you 
can see the results for yourself. We recently launched 

an online version of our system for Arabic-English 
and English-Arabic. Try it out!
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2756 language pairs!
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p(heads) ?



p(data) = p(heads)7 × p(tails)3



p(data) = p(heads)7 × [1 − p(heads)]3
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• Optimization
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This is a latent variable problem



More on learning from parallel data:
Today’s lab

Tomorrow’s lecture
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However , the sky remained clear 
under the strong north wind .
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What’s a model?

For our purposes, a model will be
a probability distribution over sentence pairs.
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 Why Probability?
•Access to techniques developed and proven over 

hundreds of years that work on many problems.

•In particular, techniques for learning and prediction.

•Allows us to answer questions:

•What is the best explanation of observed data?

•Given some partially observed data (e.g. an input 
sentence), what is the most likely complete data 
(e.g. a sentence pair)?

•Common sense in mathematical form!



Probabilistic Primer

.∑

e∈E

p(e) = 1

The probabilities of all possible events must sum to 1.
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When an event consists of observations about more than
one variable, it is a joint probability.
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A probability distribution over a subset of variables is a 
marginal probability.
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The probability of a variable under the condition that the 
other variables are fixed is the conditional probability.
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We can still represent the joint distribution as a product 
of other distributions. 
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p(A, B) = p(A) · p(B|A)



Probabilistic Primer
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p(B|A) =
p(B) · p(A|B)

p(A)
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p(B|A) =
p(B) · p(A|B)

p(A)Bayes’ Rule

prior likelihoodposterior



...But the probability that an event has 
happened is the same as the probability I 

have to guess right if I guess it has 
happened.  Wherefore the following 

proposition is evident: If there be two 
subsequent events, the probability of the 
2d b/N and the probability both together 
P/N, and it being 1st discovered that the 

2d event has also happened, the 
probability I am right is P/b.

Thomas Bayes
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configuration

Bayes’ Rule
p(English)

p(image|English)
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Bayes’ Rule
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Bayes’ Rule

p(DNA) p(mutation|DNA)
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However, the sky remained clear under the 
strong north wind .
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However, the sky remained clear under the 
strong north wind .

Bayes’ Rule
p(English)

p(Chinese|English)



However, the sky remained clear under the 
strong north wind .

Bayes’ Rule
p(English)

虽然  北  风  呼啸  ,  但  天空  依然  十分  清澈  。

p(Chinese|English)



When I look at an article 
in Russian, I say: “This 

is really written in 
English, but it has been 
coded in some strange 
symbols. I will now 
proceed to decode.”

Warren Weaver (1949)





Claude Shannon



p(English|Chinese) =

p(English) × p(Chinese|English)

p(Chinese)

likelihoodprior

normalization term (ensures we’re 
working with valid probabilities).

Bayes’ Rule



p(English|Chinese) =

p(English) × p(Chinese|English)

p(Chinese)

channel modelsignal model

normalization term (ensures we’re 
working with valid probabilities).

Noisy Channel



p(English|Chinese) =

p(English) × p(Chinese|English)

p(Chinese)

translation modellanguage model

normalization term (ensures we’re 
working with valid probabilities).

Machine Translation
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English

p(Chinese|English)

× p(English)



English

p(Chinese|English)

× p(English)

∼ p(English|Chinese)



p(English|Chinese) =

p(English) × p(Chinese|English)

p(Chinese)

translation modellanguage model

normalization term (ensures we’re 
working with valid probabilities).

Machine Translation



p(English|Chinese) ∼

p(English) × p(Chinese|English)

Machine Translation



p(English|Chinese) ∼

p(English) × p(Chinese|English)

Machine Translation

What is the probability of an English sentence? 



p(English|Chinese) ∼

p(English) × p(Chinese|English)

Machine Translation

What is the probability of an English sentence? 

What is the probability of a Chinese sentence, given a 
particular English sentence? 



Language Models

We can think of our probabilistic model as a story 
that explains every single word in the sentence pair.



p(However|START )

Language Models



However

p(However|START )

Language Models



However ,

p(, |However)

Language Models



However , the

p(the|, )

Language Models



However , the sky

p(sky|the)

Language Models



However , the sky remained 

Language Models

p(remained|sky)



However , the sky remained clear

Language Models

p(clear|remained)



p(English) =

length(English)∏

i=1

p(wordi|wordi−1)

Language Models



p(English) =

length(English)∏

i=1

p(wordi|wordi−1)

Language Models

Note: the prior probability that word0=START is 1.



p(English) =

length(English)∏
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Language Models

Note: the prior probability that word0=START is 1.

This model explains every word in the English sentence.



p(English) =

length(English)∏

i=1

p(wordi|wordi−1)

Language Models

Note: the prior probability that word0=START is 1.

This model explains every word in the English sentence.
But it makes very strong conditional independence 

assumptions!



Language Models

•The language model does not depend in any way 
on parallel data.

•How much English data should we train it on?



Language Models
39

Monolingual data

Sources of monolingual data:

LDC Gigaword corpora: Chinese, Arabic, English (~1 billion words)

News corpora

The Web (>> 200 billion words)

Standard use of monolingual data:

Train trigram language model: p(wn|wn-2,wn-1)

Smoothing methods: linear interpolation, Kneser-Ney, …

How much data is needed?

Answer: MORE

40

More data is better data…

Impact on size of language model training data (in words) on quality of

Arabic-English statistical machine translation system (NIST test data)

47.5

48.5
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51.5
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75M 150M

AE BLEU[%]
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More data is better data…

Impact on size of language model training data (in words) on quality of

Arabic-English statistical machine translation system

47.5

48.5
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51.5

52.5

53.5
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AE BLEU[%]
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More data is better data…

Impact on size of language model training data (in words) on quality of

Arabic-English statistical machine translation system
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More data is better data…

Impact on size of language model training data (in words) on quality of

Arabic-English statistical machine translation system
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Language Models

•There’s no data like more data.

•Language models serve a similar function in speech 
recognition, optical character recognition, and other 
probabilistic models of text data.

•You’ll learn a lot more about them from Nicola 
Bertoldi on Tuesday and Wednesday
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What is a good story about how a Chinese 
sentence came into being, given that we already 

have an English sentence?

Note: in this example I’ll show you an English sentence, 
conditioned on a Chinese sentence.  Note that we can 

apply the same technique in either direction.
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p(English, alignment|Chinese) =
p(segmentation) · p(translations) · p(reorderings)
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Decoding

Probability models allow us to make predictions:
Given a particular Chinese sentence, what is the most 

probable English sentence corresponding to it?

In math:
argmaxEnglish p(English|Chinese)

problem: there are a lot of English sentences to 
choose from!
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O(2n)
O(5n)
O(n!)

segmentations
substitutions
permutations

240,000 possibilities!
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the strong north wind .

Given a sentence pair and an 
alignment, we can easily calculate      

p(English, alignment|Chinese)

Can we do this without enumerating                pairs?O(10nn!)
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the strong north wind .

There are                 target sentences.O(10nn!)

Key Idea

But there are only               ways to start them.O(5n2)
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北  风  呼啸  。

coverage vector

Key Idea

north
p(north|START ) · p( |north)北

wind

p(wind|north) · p( |wind)风

Work done at sentence beginnings is shared across 
many possible output sentences!

p(strong|north) · p( |strong)呼啸

strong
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Dynamic Programming

amount of work:
O(5n22n) O(10nn!)

bad, but much 
better than

each edge labelled 
with a weight and a 

word (or words)

north, 0.014

weighted finite-state automata



Weighted languages

•The lattice describing the set of all possible 
translations is a weighted finite state automaton.

•So is the language model.

•Since regular languages are closed under 
intersection, we can intersect the devices and run 
shortest path graph algorithms.

•Taking their intersection is equivalent to computing 
the probability under Bayes’ rule.
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Practical Issues

O(5n22n) is still far too much work.

Can we do better?

NO!  Knight (1999) shows that this is NP-Complete.

Barry Haddow will tell you how we can still 
make it work on Thursday.
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Recap
•Probability theory enables us to learn from data.

•Very simple models get us pretty far!

•There’s no data like more data.

•Word-based models follow intuitions, but not all.

•Phrase-based models are similar, but more effective.

•All of these models are weighted regular languages.

•Need dynamic programming with approximations.

•Is this the best we can do? Stay tuned on Thursday.
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Evaluation



More has been written about 
machine translation 

evaluation than about 
machine translation itself.

Yorick Wilks



•Why evaluate?
•Rank systems
•Evaluate incremental changes
•Assess new ideas objectively
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美国愿和北韩谈判但拒绝再付出报酬

US willing to negotiate with North Korea but 
not to pay more compensation.

The United States is willing to hold talks 
with North Korea but refused to pay 

remuneration.
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“Progress” postponed because of mechanical 
hand into the sky.

Launch of “Endeavour” delayed by 
robotic arm problems.

“奋进”号因机械手故障推迟到升空



Chinese people in the traditional Spring Festival is approaching, the CPC 
Central Committee this afternoon in Zhongnanhai on the 22nd non-Party 

personages to convene a forum in Spring Festival, invited the central 
committees of democratic parties, the leadership of the National Federation 

of Industry and Commerce and personages without party affiliation on 
behalf of comrades gathered together State yes, talked in length about the 

friendship, to greet the Chinese New Year. CPC Central Committee General 
Secretary and State President and Central Military Commission Chairman 

Hu Jintao on behalf of the CPC Central Committee, the State Council, to the 
central committees of democratic parties, leaders of the National Federation 

of Industry and Commerce and personages without party affiliation, to 
members of the united front, to extend my New Year's blessing.
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A bit more on learning...
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English

0 · log p(Chinese|English)

+1 · log p(English)

∼ p(English|Chinese)



p(English|Chinese) =
E

1
Z

[λ1 log p(Chinese|English) + λ2 log p(English)]
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Linear Models

•We could optimize lambdas for likelihood (this 
would be a log-linear model).

•Good news: optimization is convex.

•Bad news: computing Z is intractable.

•Question: why should we bother with likelihood?
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BLEU(argmax
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BLEU(argmax
English

score(English|Chinese))
1∑

Chinese∈Test

BLEU



• Ôptimization





Max Blues



Things to Remember

•Probability gives us a well-founded framework in 
which to explore a wide variety of models.

•We get many tools for learning and prediction.

•We can express many models in terms of weighted 
languages.



• Optimization
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Statistical Machine Translation

ADAM LOPEZ

University of Edinburgh

Statistical machine translation (SMT) treats the translation of natural language as a machine learning
problem. By examining many samples of human-produced translation, SMT algorithms automatically learn
how to translate. SMT has made tremendous strides in less than two decades, and new ideas are constantly
introduced. This survey presents a tutorial overview of the state of the art. We describe the context of the
current research and then move to a formal problem description and an overview of the main subproblems:
translation modeling, parameter estimation, and decoding. Along the way, we present a taxonomy of some
different approaches within these areas. We conclude with an overview of evaluation and a discussion of
future directions.

Categories and Subject Descriptors: G.3 [Probability and Statistics]: Statistical computing; I.2.6
[Artificial Intelligence]: Learning—Parameter learning; I.2.7 [Artificial Intelligence]: Natural Language
Processing—Machine translation; I.5.1 [Pattern Recognition]: Models—Statistical
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1. INTRODUCTION

Machine translation (MT) is the automatic translation from one natural language into
another using computers. Interest in MT is nearly as old as the electronic computer—
popular accounts trace its modern origins to a letter written by Warren Weaver in 1949,
only a few years after ENIAC came online.1 It has since remained a key application
in the field of natural language processing (NLP). A good historical overview is given
by Hutchins [2007], and a comprehensive general survey is given by Dorr, Jordan, and
Benoit [1999].

1This letter is reproduced as Weaver [1955].
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