Word-based models

Barry Haddow (slides by Philipp Koehn)

6th September 2011, Trento

Outline

1

- Lexical translation
- Alignment
- Expectation Maximization (EM) Algorithm
- IBM Word Translation Models
- Word Alignment as an Intermediate Step

Lexical Translation

• How to translate a word \rightarrow look up in dictionary

Haus — house, building, home, household, shell.

- Multiple translations
 - some more frequent than others
 - for instance: house, and building most common
 - special cases: Haus of a snail is its shell
- Note: In all lectures, we translate from a foreign language into English

Collect Statistics

Look at a parallel corpus (German text along with English translation)

Translation of Haus	Count
house	8,000
building	1,600
home	200
household	150
shell	50

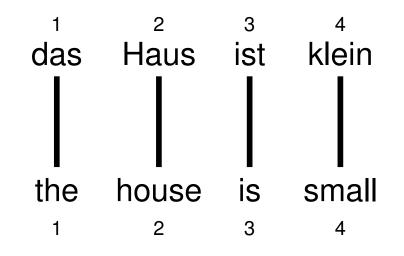
Estimate Translation Probabilities

Maximum likelihood estimation

$$p_f(e) = \begin{cases} 0.8 & \text{if } e = \text{house}, \\ 0.16 & \text{if } e = \text{building}, \\ 0.02 & \text{if } e = \text{home}, \\ 0.015 & \text{if } e = \text{household}, \\ 0.005 & \text{if } e = \text{shell}. \end{cases}$$

Alignment

• In a parallel text (or when we translate), we align words in one language with the words in the other



• Word positions are numbered 1–4

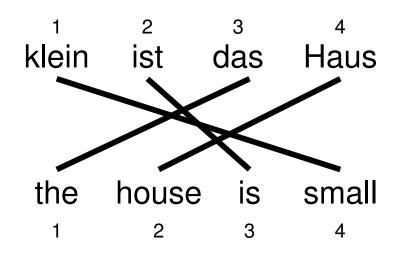
Alignment Function

- Formalizing alignment with an alignment function
- Mapping an English target word at position i to a German source word at position j with a function $a:i\to j$
- Example

$$a: \{1 \rightarrow 1, 2 \rightarrow 2, 3 \rightarrow 3, 4 \rightarrow 4\}$$

Reordering

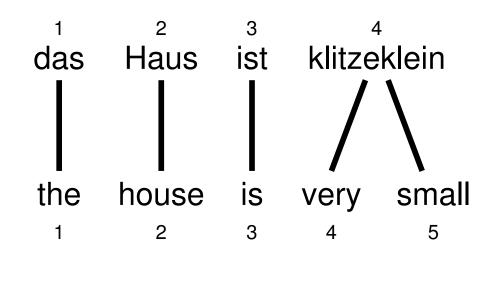
Words may be reordered during translation



 $a: \{1 \rightarrow 3, 2 \rightarrow 4, 3 \rightarrow 2, 4 \rightarrow 1\}$

One-to-Many Translation

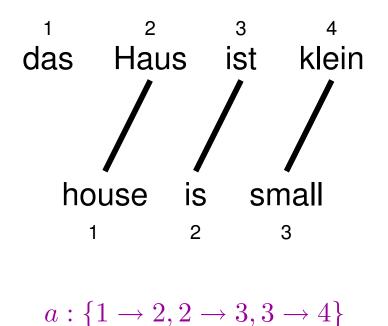
A source word may translate into multiple target words



 $a: \{1 \rightarrow 1, 2 \rightarrow 2, 3 \rightarrow 3, 4 \rightarrow 4, 5 \rightarrow 4\}$

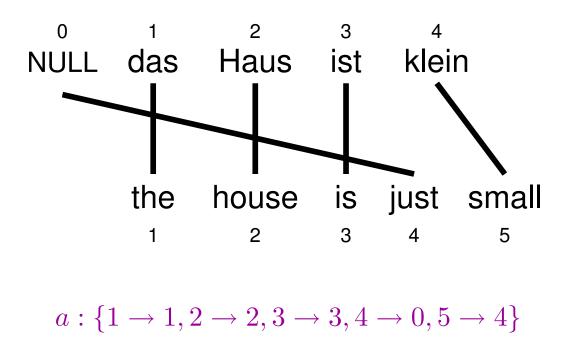
Dropping Words

Words may be dropped when translated (German article das is dropped)



Inserting Words

- Words may be added during translation
 - The English just does not have an equivalent in German
 - We still need to map it to something: special NULL token



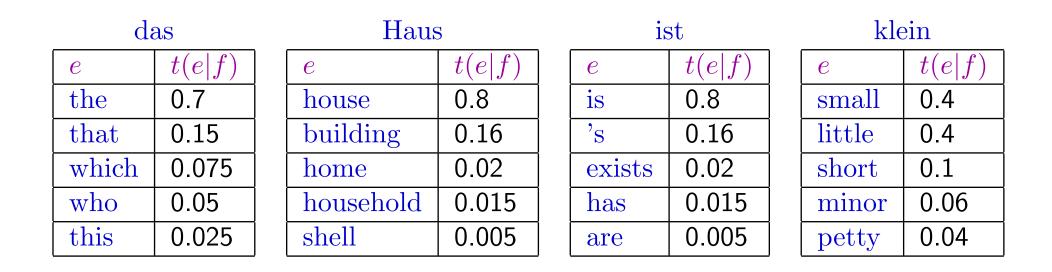
IBM Model 1

- Generative model: break up translation process into smaller steps
 - IBM Model 1 only uses lexical translation
- Translation probability
 - for a foreign sentence $\mathbf{f} = (f_1,...,f_{l_f})$ of length l_f
 - to an English sentence $\mathbf{e} = (e_1, ..., e_{l_e})$ of length l_e
 - with an alignment of each English word e_j to a foreign word f_i according to the alignment function $a: j \rightarrow i$

$$p(\mathbf{e}, a | \mathbf{f}) = \frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j | f_{a(j)})$$

– parameter ϵ is a normalization constant

Example



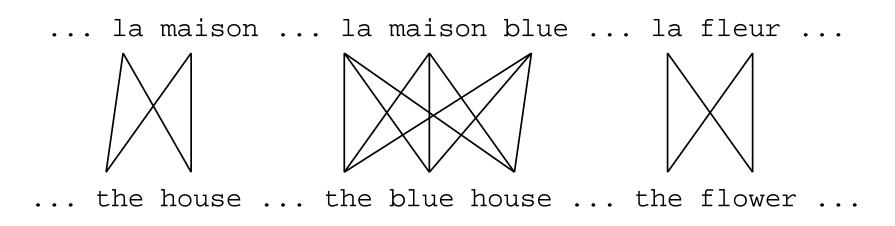
 $p(e, a|f) = \frac{\epsilon}{4^3} \times t(\text{the}|\text{das}) \times t(\text{house}|\text{Haus}) \times t(\text{is}|\text{ist}) \times t(\text{small}|\text{klein})$ $= \frac{\epsilon}{4^3} \times 0.7 \times 0.8 \times 0.8 \times 0.4$ $= 0.0028\epsilon$

Learning Lexical Translation Models

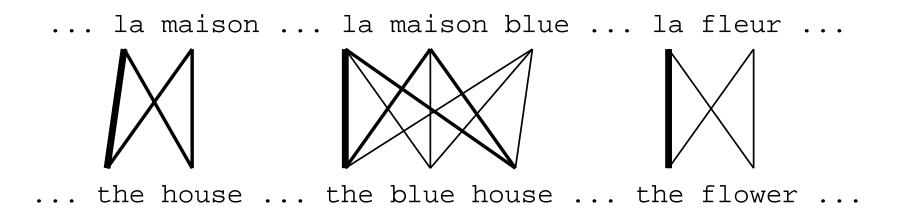
- \bullet We would like to estimate the lexical translation probabilities t(e|f) from a parallel corpus
- ... but we do not have the alignments
- Chicken and egg problem
 - if we had the *alignments*,
 - \rightarrow we could estimate the $\it parameters$ of our generative model
 - if we had the parameters,
 - \rightarrow we could estimate the $\emph{alignments}$

• Incomplete data

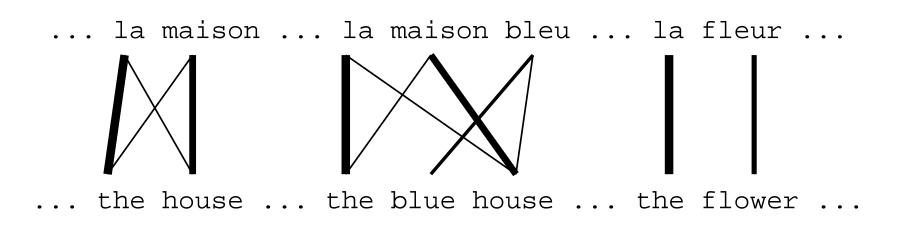
- if we had complete data, would could estimate model
- if we had model, we could fill in the gaps in the data
- Expectation Maximization (EM) in a nutshell
 - 1. initialize model parameters (e.g. uniform)
 - 2. assign probabilities to the missing data
 - 3. estimate model parameters from completed data
 - 4. iterate steps 2–3 until convergence



- Initial step: all alignments equally likely
- $\bullet\,$ Model learns that, e.g., la is often aligned with the

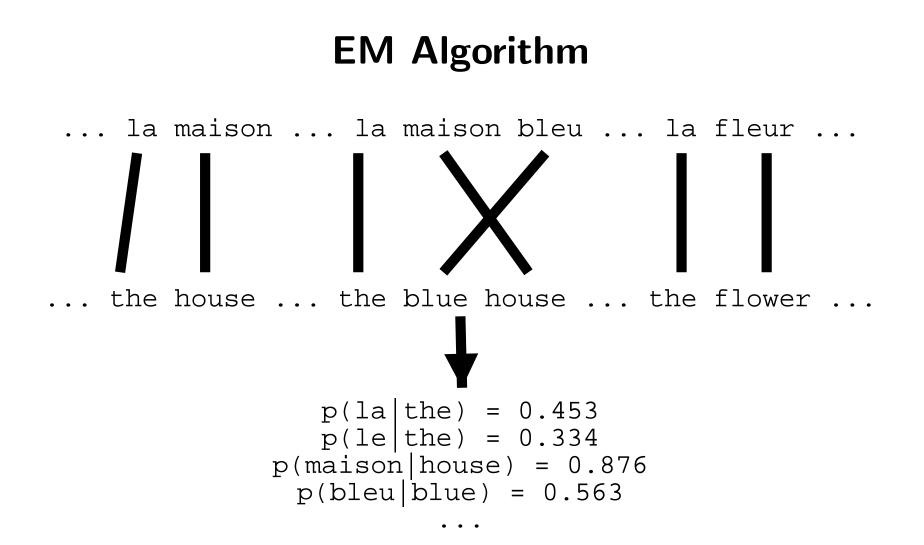


- After one iteration
- Alignments, e.g., between la and the are more likely



- After another iteration
- It becomes apparent that alignments, e.g., between fleur and flower are more likely (pigeon hole principle)

- Convergence
- Inherent hidden structure revealed by EM



• Parameter estimation from the aligned corpus

IBM Model 1 and EM

- EM Algorithm consists of two steps
- Expectation-Step: Apply model to the data
 - parts of the model are hidden (here: alignments)
 - using the model, assign probabilities to possible values
- Maximization-Step: Estimate model from data
 - take assign values as fact
 - collect counts (weighted by probabilities)
 - estimate model from counts
- Iterate these steps until convergence

IBM Model 1 and EM

- We need to be able to compute:
 - Expectation-Step: probability of alignments
 - Maximization-Step: count collection

IBM Model 1 and EM

- Probabilities p(the|la) = 0.7 p(house|la) = 0.05p(the|maison) = 0.1 p(house|maison) = 0.8
- Alignments

 $\begin{aligned} \mathbf{a} & \bullet & \bullet & \mathsf{the} \\ \mathsf{maison} & \bullet & \mathsf{house} \\ \mathsf{maison} & \bullet & \mathsf{house} \\ p(\mathbf{e}, a | \mathbf{f}) = 0.56 \\ p(\mathbf{e}, a | \mathbf{f}) = 0.035 \\ p(\mathbf{e}, a | \mathbf{f}) = 0.035 \\ p(\mathbf{e}, a | \mathbf{f}) = 0.08 \\ p(\mathbf{e}, a | \mathbf{f}) = 0.005 \\ p(\mathbf{e}, a | \mathbf{f}) = 0.052 \\ p(\mathbf{a} | \mathbf{e}, \mathbf{f}) = 0.118 \\ p(\mathbf{a} | \mathbf{e}, \mathbf{f}) = 0.007 \\ c(\mathsf{the} | \mathsf{la}) = 0.824 + 0.052 \\ c(\mathsf{house} | \mathsf{la}) = 0.052 + 0.007 \end{aligned}$

• Counts c(the|na) = 0.824 + 0.052 c(nouse|na) = 0.052 + 0.007c(the|maison) = 0.118 + 0.007 c(house|maison) = 0.824 + 0.118

- We need to compute $p(a|\mathbf{e}, \mathbf{f})$
- Applying the chain rule:

 $p(a|\mathbf{e}, \mathbf{f}) = \frac{p(\mathbf{e}, a|\mathbf{f})}{p(\mathbf{e}|\mathbf{f})}$

• We already have the formula for $p(\mathbf{e}, \mathbf{a}|\mathbf{f})$ (definition of Model 1)

• We need to compute $p(\mathbf{e}|\mathbf{f})$

$$\begin{split} p(\mathbf{e}|\mathbf{f}) &= \sum_{a} p(\mathbf{e}, a | \mathbf{f}) \\ &= \sum_{a(1)=0}^{l_f} \dots \sum_{a(l_e)=0}^{l_f} p(\mathbf{e}, a | \mathbf{f}) \\ &= \sum_{a(1)=0}^{l_f} \dots \sum_{a(l_e)=0}^{l_f} \frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j | f_{a(j)}) \end{split}$$

$$p(\mathbf{e}|\mathbf{f}) = \sum_{a(1)=0}^{l_f} \dots \sum_{a(l_e)=0}^{l_f} \frac{\epsilon}{(l_f+1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$$
$$= \frac{\epsilon}{(l_f+1)^{l_e}} \sum_{a(1)=0}^{l_f} \dots \sum_{a(l_e)=0}^{l_f} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$$
$$= \frac{\epsilon}{(l_f+1)^{l_e}} \prod_{j=1}^{l_e} \sum_{i=0}^{l_f} t(e_j|f_i)$$

- Note the trick in the last line
 - removes the need for an exponential number of products
 - $\rightarrow\,$ this makes IBM Model 1 estimation tractable

The Trick

(case $l_e = l_f = 2$)

$$\begin{split} \sum_{a(1)=0}^{2} \sum_{a(2)=0}^{2} &= \frac{\epsilon}{3^{2}} \prod_{j=1}^{2} t(e_{j}|f_{a(j)}) = \\ &= t(e_{1}|f_{0}) \ t(e_{2}|f_{0}) + t(e_{1}|f_{0}) \ t(e_{2}|f_{1}) + t(e_{1}|f_{0}) \ t(e_{2}|f_{2}) + \\ &+ t(e_{1}|f_{1}) \ t(e_{2}|f_{0}) + t(e_{1}|f_{1}) \ t(e_{2}|f_{1}) + t(e_{1}|f_{1}) \ t(e_{2}|f_{2}) + \\ &+ t(e_{1}|f_{2}) \ t(e_{2}|f_{0}) + t(e_{1}|f_{2}) \ t(e_{2}|f_{1}) + t(e_{1}|f_{2}) \ t(e_{2}|f_{2}) = \\ &= t(e_{1}|f_{0}) \ (t(e_{2}|f_{0}) + t(e_{2}|f_{1}) + t(e_{2}|f_{2})) + \\ &+ t(e_{1}|f_{1}) \ (t(e_{2}|f_{1}) + t(e_{2}|f_{1}) + t(e_{2}|f_{2})) + \\ &+ t(e_{1}|f_{2}) \ (t(e_{2}|f_{2}) + t(e_{2}|f_{1}) + t(e_{2}|f_{2})) = \\ &= (t(e_{1}|f_{0}) + t(e_{1}|f_{1}) + t(e_{1}|f_{2})) \ (t(e_{2}|f_{2}) + t(e_{2}|f_{1}) + t(e_{2}|f_{2})) \end{split}$$

• Combine what we have:

$$p(\mathbf{a}|\mathbf{e}, \mathbf{f}) = p(\mathbf{e}, \mathbf{a}|\mathbf{f}) / p(\mathbf{e}|\mathbf{f})$$

$$= \frac{\frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})}{\frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} \sum_{i=0}^{l_f} t(e_j|f_i)}$$

$$= \prod_{j=1}^{l_e} \frac{t(e_j|f_{a(j)})}{\sum_{i=0}^{l_f} t(e_j|f_i)}$$

IBM Model 1 and EM: Maximization Step

- Now we have to collect counts
- Evidence from a sentence pair e, f that word e is a translation of word f:

$$c(e|f; \mathbf{e}, \mathbf{f}) = \sum_{a} p(a|\mathbf{e}, \mathbf{f}) \sum_{j=1}^{l_e} \delta(e, e_j) \delta(f, f_{a(j)})$$

• With the same simplication as before:

$$c(e|f; \mathbf{e}, \mathbf{f}) = \frac{t(e|f)}{\sum_{i=0}^{l_f} t(e|f_i)} \sum_{j=1}^{l_e} \delta(e, e_j) \sum_{i=0}^{l_f} \delta(f, f_i)$$

IBM Model 1 and EM: Maximization Step

After collecting these counts over a corpus, we can estimate the model:

$$t(e|f; \mathbf{e}, \mathbf{f}) = \frac{\sum_{(\mathbf{e}, \mathbf{f})} c(e|f; \mathbf{e}, \mathbf{f}))}{\sum_{f} \sum_{(\mathbf{e}, \mathbf{f})} c(e|f; \mathbf{e}, \mathbf{f}))}$$

IBM Model 1 and EM: Pseudocode

Inp	ut: set of sentence pairs (\mathbf{e}, \mathbf{f})
Ou	tput: translation prob. $t(e f)$
1:	initialize $t(e f)$ uniformly
2:	while not converged do
3:	// initialize
4:	count(e f) = 0 for all e, f
5:	$total(f) = 0 \operatorname{\mathbf{for}} all f$
6:	for all sentence pairs (e,f) do
7:	<pre>// compute normalization</pre>
8:	for all words e in e do
9:	s-total(e) = 0
10:	for all words f in f do
11:	s-total $(e) += t(e f)$
12:	end for
13:	end for

14:	// collect counts
15:	for all words e in e do
16:	for all words f in f do
17:	$count(e f) += \frac{t(e f)}{s-total(e)}$
18:	$total(f) += \frac{t(e f)}{s-total(e)}$
19:	end for
20:	end for
21:	end for
22:	// estimate probabilities
23:	for all foreign words f do
24:	for all English words e do
25:	$t(e f) = \frac{\operatorname{count}(e f)}{\operatorname{total}(f)}$
26:	end for
27:	end for
28:	end while

Convergence								
das Haus			das	Buch	ein Buch			
*****				*** ***		•••		
the house			the	book	a book			
e	f	initial	1st it.	2nd it.	3rd it.		final	
the	das	0.25	0.5	0.6364	0.7479		1	
book	das	0.25	0.25	0.1818	0.1208		0	
house	das	0.25	0.25	0.1818	0.1313		0	
the	buch	0.25	0.25	0.1818	0.1208		0	
book	buch	0.25	0.5	0.6364	0.7479		1	
a	buch	0.25	0.25	0.1818	0.1313		0	
book	ein	0.25	0.5	0.4286	0.3466		0	
a	ein	0.25	0.5	0.5714	0.6534		1	
the	haus	0.25	0.5	0.4286	0.3466		0	
house	haus	0.25	0.5	0.5714	0.6534		1	

Assessing the Fit of the Model

- Use *Perplexity*
- Derived from probability of the training data according to the model

$$\log_2 PP = -\sum_s \log_2 p(\mathbf{e}_s | \mathbf{f}_s)$$

• Example (ϵ =1)

	initial	1st it.	2nd it.	3rd it.	 final
p(the haus das haus)	0.0625	0.1875	0.1905	0.1913	 0.1875
p(the book das buch)	0.0625	0.1406	0.1790	0.2075	 0.25
p(a book ein buch)	0.0625	0.1875	0.1907	0.1913	 0.1875
perplexity	4095	202.3	153.6	131.6	 113.8

Ensuring Fluent Output

- $\bullet\,$ Our translation model cannot decide between ${\rm small}$ and ${\rm little}$
- Sometime one is preferred over the other:
 - small step: 2,070,000 occurrences in the Google index
 - little step: 257,000 occurrences in the Google index
- Language model
 - estimate how likely a string is English
 - based on n-gram statistics

$$p(\mathbf{e}) = p(e_1, e_2, ..., e_n)$$

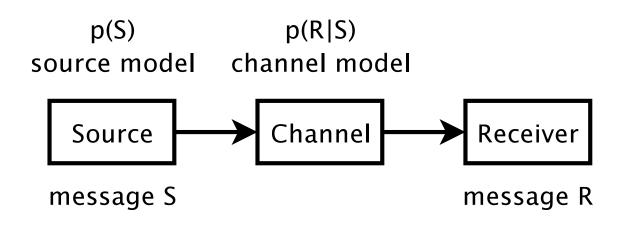
= $p(e_1)p(e_2|e_1)...p(e_n|e_1, e_2, ..., e_{n-1})$
 $\simeq p(e_1)p(e_2|e_1)...p(e_n|e_{n-2}, e_{n-1})$

Noisy Channel Model

- We would like to integrate a language model
- Bayes rule

$$\begin{split} \operatorname{argmax}_{\mathbf{e}} p(\mathbf{e} | \mathbf{f}) &= \operatorname{argmax}_{\mathbf{e}} \frac{p(\mathbf{f} | \mathbf{e}) \ p(\mathbf{e})}{p(\mathbf{f})} \\ &= \operatorname{argmax}_{\mathbf{e}} p(\mathbf{f} | \mathbf{e}) \ p(\mathbf{e}) \end{split}$$

Noisy Channel Model



- Applying Bayes rule also called noisy channel model
 - we observe a distorted message R (here: a foreign string **f**)
 - we have a model on how the message is distorted (here: translation model)
 - we have a model on what messages are probably (here: language model)
 - we want to recover the original message S (here: an English string e)

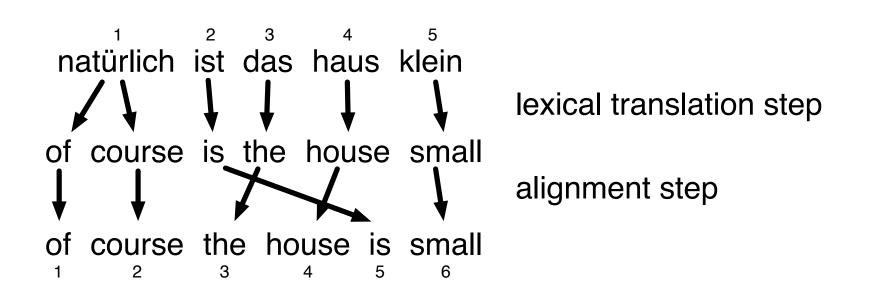
Higher IBM Models

IBM Model 1	lexical translation
IBM Model 2	adds absolute reordering model
IBM Model 3	adds fertility model
IBM Model 4	relative reordering model
IBM Model 5	fixes deficiency

- Only IBM Model 1 has global maximum
 - training of a higher IBM model builds on previous model
- Computtionally biggest change in Model 3
 - trick to simplify estimation does not work anymore
 - $\rightarrow\,$ exhaustive count collection becomes computationally too expensive
 - sampling over high probability alignments is used instead

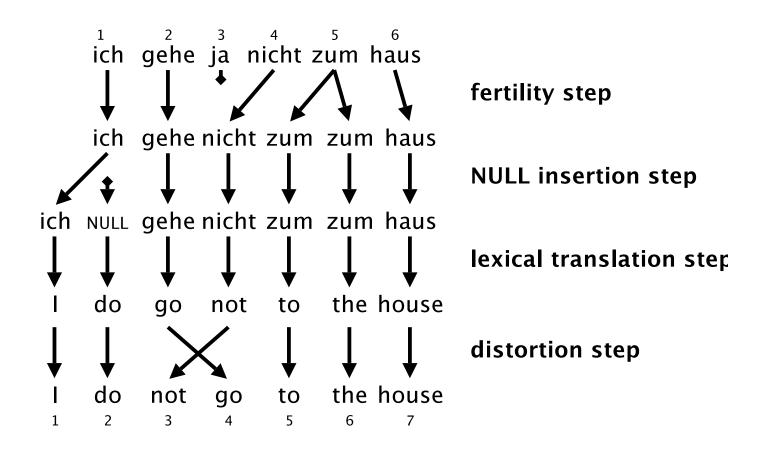
IBM Model 2

Adding a model of alignment



IBM Model 3

Adding a model of fertilty



HMM Model

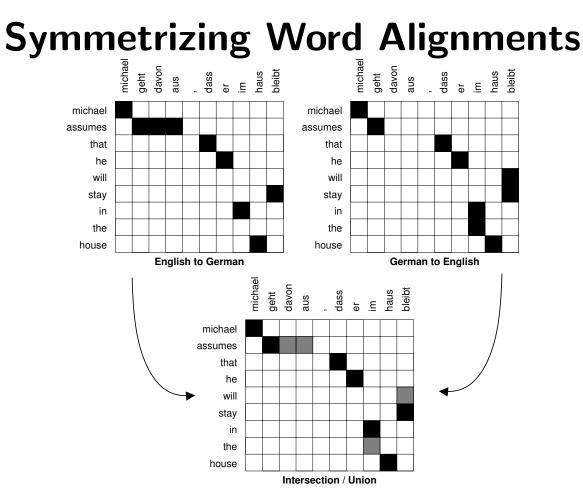
- Introduced after the IBM Models
- Words do not move independently of each other
 - they often move in groups
 - $\rightarrow\,$ condition word movements on previous word
- HMM alignment model:

 $p(a(j)|a(j-1), l_e)$

• EM algorithm application harder, requires dynamic programming

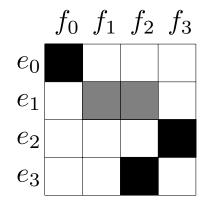
Word Alignment in Practice

- IBM Models not used any more for translation.
- But still used for alignment
 - Important first step for training of most translation models
 - GIZA++ is best known implemenatation
- Run sequence of IBM Models (e.g. m1, hmm, m3, m4)
- $\bullet~{\rm IBM}$ Models limited to $n\to 1,$ so run in both directions then symmetrise



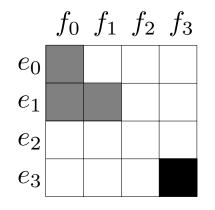
- Intersection of GIZA++ bidirectional alignments
- Start with intersection and heuristically add points from union [Och and Ney, CompLing2003]

Symmetrisation Heuristics : grow-diag



- "grow-diag" heuristic iteratively adds neighbours
- Only adds (e_i, f_j) if one of the words is unaligned
- In above, would add (e_1, f_1)
- But not (e_1, f_2) , since both e_1 and f_2 have an alignment

Symmetrisation Heuristics : final-and



- "final-and" adds alignments for unaligned words
- Any alignment in union, where both words are unaligned
- In above example:
 - (e_0, f_0) is added, since neither aligned
 - (e_1, f_0) is not added, since f_0 now aligned
 - (e_1, f_1) added, since neither aligned

More Recent Work on Symmetrization

- Symmetrize after each iteration of IBM Models [Matusov et al., 2004]
 - run one iteration of E-step for each direction
 - symmetrize the two directions
 - count collection (M-step)
- Use of posterior probabilities in symmetrization
 - generate n-best alignments for each direction
 - calculate how often an alignment point occurs in these alignments
 - use this posterior probability during symmetrization
- Alignment by Agreement [Liang et al., 2006; Ganchev et al., 2008]
 - Train forward and backward simultaneously
 - Incorporate agreement directly into objective

Link Deletion / Addition Models

- Link deletion [Fossum et al., 2008]
 - start with union of IBM Model alignment points
 - delete one alignment point at a time
 - uses a classifier that also considers aspects such as how useful the alignment is for learning translation rules
- Link addition [Ren et al., 2007] [Ma et al., 2008]
 - possibly start with a skeleton of highly likely alignment points
 - add one alignment point at a time

Discriminative Training Methods

- Given some annotated training data, supervised learning methods are possible
- Structured prediction
 - not just a classification problem
 - solution structure has to be constructed in steps
- Many approaches: maximum entropy, neural networks, support vector machines, conditional random fields, MIRA, ...
- Small labeled corpus may be used for parameter tuning of unsupervised aligner [Fraser and Marcu, 2007]

Better Generative Models

- Aligning phrases
 - joint model [Marcu and Wong, 2002]
 - problem: EM algorithm likes really long phrases
- Fraser's LEAF
 - decomposes word alignment into many steps
 - similar in spirit to IBM Models
 - includes step for grouping into phrase

Summary

- Lexical translation
- Alignment
- Expectation Maximization (EM) Algorithm
- Noisy Channel Model
- IBM Models 1–5
 - IBM Model 1: lexical translation
 - IBM Model 2: alignment model
 - IBM Model 3: fertility
 - IBM Model 4: relative alignment model
 - IBM Model 5: deficiency
- Word Alignment