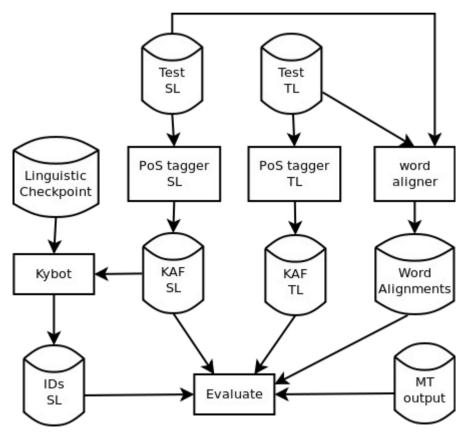


Diagnostic evaluation of MT with DELiC4MT


Final report

MT Marathon 2012 Edinburgh, 5th September 2012 Walid Aransa, Luong Ngoc Quang, Antonio Toral

Overview

 Automatic Diagonistic Evaluation on Linguistic Checkpoints

Ideas

- Extend to a new language pair
- Learn the linguistic phenomena
- Better filtering
- Multiple references
- Optional parameter for alignment of MT output
- Add precision-based metric
- Call any metric
- Metric considers not only forms but also lemmas and PoS
- Remove words from search once they are matched

Timeline/Progress

- Monday
 - Familiarisation with the tool trough tutorial use-case
 - Inner working, dependencies...
 - Improvement of tutorial and package
 - Brainstorming and selection of ideas
- Tuesday Friday
 - Extending to a new language pair
 - Optional alignment for MT output
 - Multiple references

Extend to new language pair

- DELiC4MT currently supports EN, DE, FR, IT, NL, CY
- Add Arabic
 - Adapt PoS tagger
 - Identify and define linguistic phenomena for AR -> EN
 - Selection of test set and test evaluation of MT systems

Adding Support for Arabic

- List of added checkpoints:
 Adjective, Adjective+Noun, Adverb, preposition,
 preposition+Noun, Noun+Noun, Plural Noun, Number,
 pronoun, Verb.
- Testing
 - Use Stanford PoS tagger (AR, EN)
 - Prepare KAF files
 - Prepare Kybot for each checkpoint
 - Evaluate

Sample Arabic Checkpoint

```
<?xml version="1.0" encoding="utf-8"?>
<Kybot id="kybot n a ar">
 <variables>
  <var name="X" type="term" pos="NN*" />
  <var name="Y" type="term" pos="JJ*" />
 </variables>
<relations>
 <root span="X" />
 <rel span="Y" pivot="X" direction="following" immediate="true" />
</relations>
<events>
 <event eid="" target="$X/@tid" lemma="$X/@lemma" pos="$X/@pos"/>
 <role rid="" event="" target="$Y/@tid" lemma="$Y/@lemma" pos="$Y/@pos"/>
</events>
</Kybot>
```


Optional use of output source-target alignment

- Previous behaviour:
 - 1. N-grams matched against all the sentence in MT output
 - 2. This is still needed because MT src-trg alignment file not always available. So this is still applicable to any MT system (since we don't need alignment)
- New feature:
 - 1. Exploit MT alignment, if we have it!
 - 2. Keep the backward compatibility with old API interface and behaviour
 - 3. New arguments processing code to provide flexibility and easier maintainance of the code
 - 4. Added new switches to pass the alignment filename and other parameters
 - 5. Other enhancements: Added errors handling code

Multiple references

- Problem: 1 reference is not ideal, lexical variability, etc.
- Possible solutions:
 - Use lemmas, synonyms, paraphrases
 - Multiple references -> more expensive but more accurate
- Implementation of multiple references
 - Given time constraints and that all the info is in log files
 - -> post-processing of log files for each reference
 - Read log for each ref
 - For each checkpoint instance, keep highest score
 - Get overall score

Evaluation scenarios

- 1 MT system
 - Which linguistic phenomena it translates best/worst?
 - Detect performance issues in terms of linguistic phenomena
- 2 (or more) MT systems
 - Comparative evaluation. Which system is better for which phenomenon? By how much?
 - Keep track of improvements wrt baseline

Results Comparative

	mt web1	mt web2	dif	
a0	0.5643	0.5253	-6.92%	
a1	0.5207	0.4793	-7.94%	
a2	0.5780	0.5382	-6.89%	-7.25%
n0	0.5606	0.5139	-8.32%	
n1	0.5230	0.4836	-7.53%	
n2	0.5612	0.5122	-8.73%	-8.19%
v0	0.5496	0.4972	-9.53%	
v1	0.5133	0.4722	-8.00%	
v2	0.5507	0.4976	-9.63%	-9.05%
r0	0.6627	0.6024	-9.09%	
r1	0.6500	0.6250	-3.85%	
r2	0.7229	0.6024	-16.67%	-9.87%
num0	0.5496	0.4972	-9.53%	
num1	0.5133	0.4722	-8.00%	
num2	0.5507	0.4976	-9.63%	-9.05%
pre0	0.7988	0.7720	-3.36%	
pre1	0.7766	0.7485	-3.62%	
pre2	0.8147	0.7752	-4.85%	-3.94%
pro0	0.8036	0.7619	-5.19%	
pro1	0.8035	0.7457	-7.19%	
pro2	0.7849	0.7500	-4.44%	-5.61%
in N	0.5681	0.5135	-9.61%	
in_n	0.5344	0.4949	-7.39%	
in_n	0.5679	0.5245	-7.65%	-8.22%
n_a	0.4702	0.4331	-7.88%	
n_a	0.4403	0.4052	-7.97%	
<u>n_</u> a	0.4912	0.4481	-8.76%	-8.20%
			-7.71%	
blou	0.2660	0.2130	-19.92%	
bleu	0.2240			
bleu		0.1870	-16.52%	
bleu	0.2553	0.2025	-20.68%	
			-19.04%	

Results Multiple refs

	mt web1	mt web2	dif
a	0.7396	0.7075	-4.34%
n	0.7206	0.6751	-6.32%
V	0.7149	0.6616	-7.45%
r	0.7791	0.7442	-4.48%
num	0.7149	0.6616	-7.45%
pre	0.9091	0.8859	-2.55%
pro	0.9096	0.8763	-3.65%
in_n	0.7050	0.6493	-7.90%
n_a	0.6171	0.5677	-8.01%
			-5.79%

	mt web1	mt web2	dif	
a0	0.5643	0.5253	-6.92%	
a1	0.5207	0.4793	-7.94%	
a2	0.5780	0.5382	-6.89%	-7.25%
n0	0.5606	0.5139	-8.32%	
n1	0.5230	0.4836	-7.53%	
n2	0.5612	0.5122	-8.73%	-8.19%
v0	0.5496	0.4972	-9.53%	
v1	0.5133	0.4722	-8.00%	
v2	0.5507	0.4976	-9.63%	-9.05%
r0	0.6627	0.6024	-9.09%	
r1	0.6500	0.6250	-3.85%	
r2	0.7229	0.6024	-16.67%	-9.87%
num0	0.5496	0.4972	-9.53%	
num1	0.5133	0.4722	-8.00%	
num2	0.5507	0.4976	-9.63%	-9.05%
pre0	0.7988	0.7720	-3.36%	
pre1	0.7766	0.7485	-3.62%	
pre2	0.8147	0.7752	-4.85%	-3.94%
pro0	0.8036	0.7619	-5.19%	
pro1	0.8035	0.7457	-7.19%	
pro2	0.7849	0.7500	-4.44%	-5.61%
in N	0.5681	0.5135	-9.61%	
in_n	0.5344	0.4949	-7.39%	
in_n	0.5679	0.5245	-7.65%	-8.22%
n_a	0.4702	0.4331	-7.88%	
n_a	0.4403	0.4052	-7.97%	
n_a	0.4912	0.4481	-8.76%	-8.20%
			-7.71%	
bleu	0.2660	0.2130	-19.92%	
bleu	0.2240	0.1870	-16.52%	
bleu	0.2553	0.2025	-20.68%	
			-19.04%	

Conclusions + Future

- Understanding about the tool
- Tasks conducted
 - New language pair
 - Optional alignment for MT
 - Multiple references

Future work: wishlist is long:)

Thanks! Questions?

Diagnostic evaluation of MT with DELiC4MT Final report

MT Marathon 2012 Edinburgh, 5th September 2012 Walid Aransa, Luong Ngoc Quang, Antonio Toral