

Building Moses Training Pipelines
with Arrows

Jie Jiang
David Kolovratnik

Ian Johnson

Arrows and Pipelines

● Arrows are abstractions of computation
● Present a common interface to the world
● They compose
● An arrow represents a pipeline component

● Composable components

● Benefits:
● Collaboration: sharing pipelines or components.
● Development: pipeline components can be added,

updated, removed with minimal effort.
● Modular: high cohesion, low coupling

Aims

● Assessing the Python based Arrows library
● Arrows are implemented fully in Haskell
● We only implement what we need in Python

● Can we build a Moses training pipeline?
● If we do build a training pipeline does it work?
● Does the library provide an “easy” abstraction?
● Is it flexible enough to build other pipelines?

● From scratch
● Adding to existing pipelines

Progress so far

● Defined a training pipeline
● As simple as we can get it
● Yet it'll do something useful
● Defined the data and state

More Progress
● Implementing training components

● Based on the existing Moses scripts
● Knowledge of how to “talk to” scripts is in

component
● Where possible scripts are replaced by functions
● “Wiring” of components is user defined.

● Cleanup component
● A simple python function
● Replaces a script

● Tokeniser
● Uses the tokeniser script, i.e. subprocess

Even more progress

● A pipeline manager script has been started
● Defines a configuration object
● Defines pipeline topology description objects
● Build pipeline components dynamically
● Wires the components together
● Executes the pipeline

Last bit of progress

● Pypeline library
● Bugs fixed
● Enhancements added to accommodate use cases
● More unit testing

● On Github
● https://github.com/ianj-als/pypeline

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

