Building Moses Training Pipelines
with Arrows

Jie Jiang
David Kolovratnik
lan Johnson



Arrows and Pipelines

- Arrows are abstractions of computation
+ Present a common interface to the world

- They compose
- An arrow represents a pipeline component

- Composable components

- Benefits:

- Collaboration: sharing pipelines or components.

- Development: pipeline components can be added,
updated, removed with minimal effort.

- Modular: high cohesion, low coupling



AIms

- Assessing the Python based Arrows library

- Arrows are implemented fully in Haskell
- We only implement what we need in Python

- Can we build a Moses training pipeline?
- If we do build a training pipeline does it work?
+ Does the library provide an “easy” abstraction?

- |Is it flexible enough to build other pipelines?
- From scratch
- Adding to existing pipelines



Progress so far

- Defined a training pipeline

- As simple as we can get it

- Yet it'll do something useful
- Defined the data and state

{'5 flename' :Strrg} | (tokersed s flename!: Sting]
P Source Tocerisatin

(st ang': Strng,

5 okerlsaton " Sing} {'seqmert ength : Urdgned]

r
1

g flename': Strin tokenisec fr filename' - Strng}
i g)’ Toret Tokensaton ) Iy

{trg ang ::Sting,
‘tr fokenisetion ' String)

{tokenisea trg flename': Strrg} (g Janguage mod flerame' : Sring}

P RSTLY Buid

{trinrg_cata flename':: S,

{'tokenised 3rc_flzname' : Strng, { cleared stc flename' :Strng, ‘evaluztion gt filenae': Sting,
tokenised g lzname' : Srin ' ' test data flename' s String}
g 0} ) Ceary cared try lename': Sring I Dt g | 0;

‘developmert s2¢' - Unsigred,
‘evaluate sze' : Unsigred]

{ases n flz:: Srng}
ModelTraning
{'stc lang': Strng,
'tig ng' : Stng
‘3igrment method':: Sting, [m
reordering mechod': Sring,
‘Mol drectery':: Stirg}

{ evaluation data flename': Sirrg,

i moses Inf fle': Sting
i

{ st crectary :Sting,
‘smanthing methed: Sting}

{‘evalLation data flename': Strng,
‘moges Ini ' : Strng,

'trg anquage model flename : St
neplt LIRS 2

{'moses Ini flename: Sting,

st data Flename' St {eu score: Foat
Unsp\] — ) }’;‘

m)
Y

e {'moses_ni flename - tring)
(s

{rases hame gir':Strng
‘trett werkdng dr : Srng}

—r



More Progress
- Implementing training components

- Based on the existing Moses scripts

- Knowledge of how to “talk to” scripts is in
component

- Where possible scripts are replaced by functions
- “Wiring” of components is user defined.
+ Cleanup component
- A simple python function
- Replaces a script
- Tokeniser
- Uses the tokeniser script, i.e. subprocess



Even more progress

- A pipeline manager script has been started

- Defines a configuration object

- Defines pipeline topology description objects
- Build pipeline components dynamically

- Wires the components together

- EXxecutes the pipeline



Last bit of progress

- Pypeline library

- Bugs fixed

- Enhancements added to accommodate use cases
- More unit testing

- On Github

- https://github.com/ianj-als/pypeline



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

