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Arrows and Pipelines

- Arrows are abstractions of computation
+ Present a common interface to the world

- They compose
- An arrow represents a pipeline component

- Composable components

- Benefits:

- Collaboration: sharing pipelines or components.

- Development: pipeline components can be added,
updated, removed with minimal effort.

- Modular: high cohesion, low coupling



AIms

- Assessing the Python based Arrows library

- Arrows are implemented fully in Haskell
- We only implement what we need in Python

- Can we build a Moses training pipeline?
- If we do build a training pipeline does it work?
+ Does the library provide an “easy” abstraction?

- |Is it flexible enough to build other pipelines?
- From scratch
- Adding to existing pipelines



Progress so far

- Defined a training pipeline

- As simple as we can get it

- Yet it'll do something useful
- Defined the data and state
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More Progress
- Implementing training components

- Based on the existing Moses scripts

- Knowledge of how to “talk to” scripts is in
component

- Where possible scripts are replaced by functions
- “Wiring” of components is user defined.
+ Cleanup component
- A simple python function
- Replaces a script
- Tokeniser
- Uses the tokeniser script, i.e. subprocess



Even more progress

- A pipeline manager script has been started

- Defines a configuration object

- Defines pipeline topology description objects
- Build pipeline components dynamically

- Wires the components together

- EXxecutes the pipeline



Last bit of progress

- Pypeline library

- Bugs fixed

- Enhancements added to accommodate use cases
- More unit testing

- On Github

- https://github.com/ianj-als/pypeline
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