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Abstract

We propose a flexible and efficient domain
adaptation method that yields consistent im-
provements in machine translation (for 11 lan-
guage pairs). The idea is to decompose the
word alignment process into two steps, model
training and alignment inference, and perform
Bayesian adaptation on the latter. This modu-
larity allows one to incorporate out-of-domain
data without the need to modify existing train-
ing algorithms. We show how ideas in sequen-
tial Bayesian methods can be naturally applied
to the word alignment problem and demon-
strate various positive results on EMEA and
NIST datasets.

1 Introduction

Progress in statistical machine translation (SMT) is
driven both by invention of new models and by in-
creases in training data. To date, the largest train-
ing data are bitexts from international organizations
such as the United Nations and European Parlia-
ment. Although these training data are valuable,
they may be from a different domain than the one
where the machine translation system will be de-
ployed. Thus a natural question is whether these
so-called out-of-domain data can be exploited for
improving SMT for other target domains. This is
a domain adaptation problem.

In this paper, we are concerned with the common
domain adaptation scenario where we have at our
disposal (1) a large out-of-domain bitext, and (2) a
small-to-medium sized in-domain bitext. For con-
creteness, let us say that our out-of-domain data is

parliament bitext, and our target in-domain appli-
cation is the medical domain. The in-domain bi-
text may be sufficient to build a reasonable medi-
cal translation system; however, our goal is to fur-
ther improve upon this in-domain baseline using the
large out-of-domain bitext. We will focus our atten-
tion on translation model adaptation, and use stan-
dard methods for language model adaptation.1

To begin addressing this problem, we divide the
training pipeline for building a translation model
into the following four steps:

• Step 1: Word alignment model training:
Given bitext aligned at the sentence level, train
a word alignment model.

• Step 2: Alignment inference on bitext: Given
an alignment model, predict the alignment
points on a bitext. The bitext used in Step 1 and
Step 2 are usually the same, though this need
not be the case (as in our proposed method).

• Step 3: Phrase/rule extraction on bitext:
Given alignment points, find all consistent
phrase pairs or translation rules.

• Step 4: Phrase/rule score estimation: Assign
(probability) scores to the extracted rules

We ask the question: Which step should we spend
our efforts? Existing domain adaptation methods

1Recall we can divide a SMT system into the translation
model p(e|f) and language model p(e) components. Given a
foreign sentence f , the translation e that achieves high proba-
bility in both models is preferred. Both components should be
adapted under domain adaptation scenarios.
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differ in where they inject out-of-domain informa-
tion in the pipeline. For example, Wu et. al. (2005)
improves alignment model training by interpolation
with out-of-domain models (Step 1); Marton et. al.
(2009) finds new phrases from additional monolin-
gual corpora to reduce out-of-vocabulary rate (Step
3); Foster et. al. (2010) improves phrase scores by
discriminative weighting (Step 4).

To the best of our knowledge, there is no prior
research on alignment inference adaptation (Step 2),
so we focus on it here. The advantage of focusing on
Step 2 is the flexibility: our method does not need to
modify any word alignment training algorithm, nor
are we limited to particular model formalisms (e.g.
phrase vs. hierarchical rules) required for the ex-
traction/scoring steps. All we need are the standard
toolsets for the training pipeline, and a pre-existing
word alignment model that can generate n-best lists.
Therefore, adaptation in Step 2 has wide applicabil-
ity.

Although Step 1 and Step 2 are sometimes con-
sidered as a single process, we will show that
the decomposition into two steps is quite benefi-
cial and opens up new possibilities. Virtually all
SMT systems can be interpreted as consisting of the
aforementioned 4-stage pipeline (e.g. phrase-based
(Koehn et al., 2003; Och and Ney, 2004), hierarchi-
cal (Chiang, 2007; Wu, 1997), and tree-based (Quirk
et al., 2005; Galley et al., 2004; Mi et al., 2008)).

Our approach can be briefly summarized as fol-
lows: First, we train a word alignment model on a
large general-domain dataset, then predict the align-
ment points for an in-domain bitext. The n-best list
of predictions are used to compute a Bayesian prior
indicating the a priori belief of any two words being
aligned. Then, alignment inference of in-domain bi-
text is viewed as a sequential Bayesian update on
weighted alignment matrices. The idea is to ef-
fectively balance the uncertainty in alignment from
both in-domain and general-domain bitexts.

The contribution of this paper is two-fold:

• We identify alignment inference as an open
area for SMT adaptation research.

• We propose a method that models alignment
inference as Bayesian adaptation of alignment
matrices, which is effective on various datasets.

In the following, Section 2 describes our proposed
Bayesian adaptation method. Section 3 discusses
experimental results from two tasks (EMEA, NIST)
and 11 language pairs. Section 4 reviews related
work, and Section 5 discusses our conclusions.

2 Alignment Inference Adaptation

2.1 General Bayesian Framework

Alignment inference is the task of predicting
alignment points on a given sentence-pair, us-
ing a pre-trained word alignment model. Let
(eI

1, f
J
1 ) be a sentence-pair consisting of I En-

glish words {e1, e2, . . . , eI} and J Foreign words
{f1, f2, . . . , fJ}. We define an alignment matrix
A ∈ {0, 1}I×J to be an I-by-J matrix where each
element Aij indicates whether words ei and fj is
aligned (Aij = 1) or not (Aij = 0).

We already have a pre-trained word alignment
model, such as IBM Model 4. Suppose this model
is trained only on in-domain bitext, so we call it
M

in. The goal of alignment inference, under the
Bayesian framework, is to compute the posterior
P (A|M in; eI

1, f
J
1 ) for the sentence pair (eI

1, f
J
1 ).

This is obtained by Bayes theorem:

p(A|M in; eI
1, f

J
1 ) ∝ p(M in|A; eI

1, f
J
1 )p(A; eI

1, f
J
1 )
(1)

where l
in(A) ≡ p(M in|A; eI

1, f
J
1 ) is the likeli-

hood of an alignment result under the model M
in

and p(A; eI
1, f

J
1 ) is the prior over alignments. In

other words, the optimal alignment should be both
highly likely according to the in-domain model
M

in, and have high probability a priori. The prior
probability is gleaned from large general-domain
data, details of which will be discussed in the next
sections.

For tractable computation of Equation 1, we
assume that the probability of an alignment matrix
A can be decomposed into a product of its matrix
elements. Equation 1 can now be rewritten as:2

p(A|M in) ∝ Π1≤i≤I,1≤j≤J p(Aij|M
in) (2)

2To simplify notation, we have now dropped the condition-
ing terms eI

1, f
J
1 but remember that inference is always done for

a particular sentence pair.
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Algorithm 1 Alignment Inference by Sequential Bayesian Adaptation
Input: Bitext: T

in
, T

out

Output: Posterior alignment matrix A

for each sentence-pair in T
in

1: M
in = AlignModelTrain(T in)

2: M
gen = AlignModelTrain(concat[T in + T

out])
3: for each sentence-pair in T

in do
4: for each (ei, fj), 1 ≤ i ≤ I, 1 ≤ j ≤ J do
5: Estimate likelihood aij , bij by Eq. 3 and 4.
6: Estimate prior αij and βij by Eq. 7 and 8.
7: Set posterior of Aij as aij+αij

aij+bij+αij+βij
(Eq. 6)

8: end for
9: Recreate alignment matrix A by Eq. 2

10: end for

Each of the individual terms in Equation 2 is nat-
urally modeled by a Bernoulli-Beta distribution, as
Aij is a binary variable. The advantage of this de-
composition is we can perform Bayesian updates on
Bernoulli-Beta in closed-form, which is scalable for
training on datasets with millions of words.

Specifically, the probability that ei and fj are
aligned follows a Bernoulli distribution with param-
eter μ: P (Aij |μ) = μ

Aij (1 − μ)(1−Aij ). If we were
a non-Bayesian (frequentist), we would estimate a
single value for μ using the likelihoods of N-best
alignments resulting in Aij = 1 vs. Aij = 0:

aij =
∑

A′∈N(eI
1
,fJ

1
)

l
in(A′)δ(Aij = 1)/Z (3)

bij =
∑

A′∈N(eI
1
,fJ

1
)

l
in(A′)δ(Aij = 0)/Z (4)

P (Aij = 1|μ̂) = μ̂ =
aij

aij + bij
(5)

Here N(eI
1, f

J
1 ) represents the N-best list of

alignments, δ(·) is the identity function, and
Z =

∑
A′∈N(eI

1
,fJ

1
) l

in(A′) is a normalizer . So
predicted alignment probability is simply aij

aij+bij
,

the percentage of times ei and fj are aligned in the
N-best list (Section 2.2 provides details).

On the other hand, being Bayesian, we do not
set μ to a single value but allow it to be a random
variable, following the beta (conjugate) prior:
P (μ|αij , βij) = Γ(αij+βij)

Γ(αij)Γ(βij)
μ

αij−1(1 − μ)βij−1.

The Gamma function Γ(·) serves as a normalization
constant and αij and βij are hyperparameter esti-
mated from general-domain data. After observing
l
in(Aij), the posterior of μ is: P (μ|M in

, αij , βij) =
Γ(αij+aij+βij+bij)
Γ(αij+aij)Γ(βij+bij)

μ
αij+aij−1(1 − μ)βij+bij−1. Fi-

nally, the posterior alignment can be calculated by
integrating out μ, which leads to a simple formula
for inference3:

p(Aij = 1|M in
, αij , βij)

=
∫ 1

0
p(Aij = 1|μ)p(μ|M in

, αij , βij)dμ

=
aij + αij

aij + bij + αij + βij
(6)

Compared to frequentist estimation (Equation 5),
Bayesian inference allows the incorporation of ad-
ditional “counts” αij and βij . Intuitively, αij repre-
sents the prior belief that ei and fj are aligned, and
βij represents the opposing belief that they are not.

To summarize: looking back to the original Eq.
1, we see that the posterior alignment matrix is now
computed element-wise by Eq. 6. The next sub-
sections detail how the Eq. 6 is computed in prac-
tice. Note that while we have introduced a method
that achieves a nice balance between Bayesian the-
ory and practical efficiency, it is by no means the
only way to perform alignment inference adaptation.

3For an introduction of sequential Bayesian update and the
derivation for this particular form, please see (Bishop, 2006).
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2.2 Calculation of Likelihood
The likelihood terms (aij and bij) in Eq. 6 can be
computed effectively using the algorithm proposed
by Liu et. al. (2009): First, we extract N-best align-
ments of sentence pair (eI

1, f
J
1 ) from M

in in forward
and reverse directions. Each alignment solution in
the N-best list is an alignment matrix A

′, with like-
lihood score l

in(A′). To merge the alignments in
both directions, we take the N ×N cross-product of
N-best lists and multiply their likelihood scores. Fi-
nally, for each element in the alignment matrix Aij ,
we compute aij and bij by Eq. 3 and 4.

Note that if our word alignment model readily
outputs alignment posteriors (e.g. IBM model), we
can readily obtain aij and bij as alignment posterior
for words ei, fj . We opt for Liu’s (2009) approach
here since it makes our overall adaptation approach
more flexible to different choices of word aligners
(e.g. discriminative aligners that do not output pos-
teriors). In practice, 100-best list appears sufficient
to approximate the posterior.

2.3 Calculation of Prior
The hyperparameters αij and βij represent prior
knowledge from general-domain data. We have
been using the terms “general-domain” and “out-of-
domain” somewhat interchangeably until this point.
Now we will define it clearly: general-domain bi-
text T

gen is the concatenation of in-domain bitext
T

in and all available out-of-domain bitexts T
out, i.e.

simply all the data for a language pair. We will use
general-domain bitext (not out-of-domain) to esti-
mate hyperparameters because we believe that the
prior ought to express general beliefs about a lan-
guage pair. This distinction is subtle but important:
we are adapting from general- to-specific domain,
rather than across (out-to-in) domains.

We define the prior terms (αij and βij) as align-
ment probabilities under a general model M

gen.
M

gen is trained on a concatenation of in-domain and
out-of-domain bitexts to capture general language
characteristics. This model then generates n-best
alignments on the in-domain portion of the bitext.
Similar to the likelihood, the prior is estimated as:

αij =
∑

A′∈Ngen(eI
1
,fJ

1
)

l
gen(A′)δ(Aij = 1)/Z (7)

This is similar to Eq. 3, except we use scores from
the general model M

gen rather than M
in; βij is cal-

culated analogously to Eq. 4:

βij =
∑

A′∈Ngen(eI
1
,fJ

1
)

l
gen(A′)δ(Aij = 0)/Z (8)

2.4 Summary and Caveat

The pseudocode for the overall algorithm is pre-
sented in Algorithm 1. Basically, the alignment ma-
trix posteriors are computed for each sentence pair
by combining statistics from in-domain and general-
domain models.

It is worth noting two caveats:

• Our Bayesian view is that there is a prior align-
ment matrix, which is updated by in-domain
model statistics. This differs from previous
work in Step 1, e.g. (Wu et al., 2005), which
adopts a prior for alignment model parameters.
The distinction between adapting inference re-
sults and model parameters is an important one,
and this is what gives us a flexible general-
purpose method.

• Eq. 6 does not contain a tuning parameter be-
tween likelihood aij and prior αij . This arises
from the sequential Bayesian update perspec-
tive, where each additional sample is counted
equally. It may be beneficial to have a parame-
ter if it can be tuned well without of overfitting,
but we do not consider it here.

3 Experiments

3.1 Datasets and Setup

We evaluate our proposed method under two tasks:
The EMEA task involves the translation of medi-
cal texts from the European Medical Agency (Tiede-
mann, 2009). We test on ten language pairs–Danish
(da), German (de), Greek (el), Spanish (es), Finnish
(fi), French (fr), Italian (it), Dutch (nl), Portuguese
(pt), and Swedish (sv)–all translating into English.
The out-of-domain data are parliamentary texts from
Europarl (Koehn, 2005).

The NIST task involves translating newswire text
using Chinese-to-English NIST OpenMT 2008 data.
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EMEA NIST
da de el es fi fr it nl pt sv mt06 mt08

in-domain 45.3 35.5 41.3 45.0 33.6 46.8 47.7 45.6 46.3 45.3 27.7 24.4
general 46.1 36.1 41.6 46.9 34.0 47.8 49.2 46.1 47.0 45.2 28.7 24.6
bayes 47.1* 36.4* 42.5* 46.2 34.6* 47.9 49.3* 46.2* 47.5* 45.9* 28.7 25.0*

Table 2: Main Results: Test BLEU for EMEA (da,de,...,sv) and NIST (mt06,08): Best results are in bold-font. Statis-
tical significant improvement over general-domain model is indicated by asterisk (*).

EMEA NIST
Language Pair 10 European zh-en
In-domain Medicine Newswire
#sent train 100k 250k
#word train 1.2M 5.6M
#sent devset 2k 2.4k (MT04,05)
#sent testset1 2k 616 (MT06)
#sent testset2 - 691 (MT08)
Out-of-domain Parliament Heterogeneous
#sentence 1.2M 4.8M
#word 25M 107M

Table 1: Dataset statistics

We select a subset of newswire text from the al-
lowed resources lists4 as in-domain data. Out-
of-domain data is heterogeneous, consisting of
Hansards, broadcast conversations, weblogs, etc.
The data statistics are shown in Table 1.

We compare 3 phrasal SMT systems:

• in-domain model: Step1: Train word align-
ment model on in-domain bitext (M in). Step
2-to-4: Alignment inference on in-domain text,
followed by phrase extraction and scoring.

• general-domain model: Step1: Train word
alignment model on concatenated in-domain
and out-of-domain bitext (Mgen). Step2-to-4:
same as in-domain model. This simple ap-
proach is a strong adaptation baseline competi-
tive in many tasks, c.f. (Duh et al., 2010).

• bayes: Step1-to-2: Algorithm 1. Step3-to-4:
same as in-domain model.

Note that out-of-domain information is used only
up to step 2 and excluded in further steps of the

4www.itl.nist.gov/iad/mig/tests/mt/doc/

pipeline. This clarifies the analysis: if we were
to include out-of-domain bitext for phrase extrac-
tion, our SMT system might acquire new phrases,
which reduces out-of-vocabulary rate and confounds
the analysis of alignment inference results. Further,
from preliminary experiments, we found that adding
out-of-domain bitext to all four steps actually de-
grade results sometimes, due to increased ambiguity
of additional translation options on the target side.

For all systems, we use the Moses decoder,
adapted SRILM 3gram (EMEA) and 4gram (NIST),
MERT for weight optimization, and GIZA++
(Model4) as the underlying word alignment training
tool. Phrase tables are extracted from alignment ma-
trices using the method of (Liu et al., 2009).

3.2 Main Results

Table 2 summarizes all our main results. We see that
bayes gives robust improvements in testset BLEU.
For example, for Danish-to-English translation, us-
ing in-domain data by itself achieves 45.3 BLEU
(in-domain). This can be improved to 46.1 BLEU
by concating out-of-domain data (general). The
proposed method, however, further improves the re-
sult to 47.1 BLEU (bayes). For the NIST dataset,
we see that bayes improves upon general and in-
domain for the MT08 testset, and ties with general
for the MT06 testset.

On average, bayes improves over in-domain
model by 1.1 BLEU points. Further, in 9 of
12 cases, bayes also outperforms general-domain
model by statistically significant margins, p <0.05
(Zhang et al., 2004). We thus conclude that the pro-
posed method is robust under adaptation scenarios.

3.3 Analyses of Alignments

We are also interested in checking if BLEU im-
provements correlate with quantifiable alignment
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improvements. This evaluation is possible since
the NIST dataset contains some manual alignment
annotations (LDC2006E93). We identified 892
sentence-pairs in our in-domain bitext that have
manual alignments. Note that this supervised infor-
mation is never used in any part of our method.

Figure 1 shows alignment precision/recall. The
curve is computed by thresholding the estimated
weighted aligment matrix at different levels and
computing precision and recall with the gold ref-
erence. Interestingly, bayes performs best, but
general-domain also improves alignment. We con-
jecture this is a common phenomenon, since many
words have the same translation regardless of do-
main differences. So using out-of-domain data for
alignment (and not for finding new phrases) is rela-
tively robust.
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Figure 1: Alignment Precision/Recall Curve using 892
manually-annotated sentence-pairs in NIST task.

4 Related Work

There is a wide variety of previous work in SMT
domain adaptation. It might be helpful to catego-
rize the methods based on (a) whether the method
focuses on a particular step in the training pipeline,
and (b) if so, which step. Following the train-
ing pipeline in Section 1, we briefly survey the ap-
proaches in prior work:

1) Word alignment model training: Assume a
probabilistic model of alignment, where the param-
eters (e.g. lexical translation probabilities in the
IBM Models) are estimated from a mix of in-domain

and out-of-domain data. One method is to interpo-
late separate sets of parameters estimated from in-
domain and out-domain data. Wu et. al.(2005) sets
the interpolation weights to be proportional to the
relative frequency of observances in in-domain and
out-of-domain data, while (Civera and Juan, 2007)
treats it as a hidden parameter in a mixture model.
These methods are similar to ours in that the moti-
vation is to improve alignments, but differs in that
the focus is on training (not inference).

2) Alignment inference: To the best of our
knowledge, there is no previous work in this area.
The model training of Step 1 is related but not the
same. Instead, alignment combination works (Deng
and Zhou, 2009) may give some insights.

3) Phrase extraction: Out-of-domain text may
contain unseen phrases useful for in-domain data.
One approach attempts to discover paraphrases from
large monolingual corpora (Marton et al., 2009;
Snover et al., 2008). Another is a self-training
approach that translates source in-domain text and
re-trains the translation model on synthetic data
(Bertoldi and Federico, 2009; Ueffing et al., 2007).

4) Scoring: Adaptation in the scoring step is the
most direct way to improve results since it is the
step closest to the final translation model. In fact,
one could argue that all the previous steps are sim-
ply pre-processing to narrow down the size of rule-
set/phrasetable; if scores are well-tuned, good trans-
lations can be achieved even if the ruleset is infi-
nite in size. Recent approaches to score adaptation
involve combining in-domain and out-of-domain
scores at either the sentence or the phrase level (Shah
et al., 2010; Matsoukas et al., 2009; Foster et al.,
2010). A promising aspect about the latter two pa-
pers, in particular, is that they are able to incorporate
supervised information (likelihood or expected TER
on the dev set) for score adaptation.

We emphasize that our contribution is orthogo-
nal to previous work: alignment inference adapta-
tion can be combined with any adaptation method
in other parts of the pipeline. It remains to be seen
whether the improvements are additive: while our
results are positive in both alignment and final trans-
lation performance, some work have shown weak
correlation between the two (Ayan and Dorr, 2006;
Fraser and Marcu, 2009).

There are also adaptation methods that do not tar-
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get a particular step in the training pipeline. For
example, the information retrieval approach (Hilde-
brand et al., 2005) begins by identifying a subset
of out-of-domain bitext most similar to in-domain;
this data subset can be used for any (or all) steps of
the training pipeline. An alternative approach is to
train separate translation models for in-domain and
out-of-domain data, then combine the final models
log-linearly (Koehn and Schroeder, 2007) or dynam-
ically (Finch and Sumita, 2008; Lü et al., 2007).

5 Conclusions and Future Work

We proposed a flexible and efficient method for do-
main adaptation in machine translation. The idea
is to decompose the word alignment process into
model training and alignment inference, and view
the latter as a sequential Bayesian update problem.
The advantages of our approach are:

1. Its modularity enables the use of any model
training algorithm for word alignment, as long
as it outputs N-best lists or posteriors.

2. It gives consistent improvements over a multi-
tude of datasets (2 tasks and 11 language pairs).

We have shown how alignment inference can be
efficiently modeled in a Bayesian way by using
Bernoulli-Beta distributions. One direction of future
work is to relax the independence assuption used in
Eq. 2. For example, we might capture dependencies
among alignment points as a 2-D Markov Random
Field and develop tractable variational or MCMC
inference algorithms to compute the posterior. An-
other direction of future work is to explore alterna-
tive non-Bayesian methods for combining alignment
inference results, such as dual decomposition (DeN-
ero and Macherey, 2011). Finally, it would be in-
teresting to compare and combine the alignment in-
ference results with methods that directly adapt the
model parameters (e.g. (Wu et al., 2005)).
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