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Abstract

Context plays a critical role in the understanding of
language, especially conversational speech. How-
ever, few approaches exist to utilize the external
contextual knowledge which is readily available to
practical speech translation systems deployed in the
field. In this work, we propose a novel frame-
work to integrate context in the language models
used for conversational speech translation. The
proposed approach takes into account the contex-
tual distance between a test utterance and the train-
ing corpus, a measure obtained from the exter-
nal context in which the utterances were spoken.
Language model probabilities are adjusted through
a sentence-level weighting scheme based on this
context-distance measure. When incorporated into
our English-Iraqi Arabic speech-to-speech transla-
tion system, the proposed approach obtains improve-
ments in both speech recognition accuracy and trans-
lation quality compared to the baseline system.

1 Introduction

Conversational speech is full of ambiguities, yet humans
can easily overcome this under-specification by leverag-
ing contextual knowledge that is not present in the surface
form of an utterance. A common conversational speech
scenario is task-orientated dialog where lexical and gram-
matical features differ significantly based on situation and
participants, for example ordering at a restaurant or ask-
ing for directions on the street. The sentence “please do
not make it spicy” has a higher likelihood in one context,
namely the restaurant, than the other. In many languages,
context information such as the gender of the speakers in
a conversation can alter the sentence structure and word
choice. These examples are natural indicators of the role
that context can play in speech translation.

Conversational speech translation is particularly appli-
cable in mobile settings, where portable handheld de-
vices can be used to support cross-lingual communica-
tion while in the field. Recent developments in mobile
speech-to-speech translation (Zhang and Vogel, 2007;
Tan et al., 2008; Prasad et al., 2007; Bach et al., 2007;

Eck et al., 2010) have worked to overcome challenges en-
countered in fielded systems, making this use case more
common and effective.

However, modeling conversational speech in dynamic,
mobile settings presents additional challenges to stan-
dard speech translation, such as constantly varying set-
tings and high-noise environments. Yet, these systems are
unique in that context information can be obtained from
sources other than the surface-level of utterances rela-
tively easily. Examples include implicit context such as
GPS location, semi-implicit context such as gender from
the user profile or topic from a calendar appointment, or
explicit context defining the setting or task the user is at-
tempting to perform. Contextual knowledge can play an
important role in constraining the acoustic, translation,
alignment, and language models of a speech translation
system (Figure 1). Current speech translation systems
however, are unable to effectively utilize such informa-
tion due to the lack of a consistent framework for context
adaptation.
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Figure 1: Overview of the main components in a speech-to-
speech translation system and the internal models that can be
affected by contextual knowledge
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Extending our early work of developing context-aware
translation systems in the virtual world (Zhang, 2009),
we present a novel framework for incorporating contex-
tual knowledge into statistical language models, namely
Distance-Measure Tuning (Section 2). When applied to
conversational speech translation, our proposed approach
improves both the speech recognition accuracy and the
machine translation quality (Sections 3 and 4) compared
to a context-independent system.

2 Context and Language Models

Statistical language modeling assigns a probability to a
sequence of words and is commonly used in natural lan-
guage processing to model the properties of language and
predict the next word in a sequence given a known lin-
guistic history. In speech translation, the language model
is an integral component across several different stages
(Figure 1). First, during speech recognition, the lan-
guage model (LM) guides the decoder, inferring the most
likely sequence of words in the source language given
an observed speech signal. Similarly, in machine trans-
lation, the LM helps eliminate unlikely translations and
re-orderings by evaluating likelihood of word sequences
in the target language.

In this work, we focus on utterances with explicitly
marked context for adaptation. We look at the question
of incorporating context at a broader level, potentially in-
cluding context represented in any form, such as text or
real numbers. For mobile speech-to-speech translation,
we can augment spoken utterances with explicit context
through a variety of means, either via sensors built into
the phone (e.g., location of the user defined by GPS),
user profile information, or within the recognition pro-
cess (e.g., gender detection or topic classification). The
framework we propose can handle any type of contextual
knowledge once it has been extracted.

To define the context associated with a given utterance,
we introduce the concept of a context vector, which indi-
cates the external context in which the sentence was spo-
ken. The context vector provides an intuitive way to at-
tach detailed context information to a particular utterance
or dialog, and only requires the definition of context cat-
egories. Context categories, such as “location” or “task”,
are easier to pre-designate compared to specific contexts
like “restaurant” or “ordering food”. For example, the
context vector for the sentence “so you don’t know what’s
going on in your own neighborhood”, taken directly from
the English-Iraqi corpus we used for evaluation is:

〈topic1: policing, topic2: intelligence, tone: cooperative〉
Henceforth, we refer to this particular context vector as

the example context vector. In this case, the system has 3
context categories: two topic contexts, and one tone.

2.1 Context-dependent LMs through Linear

Interpolation

One common approach for context adaptation is to train
individual models on corpora segmented by context, and
linearly interpolate these models (Iyer and Ostendorf,
1996; Bulyko et al., 2007; Sanchis-Trilles and Cettolo,
2010), obtaining the interpolation weights by minimiz-
ing perplexity over a held-out tuning set. However, there
are several limitations to this approach. First, the num-
ber of unique context vectors grows polynomially in the
number of contexts, assuming a fixed number of con-
text categories, resulting in fewer sentences assigned to
each context vector. Using the example context vec-
tor as our example with 3 context categories (two top-
ics and one tone), if we initially had five topic val-
ues (e.g., “checkpoint”, “intelligence”, “policing”, “small
talk”, and “medical”) and two tones (“cooperative” and
“adversarial”), then we would have a possible set of
5 topics × 5 topics × 2 tones = 50 unique context vec-
tors. If we then double the number of topics, the num-
ber of unique context vectors increases four-fold. Thus,
adding contexts to the system will lead to data sparseness
issues which in turn will potentially lead to problems dur-
ing parameter estimation (Section 3.3).

Second, the approach assumes the impact of multiple
contexts on the language model probability (or score) can
be expressed as a linear combination of language model
scores provided by models that are trained on individual
contexts. In reality, the relationship is more complex and
would be better served by a more granular level of LM
adjustment, for example at the sentence level.

2.2 Distance-Measure Tuning (DMT)

To overcome the limitations inherent in linear interpo-
lation, we propose a new approach in which we gener-
ate an LM for each dialog scenario based entirely on its
context vector. For every input sentence, each sentence
in the training corpus is assigned a weight, expressed as
the function of a distance between the context vectors of
the input and training utterances. We introduce a dis-
tance metric that weighs each context category individ-
ually and estimate sentence weights to minimize the per-
plexity over a tuning set.

For a given input utterance s = (w1, . . . , wl) where l is
the sentence length (word count), with associated context
vector �cs, we evaluate its likelihood in a modified manner
as:

logP (s) =

l∑
i=1

logP (wi | h) (1)

=

l∑
i=1

log

⎛⎝ N∑
j=1

αjs
Cj(wi, h)

Cj(h)

⎞⎠
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where N is the number of sentences in the training cor-
pus, h is the history of word wi, Cj(·) is the count of the
word sequence in training corpus sentence j, and αjs is
the weight assigned to sentence j and is a function of
the context-distance measure between training sentence
j and test sentence s. The relationship is defined as:

αjs =
1−D(�cj , �cs) + b

Z
(2)

D : S|S| × S|S| 
→ R is the distance measure between
the input and training sentence context vectors, where S
is the set of all possible context values. b is a parameter
that ensures we assign a strictly positive1 weight to each
training sentence, and Z is a normalization factor to en-
sure that

∑N
j=1 αjs = N , which guarantees we do not

distort the word count of the corpus.
This framework offers a flexible definition of the

distance measure. Here, we use a linear function
D(�cj , �cs) = �λT · f(�cj , �cs), where �λ is a parameter vector
equivalent in length to the context vector, and f(�cj , �cs)
is the modified Hamming distance function that measures
the similarity between context vectors by comparing each
entry in the vectors and outputs the corresponding binary
vector:

fi(�cj , �cs) =

{
0 if cj(i) = cs(i)

1 otherwise
(3)

where i refers to the ith entry in the context vector. As
an example, if we use our example context vector as a test
context vector and the context vector

〈topic1: policing, topic2: checkpoint, tone: adversarial〉

then the modified Hamming distance function returns a
vector 〈0, 1, 1〉.

In order to find the optimal parameters for �λ, we use
the Nelder-Mead method (Nelder and Mead, 1965) over
the tuning set to minimize total perplexity.

3 Experimental Evaluation

Evaluation was performed using phase one of the
English-Iraqi TransTAC corpus, which consists of spo-
ken language transcriptions of dialogs between US per-
sonnel and Iraqis in the field. The corpus covers tasks
including: vehicle checkpoints, training of soldiers and
medical assistance. There are a total of 19 context val-
ues in the corpus. We chose two context categories to
form the context vector of length 3 (two topics and one
tone), reducing the set of possible unique context vectors
to 220. The tone context category contains two values,

1αjs = 0 should be avoided as that essentially discards the training
sentence and unnecessarily shrinks the training corpus

either “cooperative” (84.5% ) or “adversarial” (15.5%).
The topic contexts distribution for the first topic (topic1)
is presented in Figure 2. Table 1 presents the top ten con-
text vectors in our corpus, making up 62.7% of the corpus
in total. Our training, tuning, and test sets consisted of
roughly 38,000, 1000, and 1000 utterances respectively
(Table 2). Dialogs were randomly sampled to create the
tuning and test sets.

Unique Context Vector Number of

Utterances

% of Total

Utterances

Other (no marker) 4349 11.3%
Intelligence None Cooperative 2957 7.7%
Checkpoint None Cooperative 2897 7.5%
Swet None Cooperative 2773 7.2%
Medical None Cooperative 2234 5.8%
Community Issues None Coop-
erative

2185 5.7%

Raidsearch Intell Cooperative 2103 5.5%
Joint Ops None Cooperative 1610 4.2%
Checkpoint Intell Cooperative 1504 3.9%
Checkpoint None Adversarial 1453 3.8%
Remaining Unique Contexts 14,319 37.3%
Total 38,384 100%

Table 1: Top 10 unique context vectors in corpus

Corpus Sentences Words

Training 38,384 441,094
Tuning 948 8657
Test 990 9642

Table 2: Number of words and sentences for the training, tun-
ing, and test corpora that we used

3.1 Experimental Setup

To generate the sentence-level weighted language mod-
els, we evaluated the contextual difference between the
training corpus and test sentences through a perl script,
and incorporated the weights when training the mod-
els through built-in features in the SRI-LM (Stolcke,
2002) toolkit. We used order 3 n-grams, and performed
Witten-Bell smoothing due to limited support of frac-
tional counts for other smoothing techniques in the SRI-
LM toolkit. SRI-LM was also used for perplexity mea-
surements, evaluated on the English LMs.

When evaluating the effectiveness of our approach
on speech recognition accuracy and machine translation
quality, we used the CMU English-Iraqi Arabic speech
translation system. For speech recognition, we evaluated
English Word Error Rate (WER), keeping the entire sys-
tem setup constant apart from the language models. Our
English ASR system consisted of a sub-phonetically tied,
semi-continuous, HMM acoustic model which was com-
posed of 7000 context dependent senones and up to 64
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Figure 2: Distribution of the context category topic1 by its context values in our corpus. For topic2, roughly 50% of the context
values were “none”, with the remaining topics distributed in a similar manner to topic1. Only a few sentences in the corpus did not
have at least one topic

Gaussians per state. ASR decoding was performed us-
ing the Ibis decoder (Soltau et al., 2001), which was de-
veloped as part of our Janus Recognition Toolkit (JRTk)
(Finke et al., 1997).

We used Moses (Koehn et al., 2007) for statistical ma-
chine translation (SMT) decoding and training all of the
SMT models except the language models. MERT tuning
was achieved by the associated mert-moses.pl script
(Och, 2003). The translation hypotheses were evaluated
with BLEU (Papineni et al., 2002), and we evaluated the
Iraqi Arabic to English source-to-target direction, keep-
ing the entire translation setup static except for the lan-
guage model component.

3.2 Baseline Systems

First, two context-independent LMs were trained. In
the first baseline (“baseline”), all sentences were given
equal weights during LM training, namely weight 1. For
the linear interpolation case (“baseline intLM”), we first
created multiple sub-corpora, wherein each corpus con-
tained training sentences from only one context value.
Note that these sub-corpora overlapped as training sen-
tences were often marked with multiple context values
and categories. For example, a sentence with the example
context vector as its context vector existed in the “polic-
ing”, “intelligence”, and “cooperative” sub-corpora. We
then trained an LM on each sub-corpus, and estimated a
set of mixture weights for each LM by minimizing the
perplexity over the entire unsegmented tuning set, result-
ing in a single context-weighted LM.

3.3 Context and Language Model Perplexity

The “baseline intLM” outperformed “baseline” by 7.6%
on the unseen test set in terms of perplexity (Table 3,
columns 2 and 3), indicating the usefulness of interpo-
lation in reducing perplexity.

Next, we evaluated the effectiveness of the context-

dependent linear interpolation (Section 2.1) and DMT
(Section 2.2) methods. With the context-dependent lin-
early interpolated LMs, we maintained different sets of
mixture weights for each context vector in the tuning set.
We split the tuning set into 13 subsets: 12 corresponded
to the 12 unique context vectors that constituted 80%
of the tuning set. The context vectors of the remaining
20% of the tuning set had few training examples per con-
text vector, and were grouped together to ensure a model
(“other”) of sufficient size.

We tuned for an optimal set of interpolation weights
for each context vector-specific subset of utterances in
the tuning set. Through this tuning process, we obtained
a context vector-dependent set of interpolation weights,
resulting in a context-dependent LM. During evaluation,
when a context vector that we had tuned for was encoun-
tered, the corresponding mixture weights vector was ap-
plied, otherwise we used the “other” mixture weights.
Since the context vectors in the tuning and test sets were
not identical, unique contexts that existed in the test but
not in the tuning set fall back to the “other” case, resulting
in suboptimal performance2.

When evaluating the DMT methods, we used the same
13-way split of the tuning set and varied the way in which
we selected or computed �λ, the parameter set used within
the context distance measure (Equation 2):

1. DMT Uniform: uniform parameters �λ =
〈 1k , . . . , 1

k 〉. In our case, k = 3 (Table 3, col-
umn 5) .

2. DMT Tuned-ppl: Nelder-Mead (multidimensional
downhill simplex) tuned parameters. The optimiza-
tion goal is to minimize perplexity on the tuning set
(Table 3, column 6).

2Roughly 50% of the test utterances were evaluated with the “other”
parameters
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Set Baseline Baseline int. LM Cont.-Dep. int. LM DMT Uniform DMT Tuned-ppl DMT Tuned-aug
Tune 48.3 43.8 41.2 (6.0%) 47.3 (2.0%) 41.4 (14.2%) 46.7 (3.2%)
Test 63.5 58.7 58.4 (0.4%) 63.5 (0.0%) 59.6 (6.1%) 60.1 (5.4%)

Table 3: Summary of Results: Perplexity (% relative improvement). The results show marginal improvement over the baseline for
context-dependent interpolated LMs, and noticeable improvement for DMT

3. DMT Tuned-aug: in addition to tuning the param-
eters in 2, we augmented our parameter set to also
include parameters corresponding to the most fre-
quently occurring topic pairs and tuned for these
augmented parameters as well (Table 3, column 7).
In particular, we modified Equation 2 slightly by in-
troducing hierarchy in the topics. We picked the n
most frequent topics in the corpus and introduced
n(n−1)

2 additional parameters corresponding to the
pairs amongst these n topics. These parameters
were used whenever any of the n most frequent top-
ics occurred as a pair when evaluating the contextual
distance between two context vectors, otherwise we
backed off to the more general parameters (as tuned
in 2).

We also tuned for b, the bias introduced in Equation 2,
and found that a value of 0.25 performed consistently
well across the experiments.

Context-dependent interpolated LMs reduced perplex-
ity (Table 3, column 4) by 6.0% (tuning) and 0.4% (test).
Perplexity improvements for each context vector ranged
from 1.5% to 20.7% on the tuning set, and -8.2% to
17.8% on the test set. DMT decreased perplexity on the
tuning set by 14.2%, and while its performance on the test
set in terms of absolute perplexity levels was not better
than the linearly interpolated models, relative to its base-
line (“baseline”) its improvement was higher than the lin-
early interpolated model compared to its baseline (“base-
line intLM”). Context vector-wise, DMT improvements
ranged from -10.8% (which occurred during “DMT Uni-
form” evaluation) to 10.4% (“DMT Tuned-ppl”) with no
apparent link between the size of the context vector-based
subset and the amount of improvement on tuning or test
sets.

3.4 Context-dependent Language Modeling for

Speech Recognition

Next, we evaluated the performance of context-dependent
language models for ASR. Between the two baselines,
the WER did not change (Table 4, columns 2 and 3). The
context-dependent interpolated LMs method achieved a
WER of 17.1% on the test set, an absolute improvement
of 0.4% compared to “baseline intLM” and “baseline”
(Table 4, column 4), with context vector-specific im-
provements ranging from -8.4% to 18.4%. Our approach,
DMT, further reduced WER compared to the interpo-

lated case through an absolute additional improvement
of 0.2%, with an absolute improvement over “baseline”
of 0.6%. Improvements by context varied from -30.0%
to 33.3% with an overall relative reduction of 3.1% over
“baseline”.

In addition to the results presented in Table 4, we found
that if DMT is used in all cases (as opposed to backing-
off to the interpolated LMs when we encountered a pre-
tuned context vector in the test set), a WER of 17.0% is
obtained, a 3.0% relative reduction compared to “base-
line”. In addition, we note that on the test set, if an effi-
cient pre-selection mechanism is implemented such that
one can choose between the interpolated LMs and DMT
approach for context vectors encountered in the tuning
set, we achieve a WER of 16.9%, a 3.9% improvement
over “baseline”.

3.5 Context-dependent Language Modeling for

Machine Translation

Finally, we evaluated the effectiveness of context-aware
language models on machine translation quality. The
BLEU evaluation was preceded by a tuning step, where
we used the same held-out tuning set to obtain the ma-
chine translation weights, namely the translation, distor-
tion, language model and word penalty weights used in
the computation of the translation hypothesis during de-
coding. The “baseline intLM” obtained a small increase
in BLEU (0.29 BLEU points) compared to the “baseline”
(Table 5, columns 2 and 3) method where interpolation
was not performed.

The DMT BLEU results exhibited a similar trend to
their corresponding WER results. We see that LMs op-
timized for minimizing perplexity (Table 5, column 6)
make marginal improvements over the baseline when
evaluated for BLEU (0.13 point increase), and that aug-
menting these parameters (column 8) does little to help
the results. In fact, a uniform λ approach (column 5),
where each λ = 1

3 , outperforms both tuned techniques.
In light of these results we decided to tune our λ param-
eters in DMT with the aim of maximizing BLEU on the
tuning set (column 7), by performing a simple grid search
with a step size of Δλ = 0.05. Through this method, we
found that the parameter settings that maximized tuning
set BLEU improved unseen test set BLEU by 0.6 BLEU
points compared to “baseline”.

In an effort to keep the system static to isolate the ef-
fects of the language model on translation quality, we
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Set Baseline Baseline int. LM Cont.-Dep. int. LM DMT Uniform DMT Tuned-ppl DMT Tuned-aug
Test 17.5% 17.5% 17.1% (1.9%) 16.9% (3.1%) 16.9% (3.1%) 16.9% (3.1%)

Table 4: Summary of Results: WER (% relative improvement). The results show consistent improvement when incorporating
context

Set Baseline Baseline int. LM Cont.-Dep. int. LM DMT Uniform DMT Tuned-ppl DMT Tuned-bleu DMT Tuned-aug
Test 18.24 18.53 18.21 (-1.7%) 18.45 (1.2%) 18.37 (0.7%) 18.84 (3.3%) 18.37 (0.7%)

Table 5: Summary of Results: BLEU (% relative improvement). The results show significant outperformance versus interpolated
LMs, and mild improvement over the baseline for perplexity-optimized LMs. Parameters tuned to optimize BLEU outperform
other experimental setups

used the same set of MERT weights obtained by the
“baseline” setup for the DMT experiments. However for
the context-dependent interpolated LMs we found that
the MERT weights obtained from “baseline intLM” setup
were inappropriate for the context-dependent models and
severely penalized hypothesis sentence length, and thus
underwent the MERT step again for each model. Despite
this retuning, the context-dependent interpolated LMs ap-
proach obtained a lower BLEU score (Table 5, Column 4)
than its corresponding baseline, “baseline intLM”.

4 Discussion

Overall, one sees a) that context plays an important role in
statistical language modeling since all context-dependent
evaluations outperform the baseline and b) relative to
their respective baselines, DMT outperforms the LM in-
terpolation approach, as described in Section 2.1, on the
unseen test set.

For perplexity evaluations, we combined the interpo-
lated LM approach with DMT and used the mixture mod-
els setup if a pre-tuned context vector was encountered
in the test corpus, as the interpolated LMs approach had
equivalent or slightly better perplexity performance on
pre-tuned context vectors. Otherwise, we generated a
context vector-specific LM on the fly, as generalizing to
unseen contexts is a main advantage of DMT. While com-
putational costs may inhibit the construction of an LM
online, we note that techniques to estimate LM proba-
bilities on the fly (Zhang and Vogel, 2006) can help to
alleviate such costs. In addition, we found that “DMT
Tuned-aug”, with its topic pair-specific parameters, gen-
erally was subpar compared to the smaller parameter set,
most likely due to overfitting during the tuning process.

In these experiments we observed that perplexity does
not correspond with WER, in a consistent manner, i.e.
techniques that perform well on an absolute level of per-
plexity do not necessarily translate into better recognition
accuracy. While two models may have similar perplexi-
ties, this fact does not imply that the probability distri-
butions are similar; rather, certain distributions may out-
perform others during speech recognition decoding since

the acoustic confusability and word selection now plays
a role. Thus, from a recognition standpoint it would be
more suitable to tune LMs with the goal of minimizing
WER directly, and not perplexity. The same phenomenon
can be seen when we optimize our LMs for BLEU in the
machine translation experiments.

To see how context-aware language models work at
the sentence level, let us revisit the example sentence
from Section 2 and compare the hypothesis from “base-
line” and BLEU-optimized DMT. Table 6 presents two
hypotheses and the reference sentence (from the source
sentence in Figure 1) and one can see that by incorpo-
rating context, a more appropriate (i.e. higher n-gram
similarity with the reference) hypothesis is generated by
the decoder.

Baseline so you didn’t do you know what
there is no in your neighborhood

DMT so you don’t know what’s going on
in your neighborhood

Reference so you don’t know what ’s going on
in your own neighborhood

Table 6: Comparison of hypotheses generated by “baseline” and
BLEU-optimized DMT language models, along with the refer-
ence sentence.

Lastly, we present in Table 7 the λ parameter values
tuned to minimize perplexity and maximize BLEU. DMT
allows us to interpret the λ parameter values as an indica-
tor of the relative importance of a particular context cat-
egory versus other categories. In this case, we see that
optimizing for BLEU has tuned the second topic weight
to be insignificant, and the first topic is weighted roughly
twice as much as the tone. Optimizing for perplexity
gives some weight to the second, less dominant topic, so
we can infer that the second topic marker is important
in reducing the confusability of the language model, but
plays no role in terms of translation quality. The param-
eter values are thus useful in providing intuition on the
role of context markers for a given corpus.

We thus find that it is better to optimize metrics, such
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Optimization Criterion λ1 λ2 λ3

Min Perplexity 0.62 0.16 0.22
Max BLEU 0.65 0.00 0.35

Table 7: Comparison of parameter values for the two optimiza-
tion criteria. The values show that the second topic is rele-
vant when minimizing perplexity, but does not contribute to im-
proved translation quality

as recognition accuracy or translation quality, that reflect
the end-to-end performance of a system rather than an
intermediate metric, such as perplexity.

5 Related Work

Several works have addressed the related question of ex-
tracting and incorporating meta-data to enhance mod-
els, mainly with the aim of minimizing discrepancies be-
tween test and training corpora. The idea has been ap-
plied to a variety of natural language processing appli-
cations, from dialog-act tagging (Sridhar et al., 2009) to
disfluency detection (Liu et al., 2003). Model adaptation
has also been studied in Statistical Machine Translation,
for example Hildebrand et al. (2005) use Information Re-
trieval to adapt the translation model for an SMT system,
and in Zhao et al. (2004) the same technique is applied
to the language model. Our framework has the same goal
of minimizing test and training data differences, but we
aim to minimize these differences by using the context
of the test and training sentences, encapsulated in context
vectors.

Several frameworks have looked to incorporate topic
dependencies in the language model. Iyer and Osten-
dorf (1996) build a sentence-level scheme, and Florian
and Yarowsky (1999) incorporate topic information when
backing off to lower n-grams. The methods proposed in
these works rely on mixture models, and form the ba-
sis for the interpolated LMs approach presented in Sec-
tion 2.1. Bulyko et al. (2007) discuss several language
model adaptation methods applied to machine transla-
tion of Arabic broadcast speech, focusing primarily on
mixture-based models as well, and Sanchis-Trilles and
Cettolo (2010) look at dynamically adapting the mixture
weights using an EM-based procedure. Incorporating im-
plicit topics in the form of LDA-based approaches (Hsu
and Glass, 2006; Tam and Schultz, 2005) have also been
popular.

A similar method to optimize parameter estimation
based on sentence-level weights was used by Matsoukas
et al. (2009), applied in that case to the translation model.
The authors optimize Translation Error Rate in an end-
to-end machine translation framework and use the BFGS
method to optimize; we hope to extend DMT in the fu-
ture in a similar manner for the translation and alignment

models in speech-to-speech translation.
Additionally, the maximum entropy framework

(Rosenfeld, 1996) can also incorporate contextual fea-
tures, but is not flexible enough to incorporate multiple
definitions of the distance metric as we discuss in Section
2.2.

6 Conclusion & Future Work

In this work, we propose a novel framework, Distance-
Measure Tuning, to incorporate contextual information
at the sentence-level by calculating the distance between
two context vectors (the input utterance and the current
training corpus utterance in question). This in turn is used
to generate a context vector-specific language model for
evaluation. While we emphasize that a variety of dis-
tance measures can be used, we conducted our experi-
ments with a linear distance measure and compared this
approach with an interpolated LM-based approach. DMT
was much better at generalizing to unseen context vectors
than interpolated LMs, and this aspect resulted in better
absolute performance of DMT versus interpolated LMs
in terms of both WER and BLEU, and better relative per-
formance (percentage improvement over baseline) in per-
plexity.

In the near future, various definitions of the distance
metric and alternative optimization techniques will also
be investigated, as well as additional smoothing tech-
niques.
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