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Abstract

Research on translation quality annotation
and estimation usually makes use of stan-
dard language, sometimes related to a spe-
cific language genre or domain. How-
ever, real-life machine translation (MT)
performed, for instance, by on-line trans-
lation services, has to cope with extra dif-
ficulties related to the usage of open, non-
standard and noisy language. In this pa-
per we study the learning of quality esti-
mation (QE) models able to rank transla-
tions from real-life input according to their
goodness without the need of translation
references. For that, we work with a cor-
pus collected from the 24/7 Reverso.net
MT service, translated by 5 different sys-
tems, and manually annotated with quality
scores. We define several families of fea-
tures and train QE predictors in the form of
regressors or direct rankers. The predictors
show a remarkable correlation with gold
standard rankings and prove to be useful in
a system combination scenario, obtaining
better results than any individual transla-
tion system.

1 Introduction

Automatic evaluation of machine translation (MT)
quality is a crucial task for system development,
combination and tuning, which has received in-
creasing attention from the MT community in the
recent years. Translation quality estimation has
classically been addressed as a scoring task (Spe-
cia et al., 2010), where some scoring function
predicts the absolute quality of the automatic
translation of a source text compared to human
references (Papineni et al., 2002; NIST, 2002;
Denkowski and Lavie, 2011) or without compar-
ison (Specia et al., 2010). In this paper, we will
use the term Quality Estimation (QE) to refer to

the latter case, that is, predicting the quality of
the translated text avoiding the need of human cor-
rect translations. QE has recently evolved towards
two separate subtasks (Callison-Burch et al., 2012)
consisting in scoring itself (Specia et al., 2010) and
ranking, where different MT outputs for a given
source sentence have to be ranked according to
their comparative quality. Results obtained so far
on QE have been more satisfactory for the ranking
approach (Specia et al., 2010; Avramidis, 2012;
Callison-Burch et al., 2012).

System ranking based on human quality anno-
tations has been established as a common practice
for MT evaluation in shared tasks (Callison-Burch
et al., 2012). Therefore, training corpora are avail-
able for researchers to train ranking functions with
supervised machine learning methods to perform
automatic ranking mimicking human annotations.
Learned models can be reusable, provided they are
system independent and based on a generic analy-
sis (i.e., no system dependent features can be used
for training), and applicable to other sets contain-
ing any input and multiple outputs. The applica-
tions of QE-for-ranking are diverse: from hybrid
MT system combination to their internal optimiza-
tion and evaluation. The most popular practical
scenario of QE models (both rankers and regres-
sors) consists of ranking alternative MT systems’
outputs to predict the best translation at segment
level.

It is worth noting that the research conducted in
QE for training ranking models from human an-
notations has always been done in controlled envi-
ronments, consisting of well-formed text with lit-
tle presence of noise (such as News or EU Par-
liament acts). However, MT in real life has to
deal with a more complex scenario, including non-
standard usage of text (e.g., social media, blogs,
reviews, etc.), which is totally open domain and
prone to contain ungrammaticalities and errors
(misspellings, slang, abbreviations, etc.). In that
case, human-trained QE models would be most
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useful for the end user. An example of noisy
environment is found in the publicly available
FAUST English-to-Spanish corpus1 (Pighin et al.,
2012), collected from the 24/7 Reverso.net MT
service. This corpus is composed of 1,882 we-
blog source sentences translated with 5 indepen-
dent MT systems. The systems were ranked ac-
cording to human assessments of adequacy by sev-
eral users using a graph-based methodology, ob-
taining considerably high agreement and quality
indicators (Pighin et al., 2012).

In this paper, we study the supervised training
of QE prediction models from the aforementioned
FAUST corpus to rank alternative system trans-
lations. Our study focuses on different aspects,
such as: i) the typology of the problem (regres-
sion vs. binary classification), ii) suitability of the
learner (SVM vs. M5P regression trees), and iii)
best combination of features to learn. In order
to analyze the results, we compute the correlation
and decision accuracy between the rankings esti-
mated by the predictors and the gold standard, but
we evaluate also the results obtained by the com-
bined MT system resulting from selecting, for ev-
ery sentence, the individual translation predicted
as best. Results prove that is possible to build re-
liable QE models from a noisy annotated corpus.
Concretely, correlation results are comparable to
those described in the literature for standard text.
Furthermore, we also observed that comparative
(ranked–based) QE models fit better to the system
selection task (i.e. predict always the best transla-
tion) compared to absolute (regression–based) QE
models.

The rest of the paper is structured as follows.
Section 2 presents the learning framework and the
features we propose to train our QE models. In
Section 3 we detail the different experiments that
are conducted to better assess the proper building
of the QE models and evaluate their quality. The
results are compared to the related work in Section
4. Finally, conclusions and future research lines
are presented in Section 5.

2 Learning QE comparative models

As previously said, we want to study the appropri-
ateness of different learning strategies towards ob-
taining the best translation ranking models accord-

1http://www.faust-fp7.eu/faust/Main/DataReleases

ing to absolute correlation performance and task-
oriented under the scenario of system selection.
We considered two different strategies to train
the models: i) Learning to predict absolute qual-
ity scores by means of regression models and ii)
Learning to predict pairwise quality ranking deci-
sions by means of binary classification. Concern-
ing the absolute regression models we compared
two different learning algorithms: i) M5P from
Weka (Quinlan, 1992) which combines a decision
tree with linear equations on the leaves and ii) Sup-
port Vector Regression (Joachims, 1999), which is
based on Support Vector Machines (SVM). Two
different approaches can be followed to train re-
gression models: a) system dependent, where inde-
pendent regression models are built to predict the
quality of each MT system, and b) system inde-
pendent, where a single absolute regression model
is built across all systems in order to distinguish
good and bad translations. Note that the former
approach requires the MT systems to be known
beforehand and it is only applicable to that fixed
set of systems. As we wanted to build open and
general purpose QE models we focused our exper-
iments on the latter approach. Finally, concern-
ing the pairwise ranking decisions we only used
SVM learning for preference ranking based on bi-
nary decisions.

For comparative purposes, we do not limit the
learning experiments to the usual prediction of
the human quality assessments as gold standard,
but we also considered the problem of predicting
the scores of automatic evaluation metrics (and
the corresponding rankings) without having the
real human reference. For that, we considered
BLEU (Papineni et al., 2002), NIST (NIST, 2002)
and METEOR (Denkowski and Lavie, 2011) scores
computed at sentence level on the training set and
learned from them as the gold standard. Concern-
ing human rankings, we computed the average po-
sition of the QE predicted translations within the
real test human rankings. More details are given in
Section 3.

We used a large set of features to characterize
examples and perform learning. They are grouped
in three different sets and described in the fol-
lowing subsections. Some of them are inspired
by well-established features from the literature
(baseline, Section 2.1), others apply the pseudo-
reference idea from Soricut and Echihabi (2010)
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to a larger set of MT evaluation measures (Section
2.2) and, finally, others are language model–based
features developed for the particular corpora of ap-
plication (Section 2.3).

2.1 Baseline Features
Specia et al. (2010) defined a broad set of features
covering important aspects for QE learning. Later,
Callison-Burch et al. (2012) selected a subset of 17
features for the WMT shared task on QE. Further-
more, other evaluation suites exist which define
several QE basic metrics. An example of those is
the ASIYA toolkit (Giménez and Màrquez, 2010).
In our work, we will take the union of both previ-
ous feature sets to train our baseline system.

• Baseline:

1. Specia Baseline (Callison-Burch et al.,
2012): subset of 17 baseline features from
Specia et al. (2010), containing token counts
and their ratio, LM probabilities, n-grams fil-
tered by quartiles, punctuation marks and fer-
tility ratios.

2. ASIYA QE based features (Giménez and
Màrquez, 2010): 26 ASIYA QE features,
comprising bilingual dictionary ambiguity
and overlap; ratios concerning chunks,
named-entities and PoS; source and candi-
date language model perplexities and inverse
perplexities over lexical forms, chunks and
PoS and out-of-vocabulary word indicators.

2.2 Pseudo-reference based features.
Albrecht and Hwa (2007) introduced the con-
cept of Pseudo-Reference (PR) based features for
translation regression estimation, later extended to
ranking (Soricut and Echihabi, 2010). Their hy-
pothesis was based on previous findings showing
that, in the absence of human-produced references,
automatically produced ones were still good in
differentiating good and bad translations. These
features require one or more secondary MT sys-
tems, used to generate translations starting from
the same input. It is also crucial to have a good-
quality MT system among the candidates, as the
pseudo-reference becomes a more solid reference.

Pseudo-references intend to identify translation
convergence using classical reference-based met-
rics as feature values. Their rationale is: “if sys-
tem X produced a translation A and system Y

produced a translation B starting from the same
input, and A and B are similar, then A is proba-
bly a good translation”. In contrast, Soricut and
Echihabi (2010) highlight also that systems X and
Y need to be as different as possible from each
other. This property ensures that a convergence on
similar translations is not just due to the learning
approach (e.g., all Moses-like phrase-based), but
a true indication that the translations are correct.
The FAUST corpus contains translations from sys-
tems of different type (open-source phrase-based
(Moses), general purpose phrase-based (Google
and LanguageWeaver), rule-based (Systran) and
hybrid (Bing)) making the corpus suitable for the
system ranking task. The practical implementation
that we took of that approach is to compute one or
several reference-based metrics to each translation
candidate as QE metrics using the alternative trans-
lations from the other systems as references.

Soricut and Echihabi (2010) only considered
BLEU in order to generate the pseudo-reference
based features. In our case, we expand the
initial pseudo-BLEU feature towards two sepa-
rate levels: i) Classical lexical oriented evalua-
tion measures (BLEU, NIST and METEOR) and
ii) More complex (linguistically–based) evaluation
measures obtained with the help of the ASIYA

toolkit (Giménez and Màrquez, 2010). These are
described next:

• PR-based

3. Classical lexical-based measures: 5 PR-
based features calculated over the follow-
ing measures: BLEU (4-grams and smoothed
(Papineni et al., 2002)), NIST (5-grams and
smoothed (NIST, 2002)), METEOR-EX -PA -
ST: Denkowski & Lavie (2011) with exact
matching and with variants (plus stem match-
ing stem matching).

4. ASIYA provided features: 23 PR-features cal-
culated over GTM; ROUGE; WER; PER;
TER; and all Syntax-based evaluation mea-
sures provided by ASIYA for Spanish
(Giménez and Màrquez, 2010).

2.3 Adapted Language Model based
Features.

As a last group, we considered specific language
model-based features to deal with the weblog data,
which is comprised of different domains. To that
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effect, we interpolated different language models
comprising WMT12 Monolingual corpora (EPPS,
News and UN) with Spanish source sentences
gathered from the weblog of Reverso.net. The in-
terpolation weights were computed as to minimize
the perplexity according to the Spanish FAUST de-
velopment set2. Hence, the last features are as fol-
low:

• LM-based

5. 2 features (LMWEB , LMPOSWEB) comput-
ing log-probabilities of the translation candi-
date with respect to the above described in-
terpolated language models over word forms
and Part-of-Speech labels.

3 Experimental framework

3.1 Corpora and learners
In this paper we use the FAUST corpus (Pighin
et al., 2012) to train our models. That corpus
is composed of 1,882 weblog source sentences
submitted to reverso.net online portal and trans-
lated with 5 different systems (Bing3, Google4,
LanguageWeaver5, Systran6 and Moses7). The
systems were ranked according to human assess-
ments of adequacy. In addition, they also can be
ranked according to different automatic metrics
as we have the references. These rankings (hu-
man and automatic) are the main target for our
models as we want to use them for a system-
selection task (Specia et al., 2010). The ranking
ties in the training data were treated with a min
{1,2,2,4} heuristic so that the scale of the rank-
ings become constant throughout all the sentences.
The {1,2,2,4} heuristic is defined by setting the
ties score to their lower value while maintaining
the other scores beyond the tied position. Simi-
lar heuristics are max {1,3,3,4}, avg {1,2.5,2.5,4},
random {1,2,3,4} and shortened-scale {1,2,2,3}.

We analyzed different learners (rankers and re-
gressors) using the following implementations:
As for the regressors, we used the M5P algo-
rithm from Weka (Quinlan, 1992) and SVM-
Light (Joachims, 1999) for Support Vector Re-
gression. These learning algorithms are referred
2ftp://mi.eng.cam.ac.uk/data/faust/FAUST-1.0.tgz
3http://translate.bing.com
4http://translate.google.com
5http://www.sdl.com
6http://www.systransoft.com
7http://www.statmt.org/moses/

as ‘M5Preg’ and ‘SVMreg’ throughout this pa-
per. The SVR algorithm was run according to
the following parameters: Expanding the work-
ing set by 9 variables at each iteration, for a
maximum of 50,000 iterations and with a cache
size of 100 for kernel evaluations. As for the
ranker, we performed SVM ranking by means of
pairwise comparison using the same SVMLight
toolkit (Joachims, 1999) but with the “-z p” op-
tion, which can provide system rankings for all
the members of different groups. This method is
named ‘SVMrank’ in the paper. The learner pa-
rameter C was empirically set to 0.001.

3.2 Experiments

For the experiments we proceeded in two stages.
First, we studied the more appropriate learning
framework (M5Preg, SVMreg or SVMrank) and
afterwards, when the best framework is set, we
study the contribution of each group of features
(i.e., Base, PR Classic (PRC), PR Asiya (PRA),
and FAUST trained LM (WEB)) to help the pre-
diction task.

Secondly, we evaluated the performance
achieved by the QE models without being
bounded to a specific task. We did that with two
types of indicators: a) the correlation between
the rankings (real and predicted) and also b) the
accuracy in predicting pairwise ranking decisions.
More concretely, we used: i) Spearman, ii)
Kendall’s τ rank correlation, iii) accuracy ratio
within all pairwise decisions given the real and
predicted rankings, and v) accuracy of the trained
model when predicting the best system. These
performance indicators were computed indepen-
dently at segment (sentence) level. Afterwards,
they were averaged obtaining a final value for the
studied learner.

On the other hand, we analyzed the capability
of the trained models to perform system selection
and, therefore, meet or improve the scores (human
or automatic) achieved by the individual MT sys-
tems. In order to compare, we define two oracle
scores that know the real scores: i) OracleDominant
(OD) which represents the score obtained when se-
lecting always the best overall system (the domi-
nant one) across all the segments (lower-bound or-
acle) and ii) OracleBest (OB) which represents the
score obtained when selecting the best translation
for each segment (upper-bound oracle). We also
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E T ML ρ τ Acc Acc’

rank SVM 32.51 28.20 39.06 46.67
HUM reg M5P 33.86 31.69 44.67 51.11

reg SVM 24.60 21.18 36.56 39.44

rank SVM 35.64 29.67 56.17 43.89
BLEU reg M5P 32.07 29.13 56.22 40.00

reg SVM 29.39 25.12 54.00 40.00

rank SVM 37.27 31.78 56.89 39.44
NIST reg M5P 29.97 26.88 46.44 39.44

reg SVM 32.95 27.84 54.83 36.67

rank SVM 38.43 33.02 58.11 41.67
METR reg M5P 30.08 26.80 52.72 37.22

reg SVM 33.67 28.93 56.11 39.44

Table 1: Predicted ranking statistics according to differ-
ent learning approaches and metrics. E column stands for
the metric evaluated, T and ML stand for the type and im-
plementation of the learner used. “reg” stands for regression
approach and rank stands for “ranking” approach. ρ stands for
spearman correlation, τ stands for Kendall’s correlation. Acc
stands for the accuracy, in percentage, over all pairwise deci-
sions (better, worse, equal) and Acc’ stands for the accuracy
at predicting the best translation for each system

considered a baseline measure, BaselineRandom
(BLR), which computes the score obtained by
randomly selecting the best translation for each
source sentence. Those metrics were computed at
document level after selecting the best translation
among the 5 candidates.

For our experiments, we randomly split the
FAUST corpus in two sets: training (90% – 1,694
sentences) and test (10% – 188 sentences).

In order to determine the best learning strategy
we used all the features available to perform the
task. In Table 1 we depict the correlation indica-
tors obtained across different learning methods and
paradigms. We also trained the QE models with
the ranks from human assessments. The system
selection performance is presented in Table 2. In
that case, we try to predict the best system accord-
ing to the human assessments and evaluate them
with both, the human assessments and the auto-
matic metrics.

From the metrics perspective (Table 2), it is
clear that SVM rank is the best methodology
across all the configurations. Therefore, we se-
lected it as the appropriate learner to perform the
study of features. The impact of feature types is
presented in Table 3. Additionally, in Figure 1, we
present relative bar charts showing the contribu-
tion to the final performance of each of the feature
sets defined in Section 2. Discussion on all these
aspects is detailed in the following Section 3.3.

E T ML BLR P OD OB

rank SVM 2.18 1.69 1.77 1.00
HUM reg M5P 2.02 1.79 1.77 1.00

reg SVM 2.22 1.86 1.77 1.00

rank SVM 33.64 38.28 37.57 44.91
BLEU reg M5P 29.99 35.94 37.57 44.91

reg SVM 31.00 38.25 37.57 44.91

rank SVM 6.38 6.83 6.66 7.46
NIST reg M5P 6.06 6.72 6.66 7.46

reg SVM 6.28 6.79 6.66 7.46

rank SVM 51.93 57.27 56.69 62.36
METR reg M5P 50.76 55.27 56.69 62.36

reg SVM 50.15 56.76 56.69 62.36

Table 2: Best predicted metrics (trained with Human Rank-
ings). E, T and ML follow the same notation as Table 1. BLR

stands for the document metric baseline picking the system
sentence at random. P stands for the document metric pre-
dicting the system sentence according to the models. OD

(dominant) stands for the document metric oracle while pre-
dicting all the sentences from the best dominant system and
OB (best) is the document metric real oracle while predicting
the best sentence according to the metric

3.3 Discussion

Method Analysis We found a different behavior
depending whether we focus on the correlations or
the task (Tables 1 and 2). While the automatic met-
rics (BLEU, NIST and METEOR) achieve the best
correlations (Table 1) by means of SVMRank strat-
egy, M5P regression is better suited for the task
of predicting human rankings. However, when
the models were applied to system selection task
(Table 2) we observed that SVMRank also pro-
vided the best results overcoming the regression
results. If we compare the regressors with them-
selves for this task, the SVM regression performed
better compared to M5P regression.

The QE had the same performance if we trained
them to learn automatic metrics. Confirming
SVMrank as the best learner to perform system
ranking. Concretely, when training SVMRank to
learn the automatic metrics, we obtained: 38.73
for BLEU, 6.87 for NIST and 57.26 for METEOR.
Therefore, no significant difference was found
compared to Table 2. We want to clarify that this
step involved three independently trained QE mod-
els. One for BLEU, one for NIST and one for ME-
TEOR.

The results lead to the following finding: not
necessarily the correlation and accuracy indica-
tors yield to predict the best systems for the task
of system-selection. It is important to highlight
the difference between selecting always the best
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F LM BLR P OD OB BLR P OD OB

HUMAN BLEU

∅ WEB 2.23 2.02 1.77 1.00 31.92 34.31 37.57 44.91

+Base – 2.15 2.07 1.77 1.00 29.75 31.29 37.57 44.91
WEB 2.16 1.93 1.77 1.00 32.83 32.93 37.57 44.91

+PRC
– 2.19 1.89 1.77 1.00 30.12 35.17 37.57 44.91

WEB 2.28 1.75 1.77 1.00 31.33 37.64 37.57 44.91

+PRA
– 2.14 1.82 1.77 1.00 30.87 37.55 37.57 44.91

WEB 2.18 1.69 1.77 1.00 31.76 38.73 37.57 44.91

NIST METEOR

∅ WEB 6.15 6.54 6.66 7.46 50.55 53.03 56.69 62.36

+Base – 6.12 6.67 6.66 7.46 50.91 51.11 56.69 62.36
WEB 6.44 6.80 6.66 7.46 50.07 53.22 56.69 62.36

+PRC
– 6.31 6.61 6.66 7.46 52.55 54.31 56.69 62.36

WEB 6.14 6.82 6.66 7.46 50.76 56.58 56.69 62.36
+PRA

– 6.30 6.77 6.66 7.46 51.51 56.27 56.69 62.36
WEB 6.09 6.87 6.66 7.46 51.67 57.26 56.69 62.36

Table 3: Predicted ranking metrics according to different feature subsets. The E, BLR, P, OD , OB columns follow the same
notation as Tables 1 and 2. F stands for the feature set used for training the model and LM stands for the use of additional
language model perplexities as features. ∅ represents an empty set of features. ‘+X’ represents a cumulative addition of the
feature set X over the previous row setting

translation (fine-grained) and providing accurate
system rankings comparable to human ranking
(coarse-grained). In theory, the accuracyBest (%′)
indicator would be the most appropriate indicator
for system selection. However, it does not consider
the actual distance among n-best translations of the
ranking. Depending on the task, the QE model in-
dicators get worse results for accuracy (%) com-
pared to accuracyBest and vice versa. For exam-
ple, in Table 1, predid, conversely, the assessments
inverse the relation between indicators.

Therefore, it is clear that the best QE Models
are the ones obtained under a comparative strategy
with a pairwise ranking approach without the con-
sideration a global score of quality.

Impact of Human Rankings In contrast to the
automatic metrics, the concept of predicted “as-
sessment” is confusing and must be explained
properly before being discussed from the tables.
We assume the hypothesis that a perfect QE model
would choose a sentence ranked first by the hu-
mans. In that sense the OracleBest would be
1. But the QE model might choose translations
other than the best. Hence, we take the aver-
age position within the rank throughout all the
source sentences. That is, a predicted assessment
of 1.69 indicates the average position of the QE
predicted translations within the human rankings.
An OracleDominant of 1.77 means that cted BLEU,
NIST and METEOR achieve better accuracy scores

compared to accuracyBest anthe translations from
the best overall system were ranked in 1.77 posi-
tion by humans as average.

We analyzed the impact of human rankings for
training the QE Models (Table 2). We evaluated
their suitability either for the system-selection task
according to automatic metrics and also, as it has
been described, obtain system-selection translation
candidates that would perform better into a real
human ranking. In that sense we found that QE
Models trained with human rankings obtained bet-
ter system-selected (predicted) scores than the best
overall system alone (OracleDominant) for all 4
prediction tasks (BLEU, NIST, METEOR and as-
sessments).

After analyzing the results, they suggest that hu-
man assessments do help to obtain better QE mod-
els for system selection for either mimic the behav-
ior of automatic metrics or learn the human behav-
ior when ranking different translation candidates.

Feature Analysis The last thing we wanted to
analyze was the contribution of each set of features
(Base, PRC PRA and LMWEB) to performance of
the QE models. In Table 3 we observed that ad-
ditional PR and LM features boost considerably
the correlation (Spearman and Kendall) and accu-
racyBest results, improving in the latter case, an
accuracy from ≈ 30% to a ≈ 40%. In that case,
with a considerable improvement of bestAccuracy,
it seems clear that bestAccuracy indicator is the

74



Figure 1: Plots of predicted ranking metrics ac-
cording to the relative improvement of each feature
set.

one that gives a better clue to determine the best
QE model for the system selection task. In Fig-
ure 1 we analyzed the contribution (in percentage
over total score) of each set of features to predict
the final metric. We observed that, depending on
the metric to predict, the baseline features con-
tribute around 80-90% of the final score whereas
the additional features can boost performance up
to 20% in a cumulative way. Among the additional
features, PRC contributes to the most part of the
improvement while LMWEB contributes the least.
PRA also has a significant contribution over the
improvement in BLEU and METEOR metrics. Fi-
nally, it is interesting to see that, under BLEU anal-
ysis, the performance of the WEB-based language
model alone is better than the QE baseline features,
highlighting the bias of BLEU to prioritize good n-
gram matching without concerning their fluency or
different length ratio, among others.

4 Related Work

The study presented in this paper roughly fol-
lows the approaches of Specia et al. (2010) and
Avramidis (2012). However, the absolute results
are not directly comparable as our working corpus
is of a very different nature compared to theirs.

For the sake of comparison, we also trained our
models with the publicly available corpus of Spe-
cia et al. (2010). In that case, we obtained accu-
racy levels of 75% at predicting automatic metrics
and 61% when predicting the human assessments.
In all the cases, accuracy values were higher than
those obtained on the FAUST corpora, evincing the

difficulty of the FAUST data and the effect of noise
in both the source sentences and the MT output. In
addition, for the system combination task over the
Specia et al. (2010) corpus, we were able to obtain
translation results comparable to the best individ-
ual MT system (OD), which is unknown for the
learned ranker. Note that in the corpus by Specia
et al. (2010) there is a strong dominant system
that makes OD more difficult to beat. In this sce-
nario, our QE models are able to properly iden-
tify the dominant system without having the refer-
ences, making them useful for overall system com-
parison.

On the other hand, comparing our results to
Avramidis’ (2012), we obtained significantly bet-
ter Kendall’s Tau with respect to human assess-
ments. We move in the range 29.67 < τ < 33.02,
which we consider acceptable for the difficulty of
the FAUST corpus. However, these results are nei-
ther directly comparable as his works covers a dif-
ferent language pair. We only give comparative
comparisons.

Finally, it is noticeable that PR-based and ad-
hoc LM features give a significant boost of per-
formance to the QE models. To the best of our
knowledge, the generalized application of pseudo-
reference based features is a novel contribution of
this work. Also, this is the first time that these
QE models are trained with noisy data. We have
demonstrated that despite this constraints we were
able to perform system combination that outper-
forms the standalone best system, even with noisy
and ambiguous data.

5 Conclusions

In this paper we have studied the problem of learn-
ing system independent quality estimation mod-
els to predict the quality of automatic transla-
tions from an online MT service. Working with
real-life input text and translations implies facing
some serious difficulties, derived from the usage
of open-domain non-standard text, where errors,
OOV words and ungrammatical sentences abound.
Our study focuses on several aspects, such as the
typology of the learning problem, the suitability
of the learning algorithm and the best set of fea-
tures to learn from. We have conducted experi-
ments with a corpus collected from the 24/7 Re-
verso.net MT service, translated by 5 different MT
systems, and manually annotated with adequacy
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ranks. Apart from studying the correlation and
accuracy of the resulting translation rankings, we
have also evaluated the QE predictors in the appli-
cation scenario of system combination by system
selection (predict always the best translation).

Our study shows that it is possible to build re-
liable system-independent QE models from the
FAUST real-life translation annotated corpus. The
predicted rankings correlate well with the gold
standard. When evaluated on the system combi-
nation task, we obtain significantly better results,
across a set of evaluation measures, than random
system selection and slightly better than a system-
informed oracle consisting in selecting always the
translation of the best overall MT system. These
results and conclusions are in accordance with
the state-of-the-art on standard text. Nonetheless,
there is still a large room for improvement, accord-
ing to the performance upper bound of the task.

We also concluded that the pairwise ranking
strategy yields better QE models than an absolute
quality estimation approach (i.e., regression) for
the task of system selection. Moreover, human
assessments help obtaining better QE models for
system selection for both i) mimicking the behav-
ior of automatic metrics and ii) learning the human
behavior when ranking different translation candi-
dates. Finally, taking a deeper look into the fea-
tures defined beyond the baseline, we found that
all defined add-ons (PR Classic, PR Asiya and
LM WEB) were useful to boost the quality of the
QE models and, therefore, improve the system-
selection task.
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