
Towards the Supervised Machine Translation: Real Word Alignments
and translations in a Multi-task Active Learning process.

Martha Alicia Rocha
División de Estudios

de Posgrado e Investigación
Instituto Tecnológico de León, México
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Abstract

We present a study on the Active Learn-
ing (AL) paradigm applied to a multi-
task labeling scenario for Statistical Ma-
chine Translation (SMT). The main goal
of this research is to show that the learn-
ing of a phrase-based model can be im-
proved despite having a small corpus anno-
tated with word-level alignments. We pro-
pose a simple scheme for supervised train-
ing of a SMT model with a Multi-task AL
(MTAL) approach to get a bilingual cor-
pus with word-level alignments from the
scarce data. The main advantage of the
AL paradigms is the intelligent sampling
using informativeness functions through-
out the entire labeling process. We experi-
mented with the MTAL approach and this
approach is compared with the Single-Task
AL (STAL) approach. The STAL process
was used to semi-supervised training of
SMT models. We found out that the MTAL
approach improved the efficiency obtained
by STAL process. In order to compare
the performance of both the STAL and
MTAL approaches, we experimented with
two types of passive learners named ran-
dom sampling. An assessment of the en-
tire labeling process was done in order to
obtain an overall performance compared
to passive learners. In the analysis of the
experiments it was found that the MTAL
outperformed the passive learners and the
STAL approach.

1 Introduction

The supervised learning problem in many appli-
cations of Natural Language Processing (NLP) is
carried out by using manually annotated samples.
It is well known that annotating data manually is
very time consuming and expensive yet it benefits
the model performance.

Currently, Statistical Machine Translation
(SMT) can be seen as a semi-supervised learn-
ing problem in which stochastic models are
learned from large parallel corpus by using
efficient parameter estimation algorithms (Koehn,
2010). This paper is focused in the training of
Phrase-based Statistical Translation (PBST) mod-
els (Ortiz-Martı́nez et al., 2005) from word-level
alignments that are manually generated by human
beings.

Due to the cost of the generation of such align-
ments, we propose to use Active Learning (AL)
techniques to reduce the human effort. The AL ap-
proach has been proposed in the literature for se-
lecting the most informative samples to be anno-
tated while reducing the annotation effort (Settles
and Craven, 2008; Olsson, 2009; Settles, 2010).

For many language pairs parallel corpora are not
available, even in domains that are different from
usual domains for which enough training data is
available. In such situations, the training process
can seen as an adaptation task. In this context,
the PBST models can be trained with an out-of-
domain parallel corpus and then exploring a small
monolingual corpus that is multi-annotated in a
progressive form using AL.

Our main goal is to present a framework to ob-
tain efficient models iteratively. This is the ba-
sis of interactive systems such as Computer Aided
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Translation (CAT) systems and Computer Aided
Word Alignment (CAWA) systems. CAWA sys-
tems are important for the post-edition of word-
level alignment parallel corpus of interest for some
NLP communities 1

Current SMT systems are trained in a genera-
tive form (Koehn, 2010). First, a word-level align-
ment between a source sentence e and a target sen-
tence f is automatically obtained for all sentence
pairs of the training data by means IBM models.
The word-based translation of IBM models are the
base for the PBST systems. Second, phrase-based
translation are obtained from the word-level align-
ments. All phrase pairs that are consistent with the
word-level alignment are collected for computing
the probability distributions over collected phrase
pairs.

In addition, reordering models and language
models are learned from training data. The re-
ordering model, language model and phrase model
are combined in a log linear model to compose a
final SMT system. The training of the different
parts of a SMT system takes time and needs large
amounts of resources because the estimation of the
parameters is done on very large corpora.

Recently it was shown (Gascó et al., 2012) that
less data suitably selected obtained better trans-
lation models than using all data. The sentences
were sampled from a huge parallel corpus and in a
scenario where the labels are available. In contrast,
another different scenario is when the labels are
unavailable and labeled data is necessary. In this
last scenario, the system queries a human to an-
notate samples and conform a parallel corpus with
few effort. Our approach is related with the last
scenario in which AL can help us to obtain infor-
mative samples that aim to reduce human labeling
effort.

AL techniques have been recently used in SMT
systems and significant improvements have been
obtained (Haffari et al., 2009; Haffari and Sarkar,
2009; Gangadharaiah et al., 2008; Ambati et al.,
2011). The critical point is to define a simple mea-
sure of informativeness and representativeness into
the AL process that contributes to improve SMT
systems and the consequent reduction of human ef-
fort. We present a simple entropy-based measure

1p.e. ”Shared task at NAACL 2003” http://www.
cse.unt.edu/˜rada/wpt and ”ACL 2005 workshops”
http://www.cse.unt.edu/˜rada/wpt05

for two AL approach: Single-Task Active Learn-
ing (STAL) and mainly Multi-Task Active Learn-
ing (MTAL). It is simple because the measure does
not use internal information extracted from the
models (e.g. language models, models of align-
ments, translation models) that can be complex for
a user with few knowledge of the models.

In AL, the word task usually means making la
belling or annotation of samples. The STAL ap-
proach (Settles and Craven, 2008) is used to assess
to the active learner for a one task. The MTAL
approach (Reichart et al., 2008) was introduced as
an extension to the STAL approach. In the MTAL
approach several learners learn in parallel different
aspects from each sample. In the MTAL approach,
the samples are chosen according to several crite-
ria that are defined by several active learners. The
chosen samples are then annotated with multiple
information for satisfying the needs of each active
learner.

The SMT systems are built from several mod-
els, and each model can be considered as an active
learner. In this research we propose a MTAL algo-
rithm to train SMT systems. Two annotation tasks
are considered in this paper: word-level align-
ments and translations. Our claim in this research
is that the training process of a SMT system can
be improved by providing more information than
only the paired sentences. We showed that word-
level alignments manually generated improved the
PBST systems in a MTAL scenario.

Section 2 presents the STAL process and a func-
tion to measure the informativeness of sample
based on entropy (Shannon, 2001). The MTAL ap-
proach for SMT proposed in this work is presented
in Section 3. The evaluation of the MTAL protocol
is explained in Section 4, and Section 5 shows the
experiments that were performed. A final discus-
sion is done in the conclusions section.

2 Single-task active learning for labeling
data

AL seeks a response to unsupervised learning
problems where the data may be abundant but the
labels are scarce or expensive. In this scenario,
the labeling of a data sample occurs after the al-
gorithm has asked explicitly the corresponding la-
bel. The goal of active data selection is to reach the
same accuracy as a supervised algorithm. In this
sense, an oracle can be a human annotator that is
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queried in different forms: membership query syn-
thesis, stream-based selective sampling or pool-
based sampling (Settles, 2010). The last frame-
work is adopted for this research and we assume a
monolingual corpus as a pool of unannotated sen-
tences.

In the AL framework, a function ρ() is used to
measure the informativeness of an unlabeled train-
ing instance x. A general strategy of uncertainty
sampling that has demonstrated to be a good as-
sessment measure uses the entropy:

ρΘ(x) = −
∑

by P (ŷ|x; Θ) logP (ŷ|x; Θ) (1)

where ŷ ranges for all possible labellings of x un-
der the model Θ. Variable ŷ can be infinite, and
therefore in SMT, it can be approximated with an
n-best list obtained from a word graph (Hasan et
al., 2007); Θ represents the model parameters that
are used to account for input x. An initial set of la-
beled data L is used for obtaining Θ and a pool of
unlabeled data U is supposed to be available. The
AL algorithm selects the most informative instance
according to:

x∗ = arg max
x

ρΘ(x) (2)

A density weighted method (Settles and Craven,
2008) can be used to reduce the bias in the sam-
pling because an instance may lie on the decision
boundary, but may not be representative of other
instances in the distribution. For this purpose, the
similarity is used for measuring the representative-
ness and a sample x∗ is chosen according to:

x∗ = arg max
x

ρΘ(x)

(
1

|U|
U∑

u=1

sim(x, xu)

)β

(3)
where the function sim(x, xu) measures the simi-
larity between x and xu and β controls the impor-
tance of the density term.

Figure 1 shows the STAL pool-based sam-
pling algorithm applied to a translation task. A
trainTrad() function trains the language model
ΘLM and the translation models ΘT

2. The quality
score of the current model was the BLEU (Pa-
pineni et al., 2002) in this paper and it was
2In fact, the function trainTrad() gets too the IBM model that
is used to generate the PBST-reordered model (ΘT ).

measured with a test set Γ with the function
evaluateΘLM,ΘT ()3. The decodingΘLM,ΘT

() func-
tion obtains the translation of unlabeled samples
and the set Ŷ of n-best translations ŷ of each sam-
ple x. The B most informative samples are se-
lected into the for loop according to a strategy of
sampling (see equation (2) and (3)), and then the
selected samples are labeled with function labelT()
and the corpus L and U were updated. Section 4
discusses the stopping criterion and adequate op-
tions for reaching a good performance with the AL
algorithm.

Data: L, U , Γ, batch size B
Result: ΘLM,ΘT

while stopping criterion do1

// train models
[ΘLM, ΘT ] = trainTrad(L)2

quality = evaluateΘLM,ΘT (Γ)3

// get hypothesis

Ŷ = decodingΘLM,ΘT
(U)4

// sampling
for i=1 to B do5

// get best sample
x∗ = arg max

x∈U
ρΘLM,ΘT

(x)
6

// labeling and updating
L = L ∪ 〈x∗, labelT(x∗)〉7

U = U − x∗8

return ΘLM,ΘT9

Figure 1: STAL algorithm for PBST systems.

3 Multi-task AL for Supervised PBST
systems

The STAL approach (see Section 2) can be ex-
tended to multiple labeling processes. A SMT can
be seen as a system composed of several parts and
where the Multi-Task AL (MTAL) (Reichart et al.,
2008) approach can be used to annotate appropri-
ate learning information for the specific parts of the
system. This section discusses a MTAL approach
for training PBST in a supervised way. In this pa-
per we have considered two tasks: one task is the
annotation of word-level alignments, and the other
task is the annotation of translations. Note that in

3The function evaluateΘLM,ΘT () gets the translation of the
corpus Γ and is evaluated with its real translation.
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PBST system, the translation models are obtained
from word-level alignments.

The main components of a PBST system are a
language model ΘLM and a translation model ΘT .
During the PBST training process, the ΘLM and
ΘT models are obtained from paired sentences Lt
that are aligned at word-level La.

An initial corpus Lt is used to train a PBST
system and to estimate the word-level alignments
and conform an initial La. The corpus Lt is a set
of bilingual sentence-level alignments and La is a
set of word-level alignments estimated with IBM
models. Both inputs are necessary in the MTAL
process.

Basically, three models were used to calculate
the informativeness of sentences. The ΘT and ΘLM

were used to get the set Ŷt of n-best translations
and the ΘA model was used to get the set Ŷa of
n-best alignments ŷa from the corpus U . The n-
best alignments ŷa do not correspond necessarily
to the n-best translations ŷt. Then, the sentences
were ranked according to the following combined
score:

ρcombΦ
(x) =

|Φ|∑

i=1

wΘi
ρΘi

(x) (4)

where Φ = [Θ1, ...,Θi, ...,Θn] is the set of models
andwΘi

is a weighting factor associated to Θi (Re-
ichart et al., 2008).

Figure 2 shows the algorithm that was designed
to execute the proposed MTAL approach. Note
that the algorithm follows the AL pool-based sam-
pling mentioned in Section 2.

The set Ŷt was obtained from phrase-based de-
coding and the set Ŷa was obtained from word-
level alignment decoding4. In fact the alignments
were obtained as a by product of the decoding pro-
cess in order to measure informativeness on the hy-
potheses.

The best ranked sentences were manually an-
notated with their translations and with their
alignments. Finally these annotated sentences
were added to Lt and La. The func-
tion ρcomb[ΘA,ΘLM,ΘT]

() used two weighting fac-
tors [wΘA

, wΘLM,ΘT
].

4The GIZA++ decoding is used to estimate bYa only for one
direction: source to target. Note that to estimate the align-
ments from source to target of U no the translation is needed.

Data: Lt, U , La, Γ, batch size B
Result: ΘLM,ΘT

while stopping criterion do1

// Estimate alignments
ΘA = calAlign(Lt)2

// Train LM and translator
[ΘLM, ΘT ] = trainTrad(Lt,La)3

// Assessment of translator
quality = evaluateΘLM,ΘT(Γ)4

// get hypotheses

Ŷt = decodingΘLM,ΘT
(U)5

Ŷa = decodingΘA
(U)6

// sampling
for i=1 to B do7

// get best sample
x∗ = arg max

x∈U
ρcomb[ΘA,ΘLM,ΘT]

(x)
8

// labeling and updating
Lt = Lt ∪ 〈x∗, labelT(x∗)〉9

La = La ∪ 〈x∗, labelA(x∗)〉10

U = U − x∗11

return Θ LM,ΘT12

Figure 2: MTAL algorithm for supervised PBST
systems.

4 Assessment of the learning process

A basic goal of AL is to reduce the amount of effort
in annotating training data to achieve an accurate
model. To assess this goal, (Abe and Mamitsuka,
1998) and (Melville and Mooney, 2004) proposed
two metrics to measure the efficiency of the data
used for training. Also, to assess the deficiency,
a metric was used to calculate the overall perfor-
mance (OP) of a process with respect to other pro-
cess. This is, the OP assesses and measures the
global deficiency between processes (Baram et al.,
2004).

4.1 Data utilization ratio

Suppose that a learning process is performed
through a number of iterations p for achieving an
optimal final model. A performance is reached
in each iteration and it is determined by a qual-
ity measure q. Suppose we want to compare
the efficiency of n different learning algorithms
Ψ = {ψ1, ..., ψk, ..., ψn}. The following function
t computes the iteration i where a learning algo-
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rithm ψk reaches the maximum value of q:

t(ψk) = arg max
i

qi(ψk) (5)

where qi is the quality of learning process ψk in
the iteration i, for 0 ≤ i ≤ p and 1 ≤ k ≤ n.

The following function t′ computes the iteration
in which a learning algorithm ψj reaches the same
or better quality q than the algorithm ψk:

t′(ψk, ψj) = min{i : 0 ≤ i ≤ p
and qi(ψj) ≥ qt(ψk)(ψk)} (6)

The Data Efficiency Ratio (DER) as:

DER =
t(ψk)

t′(ψk, ψj)
(7)

The DER can be seen as a measure of the speed to
achieve the same or better performance of learn-
ing algorithm ψj compared with the algorithm ψk.
Note that the larger the DER is the better the ψj is
with regard to ψk.

The Data Utilization Ratio (DUR) is equivalent
to the DER, but the DUR can be seen as a degree
of the exploitation of the data. Let us suppose that
the top performance of the learning algorithm ψk is
achieved in iteration i. The function ζi() calculates
the number of instances that have been added to the
initial corpus L0 when the iteration i is executed
for the learning algorithm ψk:

ζi(ψk) = |Li| − |L0| (8)

where i = t(ψk).
We defined another function that provide the

number of instances added to the labeled corpus
L0 in the earliest iteration l where the performance
of the learning algorithm ψj is equal to or better
than the learning process ψk:

ζ ′l(ψk, ψj) = |Ll| − |L0| (9)

where l = t′(ψk, ψj). The DUR ratio is written as:

DUR =
ζi(ψk)

ζ ′l(ψk, ψj)
(10)

Note that the larger the DUR ratio is, the better the
ψj is with regard to ψk.

4.2 Overall performance

While DER and DUR assess the use of the data, a
metric proposed by (Baram et al., 2004) measures
the deficiency between a pair of learning process
(ψj , ψk). The definition of Overall Performance
(OP) of a complete learning process ψj compared
with the process ψk is defined as:

OPp(ψj , ψk) =

∑p
i=0(qp(ψk)− qi(ψj))∑p
i=0(qp(ψk)− qi(ψk))

=

(p+ 1)qp(ψk)−∑p
i=0 qi(ψj)

(p+ 1)qp(ψk)−∑p
i=0 qi(ψk)

(11)

where p is the time of the complete process mea-
sured in iterations, qp is the score of quality in the
time p of a learning process in set Ψ and qi is the
score of quality of a learning process in set Ψ in
the time i. Value OP is the ratio of the areas of
two learning curves. A low value of OP indicates
a high quality of process ψj with regard to ψk.

5 Experiments

To show the difference in performance between the
STAL and the MTAL approaches, first, we per-
formed an experiment with the STAL approach.
We used the Information Density (ID ) function ac-
cording the equation (3) and it was compared with
a Random selection.

Second, we carried out three different exper-
iments with the MTAL approach: 1) a random
selection, where both translations and word-level
alignments were used (this experiment is referred
as Random+), 2) a MTAL experiment where the
weight factors went w

θA
= 0 and w

[θLM,θT]
= 1

according to equation (4), means that we only
used the set Ŷt to measure the informativeness
for the sampling but the annotation was made to
the translations and alignments (this experiment is
referred as non-combined-ID+) and, 3) a MTAL
experiment where the weight factors went w

θA
=

w
[θLM,θT]

= 1 and sets Ŷa, Ŷt were used to com-
bine the informativeness according to equation (4)
(this is referred as combined-ID+). These weight
factors were assigned by hand, but in future work
is expected to learn these weights automatically.

For the experiments, we used two corpus that
had paired French-English sentences: the News-

243



Table 1: Characteristics of the initial corpus Lt
Fr. En.

Sentences 37.8K
Running words 714.8K 623.8K
Vocabulary 30.6K 25.1K

Table 2: Characteristics of pool U
Fr. En.

Sentences 300
Running words 5.3K 4.7K
Vocabulary 1.5K 1.3K
OoVNewsComm 140 95

Commentary corpus5 and the Hansards corpus6.
The Hansards corpus was chosen because it was
manually annotated with word-level alignments
and it was used to simulate the annotation process.
This corpus is small but it is important to say that
larger public corpus is not available.

An initial set Lt of 37.8K sentences of the
News-Commentary bilingual corpus was used to
create the initial models Θ and estimate the align-
ments to create the initial corpus La. The Table 1
shows the characteristics of the set Lt.

The Hansards corpus was used to define three
sets: a) a set of 300 sentences whose source sen-
tences were used as the pool of monolingual cor-
pus U ; b) a set of 47 sentences that was used as the
tuning corpus, and c) a set of 100 paired sentences
used as the test corpus Γ. Note that this is a small
corpus, unfortunately there not exist many public
corpora with annotated alignments. Therefore, the
experiments in this section should be considered
as a MTAL solution for task adaptation. See Ta-
bles 2 and 3 for some statistics of the corpus U
and Γ. The OoVNewsComm were the words (single-
tons) of News-Commentary that were not in the
pool and tuning sets of the Hansards corpus. The
OoVtr were the words (singletons) of training cor-
pus that were not in the test corpus.

We used GIZA++7 to estimate the word-level
alignments. GIZA++ was also used to obtain the

5http://www.statmt.org/wmt10/shared-task.
html
6http://www.cse.unt.edu/˜rada/wpt/
7http://code.google.com/p/giza-pp/

Table 3: Characteristics of the test corpus Γ

Fr. En.

Sentences 100
Running words 1.7K 1.6K
Vocabulary 665 608
OoVtr 326 265

set Ŷa for MTAL approach. The SRILM8 toolkit
was used to learn the ΘLM model. Then, the Thot9

toolkit was used to train the PBST model ΘT. The
set Ŷt was obtained by the Carmel10 finite-state
transducer from word graphs generated by a Multi-
Stack decoding (Ortiz-Martı́nez et al., 2006).

The manual annotation process, for simplicity,
was simulated. When the corpus Lt and La were
updated then a retraining process using the down-
hill simplex algorithm (Press et al., 2002) parame-
ter tuning was done. The new models were evalu-
ated with the corpus Γ.

During the AL sampling process (see Fig. 1 and
2) the parameter β in equation (3) was set to 1,
and the batch size B was 20. The normalized edit
distance (NED) (Vidal et al., 1995) was used to
measure the similarity among sentences from U .
The size of the n-best lists was 1,000 both for the
word alignments and translations. The scores of n-
best lists were adequately normalized. The BLEU
score was used to evaluate the quality of the mod-
els.

Figure 3 shows in the Y-axis the evaluation and
the X-axis is the iteration of the algorithm. In each
iteration, were added 20 sentences to the bilingual
corpus L in the STAL algorithm and, Lt and La in
MTAL algorithm. To give statistical significance,
the BLEU score was validated with bootstrap re-
sampling to 1,500 repetitions and 95% of confi-
dence. The scores of the Random and Random+
experiments are the average of ten repetitions.

Figure 3 (top) shows the BLEU score in the
STAL scenario. The overall process indicated that
the ID experiment was better in more iterations
than the Random experiments. One of the prob-
lems of STAL approach is its instability. Schohn
et al. (Schohn and Cohn, 2000) also observed that

8http://www.speech.sri.com/projects/
srilm/
9http://sourceforge.net/projects/thot/
10http://www.isi.edu/licensed-sw/carmel/
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Figure 3: Comparative of BLEU learning curves
for each iteration of STAL algorithm (top) and
MTAL algorithm (down).

when the instances were selected at random from
the pool of unlabeled data, the classifier perfor-
mance increased monotonically. However, when
the instances were added according to an AL strat-
egy, the model performance may go up at a level
above than achieved when using all available data.
In the STAL experiment, peaks of this kind existed
but there were also points that not outperformed
the baseline (Random). This problem could be al-
leviated using multiple learners as discussed in this
paper.

Figure 3 (below) shows the BLEU score in the
MTAL scenario. The experiments showed that
word-level alignments manually annotated by lin-
guistic experts helped the learning process in the
Random+ experiment, that was better than Ran-
dom experiment but the Random+ performance
was not increased monotonically . It is important
to note that the non-combined-ID+ and combined-
ID+ experiments were better than the Random and
Random+ experiments and more consistent than
the ID experiment (see top of Fig.3) We see that

the MTAL approach can help to reduce the labeled
effort and obtain an optimal model. Also we note
that the peaks mentioned above were reached in an
early iteration. Next we explain the overall perfor-
mance and data efficiency of the STAL and MTAL
approaches.

Another important aspect is a performance anal-
ysis in the global process. Table 4 shows the
OP measure both for the STAL and MTAL strate-
gies. The OP was evaluated with the Random
and Random+ experiments according to equa-
tion (11) where the time of complete process p is
15. The OP measure for the non-combined-ID+
and combined-ID+ experiments were good with
respect to Random+ experiment and clearly bet-
ter than the Random experiment. The low OP
(see bold and italic value) indicates that the qual-
ity was better, that is, the alignments improved the
results significantly over the Random experiment.
As shown in Figure 3 the non-combined-ID+ and
combined-ID+ experiments used informativeness
that benefits the final model.

Table 4: OP ratio for the STAL and MTAL ap-
proaches.

ψk
Experiment (ψj) Random Random+

ID 0.90 1.32
non-combined-ID+ 0.54 0.60

combined-ID+ 0.66 0.74

The final discussion is concerned with DUR ra-
tio. The DUR metric gives an idea of the efficiency
of a measure of information of an AL approach
with respect to random sampling. In addition, the
DUR metric can help to take decisions about when
stop the learning process. In (Olsson, 2009), it is
proposed to use the target performance to decide
stopping the process when it is reached or outper-
formed. We see that the AL approach in PBST can
obtain an optimal performance with less data.

DUR ratio in Table 5 showed that the data effi-
ciency was better in both non-combined-ID+ and
combined-ID+ with respect to the Random.

The mentioned stopping criterion is useful when
all data training is available but when the anno-
tated data are not available, others criteria had been
employed(Settles, 2010). In order to analyze the
learning curves in this study the stop criterion was
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when U = ∅.

Table 5: DUR ratio for STAL and MTAL ap-
proaches.

ψk
Experiment (ψj) Random Random+

ID 1.56 1.67
non-combined-ID+ 3.5 3.75

combined-ID+ 2.8 3.0

Conclusions

The main goal of this research went show as real
word-level alignments improved the phrase-based
model estimation despite having a small corpus an-
notated with word-level alignments.

In this study we explored the advantage of the
AL process in two ways: a single-task active learn-
ing and a multi-task active learning. It was ob-
served in the experiments that the MTAL scenario
was more stable than the STAL scenario. The use-
fulness of these approaches is to establish a frame-
work to obtain multi-annotated corpus with mini-
mal effort and incrementally in shared tasks to cre-
ate linguistic resources.

A novelty of this study, unlike previous
works(Haffari et al., 2009; Haffari and Sarkar,
2009; Gangadharaiah et al., 2008; Ambati et al.,
2011), was to use the predictions to measure the
informativeness of samples in a complex task such
as SMT.

For future work, we are planning to use an effi-
cient entropy calculation, because the word graphs
were used to obtain the n-best list instead of all
possible translations, and therefore the uncertainty
measure was just an approximation. In addition,
we plan to use new learners to chose appropriate
sentences in a better form. We also plan to anno-
tate in real time with CAWA and CAT system for
extend or create multiannotated corpus.
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