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Abstract

We propose a method for inducing roman-
ization systems directly from a bilingual
alignment at the grapheme level. First,
transliteration word pairs are aligned us-
ing a non-parametric Bayesian approach,
and then for each grapheme sequence to
be romanized, a particular romanization is
selected according to a user-specified cri-
terium. We apply our approach to the
task of transliteration mining, and used
Levenshtein distance as the selection cri-
terium. We performed experiments on
three languages with differing characteris-
tics: Japanese, Russian and Chinese. Our
experiments show that the mining system
built from the induced romanization sys-
tem is able to outperform existing baseline
romanization systems. By extending our
approach to induce romanization systems
based on other criteria we expect our tech-
nique may find more general application in
the future.

1 Introduction

Romanization is the process of producing a string
in Roman script from a string in another lan-
guage with a different writing system. In Japan
there are two prominent systems for romaniza-
tion: the Hepburn system (ヘボン式ローマ字)
and the Nihon-shiki system (日本式ローマ字).
The former follows the principle of phonemic tran-
scription and attempts to render the significant
sounds (phonemes) of English as faithfully as pos-
sible. The latter attempts to transliterate the orig-
inal script (kana syllables) with less emphasis on
how the result sounds when pronounced according

to the English, and more emphasis on how the kana
syllables are pronounced.
Pure transcriptions are generally not possible, as

the one language usually contains sounds and dis-
tinctions not found in the other language; these are
often made explicit in the romanization by insert-
ing characters that to represent them. In general,
building a usable romanization system involves
trade-offs between the two extremes of transliter-
ation and transcription.
This paper investigates the possibility of discov-

ering systems of romanization automatically from
data. The process is based on two steps: first
bilingual alignment of transliteration pairs is made,
yielding a set of possible romanization candidates;
second a candidate is chosen according to a specific
selection criterium. The contribution of our work
is twofold: first we propose the first system capa-
ble of learning to fully romanize from a corpus, and
secondwe show this system, when usedwith an ap-
propriate romanization selection criterium, is able
to improve the discrimination capability of a state-
of-the-art transliteration mining approach.
We now move on to motivate the development

our our approach, and detail the existing related re-
search in the area. Section 4 describes the method-
ologywe used. In Section 5.1 we present the exper-
iments we performed on inducing a romanization
system for Japanese, and compare our methodol-
ogy to other plausible automatic strategies as well
as the two principle romanization systems in gen-
eral use. We also analyze the characteristics of the
induced romanization, and expose the mechanism
by which it is able to improve mining performance.
Sections 5.2.1 and 5.2.2 gives details of our experi-
ments in Russian and Chinese, and presents a study
of the effect of training data size on the quality of
the induced romanization. Finally, in Section 6 we
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conclude and suggest avenues for future research.

2 Motivation

At first glance it would seem strange to attempt
to induce romanization systems for languages
that already have established systems in general
use. However, recently romanization systems have
taken on new roles for which they were not origi-
nally designed, and it is possible that more optimal
systems may be waiting to be discovered for these
purposes.
One example of a new use for a romanization

system is the transliterationmining taskwe study in
this paper. Romanization is being used as a means
of performing cross language cross-lingual word
similarity between languages whose scripts are not
directly comparable. Converting the scripts into a
common representation (for example Roman char-
acters, or a phonetic representation like Soundex),
allows comparisons to be made between languages
with different scripts.
Another example of a new use of a romanization

system is for the input of text into a machine. In
many languages the native character set is too large
to represent directly on a user interface. A simple,
commonly-adopted solution to this problem is to to
use a Roman keyboard and input text as a sequence
of Roman characters in accordancewith an existing
romanization scheme. An example of such a sys-
tem Pinyin for entry of Chinese. There are prob-
lems, however. First and foremost, existing ro-
manization systems were not originally conceived
as user input methods, and many are cumbersome
and long-winded to enter; they may be very ex-
plicit about precisely how a grapheme ought to be
pronounced, and even make clear the subtle differ-
ences in pronunciation between one character and
another, but at the cost of the lengths of the charac-
ter sequences required to express this information.
Second, there are often multiple competing ro-

manization systems, and users may use one or the
other or a mixture them for input. Both of these
problems are illustrated in the input system for
Japanese in which input is possible in a mixture of
Hepburn and Nihon shiki romanization. For exam-
ple the Japanese character ‘ち’ can be input as ‘chi’
(Hepburn) or ‘ti’ (Nihon shiki), with ‘ti’ usually be-
ing preferred because it is shorter even though ‘chi’
reflects the pronunciation of the character more ac-
curately. On the other hand, ‘じゃ’ can be input as
‘ja’ (Hepburn) or ‘zya’ (Nihon shiki) however in
this case the Hepburn form is almost always used

because it is both shorter and represents the pho-
netics of the syllable adequately. Therefore, for
Japanese neither of the existing romanization sys-
tems used for user input is ideal. Users typically
differ in the manner in which they input text, but
it is clear that a better system than either existing
system must exist, if only it can be discovered.
For the task of discovering a romanization sys-

tem suitable for user input three factors need to
be taken into account: how well the romanization
represents the phonetics of the characters it is ro-
manizing; how efficient the system is for input;
and whether or not words can be input unambigu-
ously using the system. In this paper we chose to
work with the problem of romanizing for cross lin-
gual word similarity because the criteria for choos-
ing among candidate romanizations can be sim-
ple and well-defined, and also the performance of
the resulting system is straightforward to evaluate
and analyze. We believe however that our tech-
nique is more generally applicable and in principle
our method could be extended to encompass more
complex and realistic criteria necessary for roman-
izing for other purposes.
The main merits of our approach are that it can

be applied to any language where data are avail-
able to train the model, and that it can be used to
either induce romanization systems for languages
that have none, or lack a standard system of ro-
manization (for example Myanmar (Oo and Thein,
2011)), or produce alternative romanization sys-
tems for languages that have existing systems. We
will show later in this paper that in our chosen ap-
plication, it is possible to induce a romanization
system that is more effective than simply choosing
from well-established existing schemes.

3 Related Work

In many transliteration mining approaches (Aransa
et al., 2012; Htun et al., 2012), romanization is re-
quired to compare words across languages, typi-
cally using normalized edit distance metrics. Sta-
tistical transliteration systems can be used, but
these need large amounts of training data which
may not be available. A simple system of auto-
matic romanization was used by (Jiampojamarn et
al., 2010) to great effect in the shared mining task
of the NEWS2010 workshop. Their system al-
lowed cross language comparison between word
pairs in different scripts by aligning single charac-
ters in one script to either single Roman charac-
ters or to NULL. Their romanization rules roman-
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ized by substitution with the most representative
single character, or by deletion. Our work differs
from theirs in that we are aiming to induce a full
romanization involving multiple characters on the
target side1 without the deletion of the characters
to be romanized. The fact that romanization was
only performed with a single character in their ap-
proach may lead to problems for languages such
as Japanese and Chinese where single graphemes
align naturally to multiple Roman characters; we
investigate these issues in Section 5. Nonetheless,
the system of (Jiampojamarn et al., 2010) is ca-
pable of state-of-the-art performance; the system
achieved the top rank in the shared evaluation for
most of the tracks in which the automatic roman-
ization strategy was used, motivating the research
presented here.
As far as the authors are aware this work and

the work in this paper are the only romanization
induction techniques reported in the literature to
date. The advantage of these methods is that they
can be applied to many different languages with-
out the need for an existing romanization system,
and can be optimized to fit a specific purpose. Fur-
thermore, as we will show later, the strategy seems
quite robust to noise in the data, and we were able
to build effective systems from data that contained
non-transliteration pairs.

4 Methodology

Our method induces a romanization system di-
rectly from a non-parametric Bayesian bilingual
alignment (Finch and Sumita, 2010) between
source and target grapheme sequences. This model
has been shown to align consistently, without a ten-
dency to overfit the data, and is therefore suitable
for both one-to-many and many-to-many align-
ment. We use Levenshtein distance (LD) to select
an appropriate romanization from a set of candi-
dates derived from the alignment.
More formally, let S = (s1, s2, . . . , sI) and

T = (t1, t2, . . . , tI) be corpora of source and target
words respectively. Each si and ti are represented
as sequences of graphemes in their respective writ-
ing systems.
Let Π and Ω be sets of grapheme sequences in

the source and target writing systems respectively.
1Although in principle it is possible to learn romanizations
with multiple characters on the source side, in the experiments
in this paper we do not attempt to learn the source language
segmenation as this could lead to issues of ambiguity when
applying romanization rules. For Japanese, we used a univer-
sally accepted set compound kana groupings.

For example, for Japanese the setΠmight be sylla-
bles, and for English the set Ω could be the alpha-
bet. The romanization rules R are defined to be a
set of tuples (oj , rj), where oj and rj are source and
target grapheme sequences: ∀j oj ∈ Π and rj ∈ Ω.

R = {(o1, r1), (o2, r2), . . . , (oJ , rJ)} (1)

The rj are selected by choosing from the set Cj

of all target grapheme sequences aligned in the cor-
pus to the source grapheme sequence oj : Cj =
{c1, c2, . . . , cK}. The romanization rj of oj is cho-
sen from this set in order to minimize the expected
cost in terms of Levenshtein distance to the English
in the manner described below.
Let ϕ : Π 7→ Ω be the romanization function

defined by R:

ϕ(oj) = argmin
ck∈Cj

E[D(ck)] (2)

WhereD(ck) is the cost in terms of Levenshtein
distance from using romanization rule (oj , ck). For
a single occurrence of oj in the corpus, this cost is
LD(ck, ψ(oj)), the Levenshtein distance between
romanization candidate sequence ck and ψ(oj), the
target grapheme sequence aligned to oj .
The expected value of this cost over the corpus

is calculated according to:

E[D(ck)] =
∑

l=1..K

p(cl)LD(ck, cl) (3)

5 Experiments

5.1 Inducing Japanese Romanization
5.1.1 Data
For training and evaluation in our experiments

we used the Japanese-English translation mining
corpus of (Fukunishi et al., 2011). This corpus
consists of 4339 Japanese-English word pairs ex-
tracted fromWikipedia interlanguage link titles, all
of which are annotated as correct/incorrect translit-
eration pairs. 3800 of the word pairs were correct
transliterations and 539 word pairs were noise.

5.1.2 Induced Systems
We induced two different romanization systems

from the data. The simplest method (Unigram)
discovered romanizations for each individual kana
character. A more sophisticated method learned
romanizations for multiple sequences of kana (N-
gram). Table 1 shows example romanization rules
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Kana Hepburn N-gram Unigram
(Nihon-shiki)

カ KA CA CA
ク KU C K
グ GU G G
ケ KE CE KE
コ KO CO CO
シ SHI (SI) SI S
ジ JI (ZI) GI G
ス SU S S
ズ ZU S S
ゼ ZE SE SE
ツ TSU (TU) TS TS
ト TO T T
ド DO D D
フ FU (HU) F F
ブ BU B B
プ PU P P
ム MU M M
ユ YU U U
ヨ YO JO JO
ル RU L L
キャ KIYA(KYA) CA -
クィー KUII QUEE -

Table 1: The romanization rules from two standard
systems, and two systems automatically induced
from data.

for a selection of characters that differed in roman-
ization from the Hepburn/Nihon-shiki systems. It
is interesting to note that our two induced systems
(Unigram andN-gram) learned the same romaniza-
tion rules as the standard systems formost Japanese
graphemes (grapheme sequences in the case of the
N-gram system); the N-gram approach shares 69%
of its romanization rules with the Hepburn system.
The romanization of the character ル exemplifies
two of themain differences between the human and
machine produced systems. Both of the automatic
methods prefer romanizing with an ‘l’ rather than
an ‘r’ because ‘l’ is more frequently used in En-
glish with this syllable. Furthermore, the automatic
methods have dropped the ‘u’ which is used in the
Japanese pronunciation of the syllable, but rarely
occurs in the English spellings.

5.1.3 Mining Performance
In order to classify the data into correct/incorrect

transliteration pairs we used normalized edit dis-
tance (NED). A similar approach was taken by
(Aransa et al., 2012; Htun et al., 2012; Jiampoja-

marn et al., 2010). We calculated the NED between
English words and corresponding romanized forms
produced by each system. LD determines the simi-
larity of two strings: theminimumnumber of inser-
tions, deletions, and substitutions required to trans-
form one string into the other. In our experiments,
NED was calculated by dividing the LD between
the two sequences by the length of the edit path,
and yields a value between 0 and 1 that is robust to
differences in sequence length.
We applied a range of thresholds to the NED

to produce the receiver operating characteristic
(ROC) curves for the classifiers shown in Figure 1.
The ROC is a graphical plot which illustrates the
performance of a binary classifier system as its dis-
crimination threshold is varied. The ROC is shown
for our proposed systems (N-gram(LD), Unigram),
as well as well known Japanese systems (Hepburn,
Nihon-shiki), and the approach taken by (Jiampo-
jamarn et al., 2010) (Single-character) that roman-
izes each kana to the single English character that
it most frequently aligns to. Also on the plot is a
curve (N-gram(Freq)) for a system which used the
same Bayesian alignment as our N-gram(LD) sys-
tem, but selected the romanizations according to
frequency rather than minimizing the Levenshtein
distance. The results show that our proposed N-
gram romanization system achieves the best per-
formance, but it was only slightly better than the
frequency-based variant of the approach. It is also
interesting to note that the Hepburn system outper-
forms the Nihon-shiki system. One explanation for
this is that the Hepburn system was designed as a
way for foreigners to read Japanese and is there-
fore more likely to be similar to English in nature
than the Nihon-shiki system which is focused on
expressing pronunciation characteristics. The per-
formance of (Single-character) was quite poor in-
dicating this approach is not suitable for some lan-
guage pairs, even though it performed well on the
Russian-English task in the NEWS2010 workshop.

5.1.4 Statistical significance

The AUC statistics for each approach are shown
in Table 2. The AUC represents the probability that
a classifier will rank a randomly chosen transliter-
ation pair instance higher than a randomly chosen
noise pair. We ran significance tests on the area
under curve (AUC) statistics using the method set
out (Hanley and McNeil, 1982). We found that all
the AUCs of adjacent lines in the graph are sig-
nificantly different (α<0.05) with the exception of
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Figure 1: ROC curves for various mining ap-
proaches on Japanese data.

the two best approaches based on the N-gram tech-
nique (α=0.13).

Approach AUC Length Mean LD
N-gram(LD) 0.942 6 2.6
N-gram(Freq) 0.936 6 2.7
Unigram 0.927 6 3.1
Hepburn 0.907 7 3.7
Nihon-shiki 0.892 7 4.0
Single-character 0.867 3 4.6

Table 2: Statistics from the romanization ap-
proaches.

5.1.5 Effect on the Distributions of NED
In order to gain some insight into the mecha-

nism by which our approach improves the min-
ing performance, we show kernel density plots of
the probability density functions (PDFs) of NED
for correct/incorrect transliteration pairs for vari-
ous romanization systems in Figure 2. From vi-
sual inspection of the incorrect pair plots, it ap-
pears that the choice of romanization system has
little effect on the NED PDFs for the incorrect
pairs. We performed a Kolmogorov-Smirnov test
(a non-parametric test for the equality of distribu-
tions) on the incorrect pair distributions. All pairs
of distributions were equal at α=0.05 according
to this test, with the exception of the N-gram to
Hepburn/Nihon-shiki comparisons.
Moreover, from the correct pair plots it appears

that the better the romanization system performed
in our experiments, the further the NED PDFs are
shifted to the left. This gives a visually intuitive
explanation of how our approach operates: by re-
ducing the Levenshtein distance to the English, the
correct pair PDF is shifted to the left while the in-

correct pair PDF remains fixed in position, result-
ing in a separation of the two distributions (see Sec-
tion 5.1.4). We performed a Wilcoxon signed-rank
test on samples from the correct pair distributions
and found that all distributions were significantly
different (α=0.05).
Finally, it is interesting to observe the densities

where the NED is zero. This is the case where
the English spelling is generated exactly from the
Japanese. The N-gram system generated the cor-
rect spelling approximately twice as often as the
best of the other systems.

5.1.6 Qualitative difference
We calculated the probability of occurrence of

each Roman character in the N-gram romanization,
Nihon-shiki romanization, and the reference En-
glish. Figure 3 shows the relative difference in
probability with respect to the reference English.
The major differences are that the Nihon-shiki sys-
tem tends to over-generate the vowel ‘u’ due to the
fact that consonants are always romanized as con-
sonant vowel pairs. It under-generates the conso-
nants ‘c’ and ‘l’ since the system never uses them,
instead using ‘k’ and ‘r’ respectively. For example,
the wordスクール is romanized as ‘SUKUURU’
with the Nihon-shiki system and as ‘SCOOL’ us-
ing the induced N-gram system.

5.2 Application to Other Languages
We applied our approach to Russian and Chinese
investigate the behavior of our approach on both
simpler and more challenging languages to roman-
ize. These experiments were carried out on the
task of transliteration mining, using our N-gram
approach to induce the romanization system. For
these experiments we decided to only induce the
romanization from clean data because the propor-
tion of non-transliteration pairs in the corpora was
far higher than in the Japanese-English data. Al-
though it is possible our approach may work from
such noisy data, it remains future research.

5.2.1 Inducing Chinese Romanization
We induced a romanization for each Chinese

grapheme from a 1000-pair corpus of clean translit-
eration data of Chinese named entities that was
the seed data set used in the NEWS2010 Shared
Mining Task. The test data consisted of the 621-
pair reference data set for this task. Unfortunately,
as might be expected our approach was not able
to succeed on this task due to the much larger
grapheme set.
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Figure 2: Kernel density plots of NED for transliteration pairs and noise.

kawa perl uni ngram all kawa perl uni ngram all n-gram Nihon-shiki n-gram uni kawa perl
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

3993 3993 3993 3739 3430 0.125526564 0.1229636929 0.1456077016 0.138507131 0.1134296769 0.025077454 0.009534016 0.0012511951 0.0020063722 0.000306392 0.0001923372

802 800 673 801 678 0.0252121974 0.0246358513 0.0245414433 0.0296721615 0.0224213764 0.0072507851 0.002214475 0.0005070784 0.000047878 0.0000818265 0.0000521346

219 0 1288 1358 1186 0.0068846275 0 0.0469678737 0.0503056122 0.0392208737 0.0110847384 -0.039220874 0.0006888798 0.0003488722 0.0132408634 0.0392208737

830 768 767 788 919 0.0260924238 0.0236504173 0.0279692229 0.0291905909 0.0303912166 -0.001200626 -0.006740799 0.0000120981 0.0000502788 0.0001638214 0.0004220496

2066 2066 1583 2240 3005 0.0649481295 0.063622086 0.0577252671 0.0829783293 0.0993749793 -0.01639665 -0.035752893 0.0007386643 0.0056215717 0.0036468003 0.0039694768

343 0 338 336 315 0.0107827727 0 0.0123254203 0.0124467494 0.0104170111 0.0020297383 -0.010417011 0.0000902736 0.0000802126 0.0000031555 0.0104170111

579 570 843 774 808 0.0182018233 0.0175530441 0.0307406192 0.0286719763 0.0267204603 0.001951516 -0.009167416 0.0000343873 0.000140804 0.0008150916 0.0009595151

940 635 516 596 1061 0.0295504558 0.019554707 0.0188163221 0.0220781626 0.0350871391 -0.013008977 -0.015532432 0.0014998883 0.0025143219 0.0002375653 0.00225411

2958 3394 2422 2617 2355 0.0929896259 0.1045175992 0.0883200233 0.0969438785 0.0778795595 0.019064319 0.0266380397 0.0010425811 0.000328253 0.0006694075 0.0019556492

289 0 18 101 115 0.0090851933 0 0.0006563833 0.0037414336 0.0038030358 -0.000061602 -0.003803036 0.0000002515 0.0012995145 0.0011321557 0.0038030358

1446 1304 751 168 444 0.0454574033 0.0401564377 0.0273857711 0.0062233747 0.0146830252 -0.008459651 0.0254734124 0.0017880352 0.0019636362 0.008470236 0.0062753614

0 0 709 869 1688 0 0 0.02585421 0.0321911465 0.0558219518 -0.023630805 -0.055821952 0.0032316704 0.0056963628 0.0558219518 0.0558219518

1057 942 942 941 1050 0.0332285445 0.0290087149 0.0343507275 0.0348583071 0.0347233705 0.0001349366 -0.005714656 0.0000001308 0.0000010052 0.0000164438 0.0002567247

2017 2131 2131 2133 2159 0.0634077334 0.065623749 0.0777084929 0.0790146323 0.0713978637 0.0076167687 -0.005774115 0.0001929773 0.0001336023 0.0002370018 0.0001217152

2688 2691 1740 1844 2165 0.084501729 0.0828688449 0.0634503884 0.0683089461 0.0715962829 -0.003287337 0.0112725619 0.0000386264 0.0002459004 0.0005343954 0.0004118738

717 662 662 669 824 0.0225400817 0.020386167 0.0241403202 0.0247823671 0.0272495784 -0.002467211 -0.006863411 0.0000585271 0.0000941464 0.000223231 0.0004970371

0 0 0 6 74 0 0 0 0.0002222634 0.0024471709 -0.002224907 -0.002447171 0.0011944204 0.0024471709 0.0024471709 0.0024471709

2746 2718 3859 2557 2247 0.086325055 0.0837003049 0.1407212923 0.0947212447 0.0743080128 0.0204132318 0.009392292 0.0012371544 0.0105130995 0.0004501312 0.0002793942

1875 1748 1951 1975 1780 0.0589437284 0.0538293351 0.0711446596 0.0731616966 0.0588643804 0.0142973162 -0.005035045 0.0007764227 0.0005812794 0.0000000267 0.0001125366

1429 2036 1236 1414 1673 0.0449229802 0.0626982416 0.0450716552 0.0523800704 0.0553259036 -0.002945833 0.007372338 0.0000402928 0.000525039 0.0005412217 0.0002304803

4075 4696 236 471 1088 0.1281043697 0.1446124473 0.0086059147 0.0174476755 0.0359800258 -0.01853235 0.1086324215 0.003317111 0.0093927006 0.0283022387 0.0363266132

125 125 252 126 277 0.0039295819 0.0038493518 0.0091893666 0.004667531 0.0091603558 -0.004492825 -0.005311004 0.0007502349 0.0000000229 0.001090543 0.0011334402

84 84 356 157 249 0.002640679 0.0025867644 0.0129818036 0.0058158918 0.0082343993 -0.002418507 -0.005647635 0.0002097166 0.0005379675 0.0015488989 0.0015906814

0 0 0 1 77 0 0 0 0.0000370439 0.0025463805 -0.002509337 -0.002546381 0.0019691676 0.0025463805 0.0025463805 0.0025463805

235 542 0 203 434 0.007387614 0.0166907893 0 0.0075199111 0.0143523265 -0.006832415 0.0023384628 0.0010945361 0.0143523265 0.0011458202 0.0000882029

297 568 157 111 138 0.0093366866 0.0174914544 0.0057251212 0.0041118726 0.004563643 -0.00045177 0.0129278115 0.0000117708 0.0000657687 0.000845169 0.0041861575
31810 32473 27423 26995 30239 0.0217760922 0.0615344877 0.1245179398 0.1755719147

all, N all-ngram all-perl 0.1043458005 0.1754059402 0.2495174741 0.2962869511
-0.10727868

Hellinger
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Figure 3: Character occurrence frequencies relative to English.
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Figure 4: The relationship between corpus size and
vocabulary size for the Chinese corpora.

The problem encountered with grapheme set
size, and also the differences in characteristics be-
tween the training and reference sets is illustrated
in Figure 4 which shows the relationship between
corpus size and vocabulary size (the size of the set
of single Kanji) for each corpus. It can be seen
that the grapheme set size for the reference corpus
exceeds 500 for the reference set, and is growing
rapidly. In Chinese the full set of Kanji is more
than 50,000 characters (Shu and Anderson, 1999).
However, not all Kanji are used for the same pur-
pose; for example, some are reserved for fortune-
telling, and only a subset of them are typically used
in transliteration. Nonetheless, as can be seen from

Figure 4, the grapheme set size used for transliter-
ation consists of several hundred characters. The
grapheme set size for the training data is more lim-
ited, as it contains mainly foreign personal names,
and country names. We will look in more detail at
the effect of corpus size on the quality of the in-
duced transliteration rules in Section 5.3.

5.2.2 Inducing Russian Romanization
The Russian language uses the Cyrillic alphabet

in its writing system, and like Japanese there are
several existing systems for romanization. In fact,
recently a new romanization system was adopted
as the standard for Russian international passports,
we will call this system “Passport2010”. For Rus-
sian, we used a bilingual corpus of NEWS2010
(Kumaran et al., 2010) data for inducing a Russian
romanization system. We used the 1000 translit-
eration word pair corpus of seed data for training,
and the test data consisted of the 885-pair reference
data set. We compared our proposed system to the
Passport2010 system, and also to a system that ro-
manizes each Cyrillic character to the single En-
glish character that it most frequently aligns to.
Figure 5 presents ROC curves for each approach.

All the different systems achieved approximately
the same high level of performance on this task.
This result reveals that there was little ambiguity in
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Russian А Б В Г Д Е Ё Ж З И Й К Л М Н О
Passport2010 A B V G D E E ZH Z I I K L M N O
Induced A B V G D E O Z S I EI K L M N O
Russian П Р С Т У Ф Х Ц Ч Ш Ъ Ы Ь Э Ю Я
Passport2010 P R S T U F KH TC CH SH – Y – E IU IA
Induced P R S T U F CH C CH SH Y Y L E U A

Table 3: The Russian romanization rules for the official passport system, and a set of rules induced by
our method.
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Figure 5: ROC curves for Russian.

the bilingual alignment between Russian and En-
glish. This is in line with intuition because these
language both belong to the same Indo-European
language family. The full set of induced romaniza-
tion rules is shown in Table 3 alongside the Pass-
port2010 set. The ‘Ъ’ and ‘Ь’ characters have no
direct phonetic value, and are left unromanized in
Passport2010. Our approach has romanized them,
however it would be more appropriate to leave
them unromanized. This could be accomplished
by extending our approach to allow NULL align-
ments.

Most of the rules are identical, and are simple
conversions of the Cyrillic characters into their Ro-
man counterparts. In most of the cases where the
two systems differ, the Passport2010 system uses
a longer form, making differences in pronunciation
more explicit. There is major and interesting dif-
ference however: the Passport2010 system roman-
izes ‘Ё’ as ‘E’, whereas the induced system chose
‘O’. Phonetically ‘Ё’ is a stressed /o/, as in ‘York’,
and given the primary purpose of a romanization
system for passports is to aid foreigners with the
pronunciation of personal names, it may be that our
induced system is indicating a more appropriate ro-
manization for this character.
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Figure 6: The relationship between corpus size and
romanization quality for Japanese.
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Japanese kana.

5.3 Required Corpus Size
The difficulties encountered in Section 5.2.1 sug-
gest that for languages with large grapheme set
sizes, the size of the training corpus will become
an important factor. To study this effect, we
performed an experiment using subsets of vary-
ing sizes sampled from a larger set of Japanese
transliteration pairs than those used in Section 5.1
taken from Wikipedia inter-language links. The
results are shown in Figure 6. Each point on the
graph is the mean of 100 experiments each based
on a random sample of the training data. The
NED of the romanized corpus stops decreasing at
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around 3,000-4,000 word pairs. Figure 7 shows the
grapheme occurrence count distribution for an ex-
periment that used 3200 training pairs. This distri-
bution has a typical long-tailed form, with counts
for the most frequent graphemes on the left-side
of the graph, and the least frequent on the right-
side. Most graphemes have occurred several hun-
dred times, and therefore the amount of training
data required depends on the amount of data avail-
able to train the rarer graphemes. The most fre-
quent grapheme occurred 1583 times, the rarest
only once, and the average occurrence count per
grapheme was 146. There are approximately 42
transliteration pairs per grapheme.

6 Conclusion

In this paper we introduced a novel unsupervised
romanization technique for the induction of a com-
plete system of romanization automatically from a
bilingual corpus. First, a bilingual corpus of words
is aligned using a many-to-many non-parametric
Bayesian sequence alignment method, and then for
each sequence of characters to be romanized, a
set of possible candidate romanization rules is ex-
tracted with reference to the alignment. Finally, the
best romanization rules are chosen from this set ac-
cording to an appropriate criterium. We applied
our technique to the task of producing a roman-
ized script similar to English from Japanese, Rus-
sian and Chinese for the purposes of transliteration
mining. In these experiments we used corpora de-
rived from of Wikipedia interlanguage link titles,
and a criterium based on Levenshtein distance. For
Japanese we found that mining performance de-
pends heavily on the choice of romanization sys-
tem used. Furthermore, we show that using our ap-
proach gives rise to a romanization system that sig-
nificantly outperformed two existing romanization
schemes on the mining task. For Chinese, our ap-
proach required more data than was available due
to the large grapheme set size, and thismotivated us
to provide an analysis of the effect of corpus size on
romanization quality. On Russian data our method
was able to induce a system that was very close
to the official system used for Russian passports.
In the future we would like to investigate the per-
formance of our approach on other language pairs
using different criteria for romanization. In partic-
ular it would interesting to build a system capable
of finding a more-humanlike romanization scheme
that captures the tradeoffs between transliteration
and transcription. Such an approach could be used

as an aid to creating romanization systems for lan-
guages that do not yet have a standard system. We
believe another important future extension of our
technique could be in the automatic discovery of
systems for textual input in romanized form that
are both efficient and also sufficiently capture the
phonetics of the underlying graphemes.
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