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Abstract 

This paper presents a direct word reordering 
model with novel syntax-based features for sta-
tistical machine translation.  Reordering models 
address the problem of reordering source lan-
guage into the word order of the target language.  
IBM Models 3 through 5 have reordering com-
ponents that use surface word information but 
very  little context information to determine the 
traversal order of the source sentence.  Since the 
late 1990s, phrase-based machine translation 
solves much of the local reorderings by using 
phrasal translations.  The problem of long-
distance reordering has become a central re-
search topic in modeling distortions.  We present 
a syntax driven maximum entropy reordering 
model that directly predicts the source traversal 
order and is able to model arbitrarily long dis-
tance word movement.  We show that this model 
significantly improves machine translation qual-
ity. 

1    Introduction 

Machine translation reordering models model the 
problem of the word order when translating a 
source language into a target language.  For exam-
ple in Spanish and Arabic, adjectives often come 
after the nouns they modify whereas in English 
modifying adjectives usually precede the nouns.  
When translating Spanish or Arabic into English, 
the position of the adjectives need to be properly 
reordered to be placed before the nouns to make 
fluent English.   
In this paper, we present a word reordering model 
that models the word reordering process in transla-
tion.  The paper is organized as follows.  §2 out-
lines previous approaches to reordering.  §3 details 
our model and its training and decoding process.  
§4 discusses experiments to evaluate the model 

and §5 presents machine translation results.  §6 is 
discussion and conclusion. 

2    Previous Work 

The word reordering problem has been one of the 
major problems in statistical machine translation 
(SMT).   Since exploring all possible reorderings 
of a source sentence is an NP-complete problem 
(Knight 1999), SMT systems limit words to be re-
ordered within a window of length k.  IBM Models 
3 through 5 (Brown et.al. 1993) model reorderings 
based on surface word information.  For example, 
Model 4 attempts to assign target-language posi-
tions to source-language words by modeling d(j | i, 
l, m) where j is the target-language position, i is the 
source-language position, l and m are respectively 
source and target sentence lengths.  These models 
are not effective in modeling reorderings because 
they don’t have enough context and lack structural 
information.   
 
Phrase-based SMT systems such as (Koehn et.al. 
2003) move from using words as translation units 
to using phrases.  One of the advantages of phrase-
based SMT systems is that local reorderings are 
inherent in the phrase translations.  However, 
phrase-based SMT systems capture reordering in-
stances and not reordering phenomena.  For exam-
ple, if the Arabic phrase “the car red”  and its 
English translation “the red car’ is seen in the 
training data, phrase-based SMT is able to produce 
the correct English for the Arabic ‘the car red’.  
However it will not be able to produce ‘the blue 
car’ for the Arabic ‘the car blue’ if the training 
data does not contain this phrase pair.  Phrases do 
not capture the phenomenon that Arabic adjectives 
and nouns need to be reordered.  Another problem 
with phrase-based SMT is the problem of long-
range reorderings.  Recent work on reordering has 
been focusing on capturing general reordering 
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phenomena (as opposed to instances) and on solv-
ing long-range reordering problems.   

(Al-onaizan et.al. 2006) proposes 3 distor-
tion models, the inbound, outbound, and pair mod-
els.  They together model the likelihood of 
translating a source word at position i given that 
the source word at position j has just been trans-
lated.  These models perform better than n-gram 
based language models but are limited in their use 
of only  the surface strings.   

Instead of directly modeling the distance 
of word movement, phrasal level reordering mod-
els model how to move phrases,  also called orien-
tations.  Orientations typically apply to adjacent 
phrases.  Two adjacent phrases can be either 
placed monotonically (sometimes called straight) 
or swapped (non-monotonically or inverted).  
Early orientation models do not use lexical con-
tents such as (Zens et. al., 2004).  More recently, 
(Xiong et.al. 2006;  Zens 2006; Och et. al, 2004; 
Tillmann, 2004;  Kumar et al., 2005, Ni et al., 
2009) all presented models that use lexical features 
from the phrases to predict their orientations.   
These models are very powerful in predicting local 
phrase placements.  More recently (Galley et.al. 
2008) introduced a hierarchical orientation model 
that captures some non-local phrase reorderings by 
a shift reduce algorithm.  Because of the heavy use 
of lexical features, these models tend to suffer 
from data sparseness problems.  Another limitation 
is that these models are restricted to reorderings 
with no gaps and phrases that are adjacent. 

We present a probabilistic reordering model 
that models directly the source translation se-
quence and explicitly assigns probabilities to the 
reorderings of the source input with no restrictions 
on gap, length or adjacency.   This is different from 
the approaches of pre-order such as (Xia and 
McCord 2004; Collins et.al. 2005; Kanthak et. al. 
2005; Li et. al., 2007).   Although our model can 
be used to produce top N pre-ordered source, the 
experiments reported here do not use the model in 
the pre-order mode.  Instead, the reordering model 
is used to generate a reorder lattice which encodes 
many reorderings and their costs (negative log 
probability).  This reorder lattice is independent of 
the translation decoder.  In principle, any decoder 
can use this lattice for its reordering needs.  We 
have integrated the reorder lattice into a phrase-
based.  The experiments reported here are from the 
phrase-based decoder. 

We present the reordering model based on 
maximum entropy models.  We then describe the 
syntactic features in the context of Chinese to Eng-
lish translation. 

3    Maximum Entropy Reordering Model 

The model takes a source sequence of length n: 
 ],...,[ 21 nsssS =  

and models its translation or visit order according 
to the target language: 

],...,[ 21 nvvvV =  

where vj is the source position for target position j.  
For example, if the 2nd source word is to be trans-
lated first, then v1 = 2.  We find V such that 
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In equation (1) {υ } is the set of possible visit or-
ders.  We want to find a visit order V such that the 
probability p(V|S) is maximized.  Equation (2) is a 
component-wise decomposition of (1).   
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We use the maximum entropy model to estimate 
equation (2): 
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where Z(h) is the normalization constant 
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In equation (3), φk(f, h) are binary-valued features.  
During training, instead of exploring all possible 
permutations,  samples are drawn given the correct 
path only. 

3.1   Feature Overview 

Most of our features φk(f, h) are syntax-based.  
They examine how each parse node is reordered 
during translation.  We also have a few non-syntax 
features that inspect the surface words and part-of-
speech tags.  They complement syntax features by 
capturing lexical dependencies and guarding 
against parsing errors.  Instead of directly model-
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Step:                  1  2  3   4  5  6  7  8  9  10  11   
Visit Sequence:   1  9  10 2  8  7  6  3  4   5   11 
 

Figure 1.  A Chinese-English Parallel Sentence with Chinese Parse 
 
   

ing the absolute source position vj, we model the 
jump from the last source position vj-1.  All features 
share two common components: j (for jump), and 
cov (for coverage).  Jumps are bucketed and 
capped at 4 to prevent data sparsity.  Coverage is 
an integer indicating the visiting status of the 
words between the jump.  Coverage is 0 if none of 
the words was visited prior to this step, 1 if all 
were visited, and 2 if some but not all were visited.  
(j, cov) are present in all features and are removed 
from the descriptions below.  A couple of features 
use a variation of Jump and Coverage.  These will 
be described in the feature description. 

3.2    Parse-based Syntax Features 

We use the sentence pair in Figure 1. as a work-
ing example when describing the features.  Shown 
in the figure are a Chinese-English parallel sen-
tence pair, the word alignments between them, and 

the Chinese parse tree.   The parse tree is simpli-
fied.  Some details such as part-of-speech tags are 
omitted and denoted by triangles.  The first step is 
to determine the source visit sequence from the 
word alignment, also shown at the bottom of Fig-

ure 1.  If a target is aligned to more than one 
source, we assume the visit order is left to right.   
In Figure 1, source words 2 and 8 are aligned to the 
English ‘at’ and we define the visit sequence to be 
8 following 2. 

Chinese and  English differ in the positioning of 
the modifiers.  In English, non-adjectival modifiers 
follow the object they modify.  This is most 
prominent in the use of relative clauses and prepo-
sitional phrases.  Chinese in contrast is a pre-
modification language where modifiers whether 
adjectival, clausal or prepositional typically pre-
cede the object they modify.  In Figure 1.,  the 
Chinese prepositional phrase PP (in lightly shaded 
box in the parse tree) spanning range  [2,8] pre-
cedes the verb phrase VP2 at positions [9,10].  
These two phrases are swapped in English as 
shown by the two lightly shaded boxes in the 
alignment grid.  The relative clause CP (in dark 

shaded box in the parse tree) in Chinese spanning 
range [3,6] precedes the noun phrase NP3 at posi-
tion 7 whereas these two phrases are again 
swapped in English.  
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The phenomenon for the reordering model to 
capture is that node VP1’s two children PP and 
VP2 (lightly shaded) need to be swapped regard-
less of how long the PP phrase is.  This is also true 
for node NP2 whose two children CP and NP3 
(dark shaded) need to be reversed. 

Parse-based features model how to reorder the 
constituents in the parse by learning how to walk 
the parse nodes.  For every non-unary node in the 
parse we learn such features as which of its child is 
visited first and for subsequent visits how to jump 
from one child to another.  For the treelet VP1 � 
PP VP2 in Figure 1, we learn to visit the child VP2 
first, then PP.  

We now define the notion of ‘node visit’.  When 
a source word si is visited at step j, we find its path 
to root from the  leaf node denoted as PathToRooti.  
We say all the nodes contained in PathToRooti are 
being visited at that step.  Parse-based features are 
applied to every qualifying node in PathToRooti.  
Unary extensions do not qualify and are ignored.  
Since part-of-speech tags are unary branches, 
parse-based features apply from the lowest-level 
labels.  Another condition depends on the jump 
and is discussed in section §3.4.  All our features 
are encoded by a vector of integers and are denoted 
as φ (·) in this paper.  We now describe the fea-
tures. 

3.2.1   First Child Features 

The first-child feature applies when a node is vis-
ited for the first time.  The feature learns which of 
the node’s child to visit first.   This feature learns 
such phenomena as translating the main verb first 
under a VP or translating the main NP first under 
an NP.  The feature is defined as φ(currentLabel, 
parentLabel, nthNode, j, cov) where 
currentLabel = label of the current parse node 
parentLabel = label of the parent node 
nthNode = an integer indicating the nth occurrence 
of the current node 
   In Figure 1, when source word 9 is visited at step 
2, its PathToRoot is computed which is [VP2, VP1, 
IP1]. The first-child feature applied to VP2 is  
φ(VP2, VP1, 1, 4, 1) since 
currentLabel = VP2;  parentLabel = VP1; 
nthChild = 1: VP2 is the 1st VP among its parent’s 
children 
j = 4: actual jump from 1 is 8 and is capped. 

cov = 0: words in between the jump [1,9] are not 
yet visited at this step. 
The semantics of this feature is that when a VP 
node is visited, the first VP child under it is visited 
first.  This feature learns to visit the first VP first 
which is usually the head VP no matter where it is 
positioned or how many modifiers precede it. 
 

3.2.2   Node Jump Features 

This feature applies on all subsequent visits to the 
parse node.  This feature models how to jump from 
one sibling to another sibling.  This feature has 
these components: φ(currentLabel, parentLabel, 
fromLable,  nodeJump,cov) where  
fromLabel = the node label where the jump is from 
nodeJump = node distance from that node 
This feature effectively captures syntactic reorder-
ings by looking at the node jump instead of surface 
distance jump.  In our example, a node-jump fea-
ture for jumping from source 10 to 2 at step 4 at 
VP1 level is φ(PP, VP1, VP2,  -1, 2) where 
currentLabel = PP where source word 2 is under 
parentLabel = VP1 
fromLabel = VP2 where source word 10 is under  
nodeJump = -1 since the jump is from VP2 to PP  
cov = 2 because in between [2,10] word 9 has been 
visited and other words have not.   

This feature captures the necessary information 
for the ‘PP VP’ reorderings regardless of how long 
the PP or VP phrase is.   

3.2.3   Jump Over Sibling Features 

To make a correct jump from one sibling to the 
other, siblings that are jumped over should also be 
considered.  For example in Chinese, while jump-
ing over a PP to cover a VP is a good jump, jump-
ing over an ADVP to cover a VP may not be 
because adverbs in both Chinese and English often 
precede the verb they modify.  The jump-over-
sibling features help distinguish these cases.  This 
feature’s components are φ(currentLabel, parent-
Label, jumpOverSibling, siblingCov, j) where jum-
pOverSibling is the label of the sibling that is 
jumped over and siblingCov is the coverage status 
of that sibling. 
   This feature applies to every sibling that is 
jumped over.  At step 2 where the jump is from 
source 1 to 9, this feature at VP1 level is φ(VP2, 
VP1, PP, 0, 4) because PP is a sibling of VP2 and 
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is jumped over, PP is not covered at this step, and 
the jump is capped to be 4.   

3.2.4   Back Jump Sibling Features 

For every forward jump of length greater than 1, 
there is a backward jump to cover those words that 
were skipped.  In these situations we want to know 
how far we can move forward before we must 
jump backward.  The back-jump-sibling feature 
applies when the jump is backward (distance is 
negative) and inspects the sibling to the right.  It 
generates φ(currentLabel,  rightSiblingCov, j).  
When jumping from 10 to 2 at step 4, this feature 
is φ(PP, 1, -4) where -4 is the jump and 
currentLabel = PP where source word 2 is under 
rightSiblingCoverage = 1 since VP2 has been 
completed visited at this time.  This feature learns 
to go back to PP when its right sibling (VP2) is 
completed. 
     

3.2.5    Broken Features 

Translations do not always respect the constituent 
boundaries defined by the source parse tree.  Con-
sider the fragment in Figure 2.   

 
Figure 2. A ‘Broken’ Tree 

 
After the VV under VP2 is translated (“account 
for”),  a transition is made to translate the ADVP 
(“approximately”) leaving VP2 partially translated.  
We say that the node VP2 is  broken at this step.  
This type of feature has been shown to be useful 
for machine translation (Marton & Resnik 2008).   
Here, broken features model the context under 
which a node is broken by observing the feature 
φ(curTag, prevTag, parentLabel, j, cov).  For the 
transition of source word 2 to source word 1 in 
Figure 2, a broken feature applies at VP2: φ(AD, 
VV, VP2, -1 ,1).  This feature learns that a VP can 
be broken when making a jump from a verb (VV) 
to an adverb (AD). 
 

3.3    Non-Parse Features 

Non-parse features do not use or use less fine-
grained information from the parse tree.   

3.3.1   Barrier Features 

Barrier features model the intuition that certain 
words such as punctuation should not move freely.  
This phenomenon has been observed and shown to 
be helpful in (Xiong et. al., 2008).  We call these 
words barrier words.  Barrier features are φ(barri-
erWord, cov, j).  All punctuations are barrier 
words.   

3.3.2    Number of Zero Islands Features 

Although word reorderings can involve words 
far apart, certain jump patterns are highly unlikely.  
For example, the coverage pattern ‘1010101010’ 
where every other source word is translated would 
be very improbable.  Let the right most covered 
source word be the frontier.  For every jump, the 
number-of-zero-islands feature computes the num-
ber of uncovered source islands to the left of the 
frontier.  Additionally it takes into account the 
number of parse nodes in between.  This feature is 
defined as φ(numZeroIslands, j, num-
ParseNodesInBetween).  The number of parse 
nodes is the number of maximum spanning nodes 
in between the jump.  The jump at step 2 from 
source 1 to 9 triggers this number-zero-island fea-
ture φ(1, 4, 1). The source coverage status at step 2 
is 10000000100 because the first source word has 
been visited and the current visit is source 9.  All 
words in between have not been visited.  There is 1 
contiguous sequence of 0’s between the first ‘1’ 
and the last ‘1’, hence the numZeroIslands = 1.  
There is one parse node PP that spans all the 
source words from 2 to 8, therefore the last argu-
ment to the feature is 1.  If instead, the transition 
was from source 1 to 8, then there would be 2 
maximum spanning parse nodes for source [2,7] 
which are nodes P and NP2. The feature would be 
φ(1, 4, 2).  This feature discourages scattered 
jumps that leave lots of zero islands and jump over 
lots of parse nodes. 
  

3.4    Training 

Training the maximum entropy reordering model 
needs word alignments and source-side parses.  We 
use hand alignments from LDC.  The training data 
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statistics are shown in Table 1.  We use the (Levy 
and Manning 2003) parser on Chinese. 
Data #Sentences #Words 
LDC2006E93 10,408 230,764 
LDC2008E57 11,463 194,024 

Table 1.  Training Data 
 
From the word alignments we first determine the 

source visit sequence.  Table 2 details how the visit 
sequence is determined in various cases. 
Alignment Type S-T Visit Sequence 
1-1 Left to right from target 
m-1 Left to right from source 
1-m Left most target link 
Ø Attaches left  

Table 2.  Determining visit sequence 
 
The first column shows alignment type from 

source (S) to target (T).  1-1 means one source 
word aligns to one target word.  m-1 means many 
source words align to one target and vice versa.  Ø 
means unaligned source words.    

 
After the source visit sequence is decided, fea-

tures are generated.  Note that the height of the tree 
is not uniform for all the words.  To preserve the 
structure and also alleviate the depth problem, we 
use the lowest-level-common-ancestor approach.  
For every jump, we generate features bottom up 
until we reach the node that is the common ances-
tor of the origin and the destination of the jump.  In 
Figure 1 there is a jump from source 7 to 6 at step 
7.  The lowest-level-common-ancestor for source 6 
and 7 is the node NP2 and features are generated 
up to the level of NP2.  Features on this training 
data are shown in the second column in Table 5. 

The MaxEnt model on this data is efficiently 
trained at 15 minutes per iteration (24 sen-
tences/sec or 471 words/sec). 

 

4   Experiments  

4.1   Reorder Evaluation  

To evaluate how accurate the reordering model is, 
we first compute its prediction accuracy.  We 
choose the first 100 sentences from NIST MT03 as 
our test set for this evaluation.  We manually word 
align them to the first set of reference using LDC 
annotation guidelines version 1.0 of April 2006.   

An average of 73% of the training sentences con-
tain unaligned source words and over 87% of the 
test sentences contain unaligned source words.  
The unaligned source words are mostly function 
words. Because the visit sequence of unaligned 
source words are determined not by truth but by 
heuristics (Table 2), they pose a problem in evalua-
tion.   
We thus evaluate the model by measuring the ac-

curacy of its decision conditioned on true history.  
We measure performance on the model’s top-N 
choices for N = 1,2, and 3.  Results are in Table 3.  
The table also shows the accuracy of  no reorder-
ing in the Monotone column. 
Top-N Accuracy Monotone 
1 80.56% 65.39% 
2 90.66% - 
3 93.05% - 
Table 3. Reordering model performance 
 
Figure 3 plots accuracy vs. MaxEnt training itera-

tion.  Accuracy starts low at 74.7% and reaches is 
highest at iteration 8 and fluctuates around 80.5% 
thereafter. 
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Figure 3.  Accuracy vs.  MaxEnt Training Iteration 

 
We analyze 50 errors from the top-1 run.  The er-

rors are categorized and shown in Table 4. 
Error Category Percentage 
Lexical 34% 
Parse 30% 
Model 20% 
Reference 16% 

Table 4.  Error Analysis 
 

‘Lexical’ errors are those that rise from lexical 
choice of source words.  For example, an “ADVP 
VP” structure would normally be visited mono-
tonically.  However, in case of  Chinese  phrase ‘so 
do’, they should be swapped.  More than a third of 
the errors are of this nature.   Errors in the Refer-
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ence category are those that are marked wrong be-
cause of the particular English reference.  The pro-
posed reorderings are correct but they don’t match 
the reference reorderings.  Another 30% of the er-
rors are due to parsing errors.  The Model errors 
are due to two sources.  One is the depth problem 
mentioned above.  Local statistics for some very 
deep treelets overwhelm the global statistics and 
local jumps win over the long jumps in these cases.  
Another problem is the data sparseness.  For ex-
ample, the model has learned to reorder the ‘PP 
VP’ structure but there is not much data for ‘PP 
ADVP VP’.  The model fails to jump over PP into 
ADVP.   

4.2    Feature Utility  

We conduct ablation studies to see the utilities of 
each feature.  We take the best feature set which 
gives the performance in Table 3 and takes away 
one feature type at a time.   The results are in Table 
5.  The first row keeps all the features.  The Sub-
tract column shows performance after subtracting 
each feature while keeping all the other features.  
The Add column shows performance of adding the 
feature.  Using just first-child features gets 
75.97%.  Adding node-jump features moves the 
accuracy to 78.40% and so on. 
Features #Features Sub-

tract 
Add 

-  80.56% - 
First Child  7,559 79.87% 75.97% 
Node Jump  6,334 79.52% 78.40% 
JumpOver Sib.  2,403 80.52% 79.00% 
BackJump  602 80.48% 79.05% 
Broken  15,183 80.30% 79.13% 
Barrier  158 80.26% 79.22% 
NumZ Islands 200 79.52% 80.56% 

Table 5. Ablation study on features 

5    Translation Experiments  

5.1    Reorder Lattice Generation  

The reordering model is used to generate reorder 
lattices which are used by machine translation de-
coders.  Reorder lattices have been frequently used 
in decoding in works such as (Zhang et. al 2007, 
Kumar et.al. 2005, Hildebrand et.al. 2008), to 
name just a few.  The main difference here is that 
our lattices encode probabilities from the reorder-
ing model and are not used to preorder the source.  

The lattice contains reorderings and their cost 
(negative log probability).  Figure 4 shows a reor-
der lattice example.  Nodes are lattice states. Arcs 
store source word positions to be visited (trans-
lated) and their cost and they are delimited by 
comma in the figure.  Lower cost indicates better 
choice.  Figure 4 is much simplified for readability.  
It shows only the best path (highlighted) and a few 
neighboring arcs.  For example, it shows source 
words 1, 2, and 8 are the top 3 choices at step 1.  
Position 1 is the best choice with the lowest cost of 
0.302 and so on.   

 
Figure 4. A lattice example 

 
The sentence is shown at the bottom of the figure.  
The first part of the reference (true) path is indi-
cated by the alignment which is source sequence 1, 
8, 9, and 2.  We see that this matches the lattice’s 
top-1 choice.   

Lattice generation takes source sentence and 
source parse as input.  The lattice generation proc-
ess makes use of a beam search algorithm.  Every 
node in the lattice generates top-N next possible 
positions and the rest is pruned away.  A coverage 
vector is maintained on each path to ensure each 
source word is visited exactly once.     A wide 
beam width explores many source positions at any 
step and results in a bushy lattice.  This is needed 
for machine translation because the parses are er-
rorful. The structures that are hard for MT to reor-
der are also hard for parsers to parse.  Labels criti-
cal to reordering such as CP are among the least 
accurate labels.  Overall parsing accuracy is 
83.63% but CP accuracy is 73.11%.  We need a 
wide beam to include more long jumps to compen-
sate the parsing errors.  

5.2    Machine Translation  

We run MT experiments on NIST Chinese-English 
test sets MT03-05.  We compare the performance 
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of using distance-based reordering and using maxi-
mum entropy reordering lattices.  The decoder is a 
log-linear phrase based decoder.  Translation mod-
els are trained from HMM alignments.  A 
smoothed 5-gram English LM is built on the Eng-
lish Gigaword corpus and English side of the Chi-
nese-English parallel corpora.   In the experiments, 
lexicalized distance-based reordering allows up to 
9 words to be jumped over.  MT performance is 
measured by BLEUr4n4 (Papineni et.al. 2001). 

The test set statistics and experiment results are 
show in Table 6.  Decoding with MaxEnt reorder 
lattices shows significant improvement for all con-
ditions.   

 

Data #Segs Lex 
Skip-9 

Reord   Lattice Gain 

MT03 919 0.3005 0.3315 +3.1 
MT04 1788 0.3250 0.3388 +1.38 
MT05 1082 0.2957 0.3236 +2.79 

Table 6. MT results 
 

Figures 5 shows an example from MT output 
with word alignments to the Chinese input. The 
MaxEnt reordering model correctly reorders two 
source modifiers at source positions 8 and 22.  The 
Skip9 output reorders locally whereas the MaxEnt 
lattice output shows much more complex reorder-
ings.  
 

6    Conclusions  

We present a direct syntax-based reordering model 
that captures source structural information.   The 
model is capable of handling reorderings of arbi-
trary length.  Long-range reorderings are essential 
in translation between languages with great word 
order differences such as Chinese-English and 
Arabic-English.  We have shown that phrase based 
SMT can benefit significantly from such a reorder-
ing model.   

The current model is not regularized and feature 
selection by thresholding the feature counts is quite 
primitive.  Regularizing the model will prevent 
overfitting, especially given the small training data 
set.  Regularization will also make the ablation 
study more meaningful. 

The reordering model presented here aims at 
capturing structural differences between source 
and target languages.  It does not have enough 
lexical features to deal with lexical idiosyncrasies.   

     
ME Lattice MT               Skip9 MT 

Figure 5.  MT comparison 
 

Our initial attempt at adding lexical pair jump fea-
tures φ(fromWord, toWord, j) has not proved use-
ful.  It hurt accuracy by 3% (from 80% to 77%).  
We see from Table 4 that 34% of the errors are due 
to source lexical choices which indicates the weak-
ness of the current lexical features.  Regularization 
of the model might also make a difference with the 
lexical features. 
Reordering and word choice in translation are not 

independent of each other.  We have shown some 
initial success with a separate reordering model.  In 
the future, we will build joint models on reordering 
and translation.  This approach will also address 
some of the reordering problems due to source 
lexical idiosyncrasies. 
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