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Abstract

We introduce a new large-scale discrimina-
tive learning algorithm for machine translation
that is capable of learning parameters in mod-
els with extremely sparse features. To ensure
their reliable estimation and to prevent over-
fitting, we use a two-phase learning algorithm.
First, the contribution of individual sparse fea-
tures is estimated using large amounts of par-
allel data. Second, a small development cor-
pus is used to determine the relative contri-
butions of the sparse features and standard
dense features. Not only does this two-phase
learning approach prevent overfitting, the sec-
ond pass optimizes corpus-level BLEU of the
Viterbi translation of the decoder. We demon-
strate significant improvements using sparse
rule indicator features in three different trans-
lation tasks. To our knowledge, this is the
first large-scale discriminative training algo-
rithm capable of showing improvements over
the MERT baseline with only rule indicator
features in addition to the standard MERT fea-
tures.

1 Introduction

This paper is about large scale discriminative
training of machine translation systems. Like
MERT (Och, 2003), our procedure directly optimizes
the cost of the Viterbi output on corpus-level met-
rics, but does so while scaling to millions of features.
The training procedure, which we call the Held-Out
Line Search algorithm (HOLS), is a two-phase iter-
ative batch optimization procedure consisting of (1)
a gradient calculation on a differentiable approxima-
tion to the loss on a large amount of parallel training

data and (2) a line search (using the standard MERT

algorithm) to search in a subspace defined by the
gradient for the weights that minimize the true cost.

While sparse features are successfully used in
many NLP systems, such parameterizations pose a
number of learning challenges. First, since any one
feature is likely to occur infrequently, a large amount
of training data is necessary to reliably estimate their
weights. Therefore, we use the full parallel train-
ing data (rather than a small development set) to
estimate the contribution of the sparse features in
phase 1. Second, sparse features can lead to overfit-
ting. To prevent this from hurting our model’s ability
to generalize to new data, we do two things. First,
we use “grammar and language model folds” (trans-
lation grammars and language models built from
other portions of the training data than are being
used for discriminative training), and second, we
run the phase 2 line search on a held-out develop-
ment set. Finally, since our algorithm requires de-
coding the entire training corpus, it is desirable (on
computational grounds) to only require one or two
passes through the training data. To get the most out
of these passes, we rescale features by their inverse
frequency which improves the scaling of the opti-
mization problem. In addition to learning with few
passes through the training data, the HOLS algorithm
has the advantage that it is easily parallelizable.

After reviewing related work in the next section,
we analyze two obstacles to effective discriminative
learning for machine translation: overfitting (since
both rules and their weights must be learned, if they
are learned together degenerate solutions that fail to
generalize are possible) and poor scaling (since MT
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decoding is so expensive, it is not feasible to make
many passes through large amounts of training data,
so optimization must be efficient). We then present
the details of our algorithm that addresses these is-
sues, give results on three language pairs, and con-
clude.

2 Related Work

Discriminative training of machine translation sys-
tems has been a widely studied problem for the
last ten years. The pattern of using small, high-
quality development sets to tune a relatively small
number of weights was established early (Och and
Ney, 2002; Och, 2003). More recently, standard
structured prediction algorithms that target linearly
decomposable approximations of translation qual-
ity metrics have been thoroughly explored (Liang et
al., 2006; Smith and Eisner, 2006; Watanabe et al.,
2007; Rosti et al., 2010; Hopkins and May, 2011;
Chiang, 2012; Gimpel and Smith, 2012; Cherry and
Foster, 2012; Saluja et al., 2012). These have with-
out exception used sentence-level approximations of
BLEU to determine oracles and update weights using
a variety of criteria and with a variety of different
theoretical justifications.

Despite advancements in discriminative training
for machine translation, large-scale discriminative
training with rule indicator features has remained
notoriously difficult. Rule indicator features are an
extremely sparse and expressive parameterization of
the translation model: every rule has a feature, each
of which has its own separately tuned weight, which
count how often a specific rule is used in a trans-
lation. Early experiments (Liang et al., 2006) used
the structured perceptron to tune a phrase-based sys-
tem on a large subset of the training data, show-
ing improvements when using rule indicator fea-
tures, word alignment features, and POS tag fea-
tures. Another early attempt (Tillmann and Zhang,
2006) used phrase pair and word features in a block
SMT system trained using stochastic gradient de-
scent for a convex loss function, but did not compare
to MERT. Problems of overfitting and degenerate
derivations were tackled with a probabilistic latent
variable model (Blunsom et al., 2008) which used
rule indicator features yet failed to improve upon
the MERT baseline for the standard Hiero features.

Techniques for distributed learning and feature se-
lection for the perceptron loss using rule indicator,
rule shape, and source side-bigram features have re-
cently been proposed (Simianer et al., 2012), but no
comparison to MERT was made.

3 Difficulties in Large-Scale Training

Discriminative training for machine translation is
complicated by several factors. First, both transla-
tion rules and feature weights are learned from par-
allel data. If the same data is used for both tasks,
overfitting of the weights is very possible.1 Second,
the standard MT cost function, BLEU (Papineni et
al., 2002), does not decompose additively over train-
ing instances (because of the “brevity penalty”) and
so approximations are used—these often have prob-
lems with the length (Nakov et al., 2012). Finally,
state-of-the-art MT systems make extensive good
use of “dense” features, such as the log probabil-
ity of translation decisions under a simpler gener-
ative translation model. Our goal is to begin to
use much sparser features without abandoning the
proven dense features; however, extremely sparse
features leads to problems of scaling in the optimiza-
tion problem as we will show.

3.1 Training Data and Overfitting

One of the big questions in discriminative train-
ing of machine translation systems is why standard
machine learning techniques can perform so poorly
when applied to large-scale learning on the train-
ing data. Figure 1 shows a good example of this.
The structured SVM (Tsochantaridis et al., 2004;
Cherry and Foster, 2012) was used to learn the
weights for a Chinese-English Hiero system (Chi-
ang, 2005) with just eight features, using stochastic
gradient descent (SGD) for online learning (Bottou,
1998; Bottou, 2010). The weights were initialized
from MERT values tuned on a 2k-sentence dev set
(MT06), and the figure shows the progress of the on-
line method during a single pass through the 300k-
sentence Chinese-English FBIS training set.

As the training progresses in Figure 1, BLEU
scores on the training data go up, but scores on the

1Previous work has attempted to mitigate the risk of overfit-
ting through careful regularization (Blunsom et al., 2008; Simi-
aner et al., 2012).
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Figure 1: Progress of the online SVM training
method after each training instance on FBIS dataset.
The solid line is BLEU on the test set, training set is
the dashed line, and the dev set is dotted.

dev and test sets go down. If we hope to apply dis-
criminative training techniques for not eight but mil-
lions of features on the training data, we must find a
way to prevent this overfitting.

We suggest that an important reason why overfit-
ting occurs is that the training data is used not only to
tune the system but also to extract the grammar, and
the target side is included in the data used to build
the language model. To test this hypothesis, we
compare tuning using three different dev sets: 1000
sentences from the standard 4-reference MT06 dev
set (Dev1000), a random selection of 1000 sentences
that overlap with the corpus used to extract transla-
tion rules (In1000), and 1000 sentences that came
from the training data but were then excluded from
rule extraction (Out1000). We run MERT on each of
these and evaluate. For evaluation we compare three
different sets: a random 1000 sentences from the
training corpus that was used to create the grammars
but which do not overlap with In1000 (Train1000),
the 1000 sentence dev set (Dev1000), and the stan-
dard 4-reference MT02-03 test set (Test). The en-
tire experiment (including selection of the 1000 sen-
tences) was replicated 5 times.

Table 1 shows the results, averaging over repli-
cations. Out1000 gives much higher scores on the
testing data, validating our hypothesis that tuning on
data used to build the LM and grammar can lead to
overfitting. However, the results also show that tun-
ing on the training data, even when it is held-out, can
still lead to a small reduction in translation quality.
One possible reason is that, unlike the training data

which may come from various domains, the dev data
is in the same domain as the test data and is typically
of higher quality (e.g., it has multiple references).

Table 1: MERT on Zh-En FBIS

Tuning Set Train1000 Dev1000 Test
Dev1000 32.2±1.1 30.2±.1 34.1±.3
In1000 37.0±1.2 25.7±.7 30.1±.6
Out1000 34.9±.8 29.0±.4 33.6±.5

3.2 Poor Scaling
When features occur with different frequencies,
changing the weights of more frequent features has
a larger effect than changing the weights of less fre-
quent features.2 An example of frequent features
that have a large impact on the translation quality are
the language model and translation model features.
These features are non-zero for every sentence, and
changing their weights slightly has a large impact on
translation output. In contrast, changing the weight
drastically for a feature that is non-zero for only one
out of a million sentences has very little effect on
translation metrics. The sensitivity of the translation
output to some feature weights over others was also
pointed out in a recent paper (Chiang, 2012).

When the objective function is more sensitive
in some dimensions than others, the optimization
problem is said to be poorly scaled (Nocedal and
Wright, 2000), and can slow down the convergence
rate for some optimizers. A typical fix is to rescale
the dimensions, as we will do in Section 5.2.

To verify that BLEU is poorly scaled with respect
to weights of rule indicator features, we look at the
effect of changing the weights for individual rules.
We vary the feature weights for four randomly cho-
sen frequent rules and four randomly chosen infre-
quent rules on our FBIS dev set (Figure 2). One
can think of this plot as a “cross-section” of the
BLEU score in the direction of the feature weight.
The dense features are set to MERT-tuned values
which are normalized to one. All other rule indi-
cator features are set to zero, except the rule fea-
ture weight that is varied. The frequent features

2By the “frequency of a feature” we mean this: given a set of
input instances, how many input instances the feature is nonzero
in the space of possible outputs for that input.
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were selected randomly from the 20 most common
rule indictor features in the n-best lists on the dev
set, and the infrequent features were selected from
the features that only occurred once in these n-best
lists. The plots indicate that the BLEU score is
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(a) Four representative frequent sparse features.
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(b) Four representative infrequent sparse features

Figure 2: The effect of varying weights for rule indicator
features on the BLEU score. Note the difference of scale
on the y axis.

poorly scaled for rule feature weights. Changing the
weights for one of the common features changes the
BLEU score by almost 2.5 BLEU points, while for
the infrequent features the BLEU score changes by
at most .02 BLEU points. We take this as a sign that
gradient descent based optimizers for machine trans-
lation with rule features could be slow to converge
due to poor scaling, and that rescaling will improve
convergence.

3.3 Sentence Level Approximations to BLEU

Finally, we note that discriminative training methods
often use a sentence level approximation to BLEU. It
has been shown that optimizing corpus level BLEU
versus sentence level BLEU can lead to improve-
ments of up to nearly .4 BLEU points on the test
set (Nakov et al., 2012). Possible fixes to this prob-
lem include using a proper sentence level metric
such a METEOR (Denkowski and Lavie, 2011) or a
pseudo-corpus from the last few updates (Chiang et
al., 2008). However, in light of the result from sec-
tion 3.1 that tuning on the dev set is still better than
tuning on a held-out portion of the training data, we
observe that tuning a corpus level metric on a high-
quality dev set from the same domain as the test set
probably leads to the best translation quality. At-
tempts to improve upon this strong baseline lead us
to the development of the HOLS algorithm which we
describe next.

4 Held-Out Line Search Algorithm

In this section we give the details of the learning al-
gorithm that we developed for use in large-scale dis-
criminative training for machine translation, which
we call the Held-Out Line Search algorithm (abbre-
viated HOLS). It optimizes millions of features using
evidence from the full set of parallel training data
to obtain optimal predictive performance on a sec-
ondary development set.

The learning algorithm is a batch optimizer where
each iteration has two phases: a gradient calcula-
tion phase and a line search phase. In the gradient
calculation phase, a surrogate loss function is used
to compute a gradient for the feature weights. The
gradient is computed over a subset of the training
data. In the line search phase, a separate optimizer
(MERT) is used to search along this gradient to opti-
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mize the evaluation score of the one-best prediction
of a translation system on a secondary development
set.3 The secondary dev set is a crucial aspect of
the algorithm that helps reduce overfitting (we will
demonstrate this in the experiments section).

During the line search phase we allow some of
the feature weights to be adjusted independently of
the line search. We will call the features we opti-
mize independently the dense features, and the fea-
tures we include in the line search the sparse fea-
tures.4 The feature vector space V is the direct sum
V = Vd ⊕ Vs, where Vd is the vector space of
the dense features and Vs is the vector space of the
sparse features. The feature and weight vectors de-
compose as ~f = ~fd + ~fs and ~w = ~wd + ~ws. ~fd and
~wd are in the dense vector space, and the ~fs and ~ws
are in the sparse vector space.

In the gradient phase, we calculate a gradient of
the surrogate loss function and project it onto the
subspace of the sparse features. Let Ps be the pro-
jection operator onto Vs. Then the gradient projected
onto the sparse feature space is

~g = Ps∇~wL̃(~w,Dg)

where Dg is the subset of the training data used to
calculate this gradient, and L̃ is the surrogate loss
function. This just sets the dense components of the
gradient of L̃ to zero.

In the line search phase, we use a separate opti-
mizer to optimize the weights for the dense features
and the stepsize α. Let L be the loss function we
wish to minimize, then

(~w∗d, α
∗) = arg min

~wd,α
L(~wd + ~ws + α~g,Dl)

Note ~ws is held fixed from the previous iteration. Dl
is the portion of the training data which is used in
the line search phase, and must not overlap with Dg
used in the gradient calculation phase.5

After the line search, the dense weights are up-
dated to ~w∗d, and the sparse weights are updated with
~ws ← ~ws + α∗~g. The process repeats for another
iteration as desired (or until convergence).

3While we use BLEU any loss function whose sufficient
statistics decompose over training instances could be used.

4The split over the features does not have to be done this
way in practice.

5L(~w∗
d, α

∗,Dl) can be thought of as unbiased or more accu-
rately less biased estimator of expected loss whenDl∩Dg = ∅.

5 Procedure for Large-Scale Training

Now that we have described the HOLS algorithm in
general, we next describe how to apply it to large-
scale training of machine translation systems with
millions of features. We find that it is necessary to
use disjoint sets of training instances for grammar
extraction and gradient estimation (§5.1) and to deal
with the poor scaling of the optimization problem
(§5.2).

5.1 Grammar and Language Model Folds

To address the problem of overfitting on the train-
ing data, we split the training data into n-folds, and
extract grammars for each fold using the data from
the other n− 1 folds. Similarly, we build a language
model for each fold using a target language mono-
lingual corpus and the target side of the training data
from the other n − 1 folds. Whenever we decode a
sentence from the training data, we use the gram-
mar and language model for the appropriate fold.
This ensures that a sentence is never decoded using a
grammar or language model it helped build, thereby
reducing the overfitting effect demonstrated in §3.1.

To perform the training, the HOLS algorithm is
used on the training data. In our experiments, only
1-2 passes over the training data are necessary for
significant gains. Data from one of the grammar
folds is used for the line search, and the rest of the
training data is used to calculate the gradient.

The procedure is iterative, first decoding training
data to obtain a gradient, and then performing a line
search with data from a held-out grammar fold. In-
stead of decoding the whole set of sentences used for
the gradient updates at once, one can also decode a
portion of the data, do a gradient update, and then
continue the next iteration of HOLS on the remain-
ing data before repeating.

The last line search of the HOLS algorithm is done
using dev data, rather than training data. This is be-
cause the dev data is higher quality, and from Table
1 we can see that tuning on dev data produces bet-
ter results than tuning on training data (even if the
training data has been held out from the grammar
process). The initial weights are obtained by run-
ning MERT on a subset of the one of the grammar
folds.

If one has an existing implementation of an op-
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timizer for the loss function used during the line
search (in our case MERT), it can be used to perform
the line search. This is done simply by calling MERT

with two extra features in addition to the dense fea-
tures and omitting the sparse features.

To see how, notice that the feature weights
during the line search are decomposed as ~w =
~wdense + ~wsparse + α~g where ~g is in the sparse
feature subspace, so the model score decomposes
as score(x, y) = ~wd · ~fd(x, y) + ~ws · ~fs(x, y) +
α~g · ~fs(x, y) where x is the input translation, y is
the output translation and derivation. If we cre-
ate two new features f1(x, y) = ~ws · ~fs(x, y) and
f2(x, y) = ~g · ~fs(x, y) then the score can be written

score(x, y) = ~wd · ~fd(x, y)

+f1(x, y) + αf2(x, y)

= (~wd, 1, α) · (~fd, f1, f2)

Thus we can do the line search simply by calling
MERT with the features (~fd, f1, f2). 6

In summary our training algorithm is as follows:
1) split the training data into n-folds (we use n = 5),
2) initialize the dense weights to MERT values, 3)
decode some or all the data in 4 of the 5 folds to get
a gradient, 4) condition as in §5.2 (see below), 5) run
MERT on a 10k subset of the remaining fold to do the
line search, 6) repeat steps 3-4 until convergence or
stop as desired, and 7) run MERT on the normal dev
set as a final step. We only run MERT on a 10k subset
of one of the folds so it does not require running
MERT on an entire fold.

In the special case where just one iteration of
HOLS is performed, the procedure is very simple:
decode the training data to get a gradient, include
the components of the gradient as an extra feature
f2 in addition to the dense features, and tune on a
dev set using MERT.

5.2 Conditioning
To address the problem of poor scaling, we use a
simple strategy of rescaling each component of the
gradient based on how frequent the feature is. We
call this process “conditioning.” For each feature,
we simply divide the corresponding dimension of

6We could constrain the weight for f1 to be 1, but this is not
necessary since since MERT is invariant to the overall scale of
the weights.

the gradient by the number of n-best lists in which
the feature was non-zero in.

The necessity for conditioning is evident when we
run the HOLS algorithm as detailed so far on the
training data without conditioning. On subsequent
iterations, we observe that the features with the high-
est component of the gradient oscillate between iter-
ations, but the rest of the feature gradients stay the
same.

Based on our knowledge that the optimization
problem was poorly scaled, we divided by the fre-
quency of the feature. We can give the following
heuristic justification for our method of condition-
ing. For the ith feature weight, we will take a step
∆wi. Assume that we want to take the step ∆wi pro-
portional to the average gradient ĝi calculated from
n-best lists in which the feature is non-zero. In other
words, we want ∆wi = αĝi. Let gi be the total
gradient calculated by adding the gradients over all
n-best lists (i.e. summing over training examples
in the corpus). For a feature that is nonzero in ex-
actly ni n-best lists, the gradient from each example
will have been added up ni times, so the total gra-
dient gi = niĝi. Therefore we should take the step
∆wi = αgi/ni. In other words, we rescale each
component gi of the gradient by 1/ni before taking
the gradient step.

We can relate this argument back to the oscillation
we observed of the rule feature weights. For rules
that are used a thousand times more often than the
average rule, the corresponding component of the
gradient is roughly a thousand times larger. But that
does not indicate that the adjustment ∆wi to the rule
weight should be a thousand times larger in each it-
eration.

6 Experiments

We evaluate and analyze the performance of our
training method with three sets of experiments. The
first set of experiments compares HOLS to other
tuning algorithms used in machine translation in a
medium-scale discriminative setting. The second set
looks in detail at HOLS for large scale discriminative
training for a Chinese-English task. The third set
looks at two other languages.

All the experiments use a Hiero MT system with
rule indicator features for the sparse features and the
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Table 2: Corpora

Language Corpus Sentences Tokens
Source Target

En Gigaword 24M 594M
Ar-En Train 1M 7M 31M

Dev (MT06) 1797 13K 236K
MT05 1,056 7K 144K

MT08nw 813 5K 116K
MT05wb 547 5K 89K

Mg-En Train 89K 2.1M 1.7M
Dev 1,359 34K 28K
Test 1,133 29K 24K

Zh-En Train (FBIS) 302K 1M 9.3M
Dev (MT06) 1,664 4K 192K

Test (MT02-03) 1,797 5K 223K
MT08 1,357 4K 167K

following 8 dense features: LM, phrasal and lexi-
cal p(e|f) and p(f |e), phrase and word penalties,
and glue rule. The total number of features is 2.2M
(Mg-En), 28.8M (Ar-En), and 10.8M (Zh-En). The
same features are used for all tuning methods, ex-
cept MERT baseline which uses only dense features.
Although we extract different grammars from vari-
ous subsets of the training corpus, word alignments
were done using the entire training corpus. We use
GIZA++ for word alignments (Och and Ney, 2003),
Thrax (Weese et al., 2011) to extract the grammars,
our decoder is cdec (Dyer et al., 2010) which uses
KenLM (Heafield, 2011), and we used a 4-gram LM
built using SRILM (Stolcke, 2002). Our optimizer
uses code implemented in the pycdec python inter-
face to cdec (Chahuneau et al., 2012). To speed up
decoding, for each source RHS we filtered the gram-
mars to the top 15 rules ranked by p(e | f). Statistics
about the datasets we used are listed in Table 2.

We use the “soft ramp 3” loss function (Gimpel,
2012; Gimpel and Smith, 2012) as the surrogate loss
function for calculating the gradient in HOLS. It is
defined as

L̃ =
n∑
i=1

[
− log

∑
y∈Gen(xi)

e~w·
~f(xi,y)−cost(yi,y)

+ log
∑

y∈Gen(xi)

e~w·
~f(xi,y)+cost(yi,y)

]

where the sum over i ranges over training exam-
ples, Gen(x) is the space of possible outputs and

derivations for the input x, and cost(yi, y) is add one
smoothing sentence level BLEU.7

Except where noted, all experiments are repeated
5 times and results are averaged, initial weights for
the dense features are drawn from a standard nor-
mal, and initial weights for the sparse features are
set to zero. We evaluate using MultEval (Clark et
al., 2011) and report standard deviations across opti-
mizer runs and significance at p = .05 using MultE-
val’s built-in permutation test. In the large-scale ex-
periments for HOLS, we only run the full optimizer
once, and report standard deviations using multiple
runs of the last MERT run (i.e. the last line search on
the dev data).

6.1 Comparison Experiments for ZH-EN

Our first set of experiments compares the perfor-
mance of the proposed HOLS algorithm to learn-
ing algorithms popularly used in machine transla-
tion on a Chinese-English task. We also compare to
a close relative of the HOLS algorithm: optimizing
the soft ramp 3 loss directly with online stochastic
gradient descent and with conditioning. As we will
see, SGD SOFTRAMP3 performs significantly worse
than HOLS, despite both algorithms optimizing sim-
ilar loss functions.

In the experiments in this section, we do not use
the full version of the training setup described in
§5 since we wish to compare to algorithms that do
not necessarily scale to large amounts of training
data. We therefore use only one fifth of the train-
ing data for learning the weights for both the dense
and sparse features.

In this section we refer to the subset of the train-
ing data used to learn the weights as the tuning set
(Tune). The grammar and LM are built using the
training data that is not in the tuning set (the LM also
includes the English monolingual corpus), and the
weights for the features are tuned using the tuning
set. This is similar to the typical train-dev-test split
commonly used to tune machine translation systems,
except that the tuning set is much larger (60k sen-
tence pairs versus the usual 1k-2k) and comes from
a random subset of the training data rather than a

7We found this loss function to work well, but other “soft”
loss functions (Gimpel, 2012; Gimpel and Smith, 2012) also
work. Gen(x) is restricted to a k-best size of 1000. Following
(Gimpel, 2012) cost(yi, y) is multiplied by a factor of 20.
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Table 3: Comparison Experiments for Zh-En

Algorithm Tune MT08 Runtime
MERT 22.1±.1 23.1±.1 6 hours
PRO 23.8±.05 23.6±.1 2 weeks
MIRA 21.7±.1 22.5±.1 19 hours
SOFTRAMP3 21.5±.3 22.3±.3 29 hours
HOLS 22.3±.1 23.4±.1 10 hours
HILS 24.3±.2 22.4±.1 10 hours

specialized development set.
We compare MERT, PRO (Hopkins and May,

2011), MIRA (Chiang, 2012), SOFTRAMP3, HOLS,
and a variant of HOLS which we call HILS (discussed
below). For HOLS, we used 10k of the 60k tun-
ing set for the line search, and the rest of the tun-
ing set was used for calculating the gradient. For
HILS (“Held-In” Line Search), the full 60k tuning
set was used to calculate the gradient, but the line
search was on a 10k subset of that set. For MERT,
we used a 10k subset of the tuning data because it
takes a long time to run on large datasets, and it only
has the eight dense features and so does not need the
entire 60k tuning set. All the subsets are drawn ran-
domly. Conditioning was performed only for HOLS,
HILS, and SOFTRAMP3 because conditioning would
affect the regularizer for PRO and require modifica-
tions to the MIRA algorithm. To do the condition-
ing for SOFTRAMP3 we used rule count during ex-
traction of the grammar and not the frequency in
the n-best lists because the online nature of SOFT-
RAMP3 prevents us from knowing how frequent a
rule will be (and the dense features are conditioned
using the corpus size). We chose MIRA’s best learn-
ing rate (η = .001) from {.1, .01, .001}, used de-
fault settings for PRO in cdec, and for SOFTRAMP3
we used the same loss function as HOLS but included
an L2 regularizer of strength .001 and used a step-
size of 1 (which was scaled because of condition-
ing). To remedy problems of length bias for sentence
level BLEU, we used brevity penalty smoothed and
grounded BLEU+1 for sentence level scores (Nakov
et al., 2012). Tuning was repeated four times with
different initial weights, except for PRO which we
only ran three times (due to training costs). The ini-
tial weights for MERT were drawn from a standard
normal distribution, and final MERT weights were

used as the initial weights for the dense features for
the other algorithms. Initial weights for the sparse
features were set to zero. For HOLS, and HILS, tun-
ing set BLEU scores were evaluated on the set that
the line search was run on. We also report run times
for 8 threads on an Opteron 6220 processor.8

The results are shown in Table 3. PRO and HOLS

are a statistically significant improvement upon the
MERT baseline on the MT08 test data, but MIRA,
SOFTRAMP3, and HILS are not.

HILS dramatically overfits the tuning set, while
HOLS does not, justifying the use of a held-out
dataset for the line search. SOFTRAMP3 performs
significantly worse than HOLS on the test set. PRO is
a promising training algorithm, but does not scale to
the full FBIS corpus because it requires many itera-
tions.

6.2 Full ZH-EN and Ablation Experiments

This set of experiments evaluates the performance
of the full HOLS algorithm described in §5 for
large-scale discriminative training on the full FBIS
Chinese-English dataset. Since this is a relatively
small and widely studied dataset, we also investigate
what happens if different aspects of the procedure
are omitted.

Table 4 gives the results. The number of updates
is the number of times the HOLS line search opti-
mizer is run (gradient updates). For 2 passes, 4 up-
dates, a line search is performed after a half pass
through the training data, which is repeated four
times for a total of two passes.

Using just one pass through the training data and

8Standard MIRA and SGD SOFTRAMP3 are not paralleliz-
able and only use a single thread. All of these algorithms were
run for one iteration, except for MERT which ran for at least
seven iterations, and PRO which we stopped after 20 iterations.

Table 4: Full-scale Chinese-English and Ablation
Experiments

Configuration Dev Test
MERT Baseline 29.9±.3 34.0±.8
2 Pass, 4 updates 31.1±.2 35.1±.4
1 Pass, 1 update 30.7±.1 34.6±.5
−Folds 30.0±.2 34.0±.4
−Conditioning 30.1±.1 34.2±.2
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Table 5: Arabic-English

System Dev (MT06) MT05 MT08(nw) MT08(wb)
MERT Baseline 39.2±.4 50.3±.4 45.2±.2 29.4±.14

HOLS 1 Pass, 2 updates 39.9±.9 51.2±.4 45.8±.4 30.0±.4

∆BLEU +.7 +.9 +.6 +.6

Table 6: Malagasy-English

System Dev Test
MERT Baseline 19.8±.3 17.7±.2
HOLS 1 Pass, 1 update 20.5±.1 18.4±.2

∆BLEU +.7 +.7

one gradient update, HOLS improves upon the MERT

baseline by .6 BLEU points, which is a statistically
significant improvement. With 2 passes through the
training data and 4 gradient updates, HOLS performs
even better, obtaining a 1.1 BLEU point improve-
ment over the baseline and is also statistically signif-
icant. With 16 threads, 1 pass, 1 update completed
in 9 hours, and 2 pass, 4 updates, completed in 40
hours. The medium-scale PRO setup in §6.1 obtains
a result of 34.4± .1 on this test set, which is a statis-
tically significant improvement of .4 BLEU points
over the MERT baseline but does not beat the large-
scale HOLS results.

Is folding and conditioning necessary? We ex-
periment with what happens if grammar and LM
folds are not used and if conditioning is not done.
−Folds denotes 1 pass 1 update without folds, and
−Conditioning denotes 1 pass 1 update without con-
ditioning. We can see that both these steps are im-
portant for the training procedure to work well.

The decrease in performance of the training pro-
cedure without folds or conditioning is dramatic but
not too surprising. With just one gradient update,
one would expect conditioning to be very important.
And from the lessons learned in section 3.1, one
would also expect the procedure to perform poorly
or even worse than the MERT baseline without gram-
mar or LM folds. But because HOLS runs MERT on
the dev data for the last line search, it is almost im-
possible for HOLS to be worse than the MERT base-
line. (This, in fact, was part of our motivation when
we originally attempted the HOLS algorithm.)

6.3 Other Language Pairs

The last set of experiments looks at the performance
of the learning algorithm for two other languages
and data scenarios for one pass through the training
data. Using the same setup for large-scale discrimi-
native training as before, we apply the training pro-
cedure to a large data scenario Arabic-English task
and a small data scenario Malagasy-English task
(Tables 5 and 6). The training procedure gives statis-
tically significant improvements over the baseline by
.6 to .9 BLEU for Arabic, and a statistically signif-
icant improvement of .7 BLEU for Malagasy. With
16 threads, the runtime was 44 hours for Arabic and
5 hours for Malagasy.

7 Conclusion

We have explored the difficulties encountered
in large-scale discriminative training for machine
translation, and introduced a learning procedure de-
signed to overcome them and scale to large corpora.
We leave to future work to experiment with feature
sets designed for the large-scale discriminative set-
ting. In particular, we hope this framework will fa-
cilitate incorporation of richer linguistic knowledge
into machine translation.
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