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Abstract

We present a new variant of the Syntax-
Augmented Machine Translation (SAMT) for-
malism with a category-coarsening algorithm
originally developed for tree-to-tree gram-
mars. We induce bilingual labels into the
SAMT grammar, use them for category coars-
ening, then project back to monolingual la-
beling as in standard SAMT. The result is a
“collapsed” grammar with the same expres-
sive power and format as the original, but
many fewer nonterminal labels. We show that
the smaller label set provides improved trans-
lation scores by 1.14 BLEU on two Chinese–
English test sets while reducing the occur-
rence of sparsity and ambiguity problems
common to large label sets.

1 Introduction

The formulation of statistical machine translation in
terms of synchronous parsing has become both the-
oretically and practically successful. In a parsing-
based MT formalism, synchronous context-free
grammar rules that match a source-language input
can be hierarchically composed to produce a corre-
sponding target-language output. SCFG translation
grammars can be extracted automatically from data.
While formally syntactic approaches with a single
grammar nonterminal have often worked well (Chi-
ang, 2007), the desire to exploit linguistic knowl-
edge has motivated the use of translation grammars
with richer, linguistically syntactic nonterminal in-
ventories (Galley et al., 2004; Liu et al., 2006; Lavie
et al., 2008; Liu et al., 2009).

Linguistically syntactic MT systems can derive
their label sets, either monolingually or bilingually,
from parallel corpora that have been annotated with
source- and/or target-side parse trees provided by
a statistical parser. The MT system may exactly
adopt the parser’s label set or modify it in some way.
Larger label sets are able to represent more precise,
fine-grained categories. On the other hand, they also
exacerbate a number of computational and modeling
problems by increasing grammar size, derivational
ambiguity, and data sparsity.

In this paper, we focus on the Syntax-Augmented
MT formalism (Zollmann and Venugopal, 2006), a
monolingually labeled version of Hiero that can cre-
ate up to 4000 “extended” category labels based on
pairs of parse nodes. We take a standard SAMT
grammar with target-side labels and extend its label-
ing to a bilingual format (Zollmann, 2011). We then
coarsen the bilingual labels following the “label col-
lapsing” algorithm of Hanneman and Lavie (2011).
This represents a novel extension of the tree-to-tree
collapsing algorithm to the SAMT formalism. Af-
ter removing the source-side labels, we obtain a new
SAMT grammar with coarser target-side labels than
the original.

Coarsened grammars provide improvement of up
to 1.14 BLEU points over the baseline SAMT results
on two Chinese–English test sets; they also outper-
form a Hiero baseline by up to 0.60 BLEU on one
of the sets. Aside from improved translation quality,
in analysis we find significant reductions in deriva-
tional ambiguity and rule sparsity, two problems that
make large nonterminal sets difficult to work with.

Section 2 provides a survey of large syntax-based
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MT label sets, their associated problems of deriva-
tional ambiguity and rule sparsity, and previous at-
tempts at addressing those problems. The section
also summarizes the tree-to-tree label collapsing al-
gorithm and the process of SAMT rule extraction.
We then describe our method of label collapsing in
SAMT grammars in Section 3. Experimental results
are presented in Section 4 and analyzed in Section
5. Finally, Section 6 offers some conclusions and
avenues for future work.

2 Background

2.1 Working with Large Label Sets

Aside from the SAMT method of grammar extrac-
tion, which we treat more fully in Section 2.3, sev-
eral other lines of work have explored increasing
the nonterminal set for syntax-based MT. Huang and
Knight (2006), for example, augmented the standard
Penn Treebank labels for English by adding lexi-
calization to certain types of nodes. Chiang (2010)
and Zollmann (2011) worked with a bilingual exten-
sion of SAMT that used its notion of “extended cat-
egories” on both the source and target sides. Taking
standard monolingual SAMT as a baseline, Baker et
al. (2012) developed a tagger to augment syntactic
labels with some semantically derived information.
Ambati et al. (2009) extracted tree-to-tree rules with
similar extensions for sibling nodes, resulting again
in a large number of labels.

Extended categories allow for the extraction of
a larger number of rules, increasing coverage and
translation performance over systems that are lim-
ited to exact constituent matches only. However,
the gains in coverage come with a corresponding
increase in computational and modeling complexity
due to the larger label set involved.

Derivational ambiguity — the condition of hav-
ing multiple derivations for the same output string
— is a particular problem for parsing-based MT sys-
tems. The same phrase pair may be represented with
a large number of different syntactic labels. Fur-
ther, new hierarchical rules are created by abstract-
ing smaller phrase pairs out of larger ones; each of
these substitutions must also be marked by a label
of some kind. Keeping variantly labeled copies of
the same rules fragments probabilities during gram-
mar scoring and creates redundant hypotheses in the

decoder at run time.
A complementary problem — when a desired rule

application is impossible because its labels do not
match — has been variously identified as “data spar-
sity,” the “matching constraint,” and “rule sparsity”
in the grammar. It arises from the definition of
SCFG rule application: in order to compose two
rules, the left-hand-side label of the smaller rule
must match a right-hand-side label in the larger rule
it is being plugged in to. With large label sets, it
becomes less likely that two arbitrarily chosen rules
can compose, making the grammar less flexible for
representing new sentences.

Previous research has attempted to address both
of these problems in different ways. Preference
grammars (Venugopal et al., 2009) are a technique
for reducing derivational ambiguity by summing
scores over labeled variants of the same deriva-
tion during decoding. Chiang (2010) addressed rule
sparsity by introducing a soft matching constraint:
the decoder may pay a learned label-pair-specific
penalty for substituting a rule headed by one label
into a substitution slot marked for another. Combin-
ing properties of both of the above methods, Huang
et al. (2010) modeled monolingual labels as distribu-
tions over latent syntactic categories and calculated
similarity scores between them for rule composition.

2.2 Label Collapsing in Tree-to-Tree Rules
Aiming to reduce both derivational ambiguity and
rule sparsity, we previously presented a “label col-
lapsing” algorithm for systems in which bilingual
labels are used (Hanneman and Lavie, 2011). It
coarsens the overall label set by clustering monolin-
gual labels based on which labels they appear joined
with in the other language.

The label collapsing algorithm takes as its input
a set of SCFG rule instances extracted from a par-
allel corpus. Each time a tree-to-tree rule is ex-
tracted, its left-hand side is a label of the form s::t,
where s is a label from the source-language cate-
gory set S and t is a label from the target-language
category set T . Operationally, the joint label means
that a source-side subtree rooted at s was the trans-
lational equivalent of a target-side subtree rooted at
t in a parallel sentence. Figure 1 shows several such
subtrees, highlighted in grey and numbered. Joint
left-hand-side labels for the collapsing algorithm,
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Figure 1: Sample extraction of bilingual nonterminals for
label collapsing. Labels extracted from this tree pair in-
clude VBD::VV and NP::AD.

such as VBD::VV and NP::AD, can be assembled
by matching co-numbered nodes.

From the counts of the extracted rules, it is thus
straightforward to compute for all values of s and
t the observed P (s | t) and P (t | s), the probability
of one half of a joint nonterminal label appearing
in the grammar given the other half. In the figure,
for example, P (JJ |NN) = 0.5. The conditional
probabilities accumulated over the whole grammar
give rise to a simple L1 distance metric over any pair
of monolingual labels:

d(s1, s2) =
∑
t∈T

|P (t | s1)− P (t | s2)| (1)

d(t1, t2) =
∑
s∈S

|P (s | t1)− P (s | t2)| (2)

An agglomerative clustering algorithm then com-
bines labels in a series of greedy iterations. At each
step, the algorithm finds the pair of labels that is cur-
rently the closest together according to the distance
metrics of Equations (1) and (2), combines those two
labels into a new one, and updates the set of P (s | t)

and P (t | s) values appropriately. The choice of la-
bel pair to collapse in each iteration can be expressed
formally as

arg min
(si,sj)∈S2,(tk,t`)∈T 2

{d(si, sj), d(tk, t`)} (3)

That is, either a source label pair or a target label pair
may be chosen by the algorithm in each iteration.

2.3 SAMT Rule Extraction

SAMT grammars pose a challenge to the label col-
lapsing algorithm described above because their la-
bel sets are usually monolingual. The classic SAMT
formulation (Zollmann and Venugopal, 2006) pro-
duces a grammar labeled on the target side only.
Nonterminal instances that exactly match a target-
language syntactic constituent in a parallel sentence
are given labels of the form t. Labels of the form
t1+t2 are assigned to nonterminals that span exactly
two contiguous parse nodes. Categorial grammar la-
bels such as t1/t2 and t1\t2 are given to nontermi-
nals that span an incomplete t1 constituent missing
a t2 node to its right or left, respectively. Any non-
terminal that cannot be labeled by one of the above
three schemes is assigned the default label X.

Figure 2(a) shows the extraction of a VP-level
SAMT grammar rule from part of a parallel sen-
tence. At the word level, the smaller English phrase
supported each other (and its Chinese equivalent) is
being abstracted as a nonterminal within the larger
phrase supported each other in international affairs.
The larger phrase corresponds to a parsed VP node
on the target side; this will become the label of
the extracted rule’s left-hand side. Since the ab-
stracted sub-phrase does not correspond to a single
constituent, the SAMT labeling conventions assign
it the label VBD+NP. We can thus write the ex-
tracted rule as:

(4)

While the SAMT label formats can be trivially
converted into joint labels X::t, X::t1+t2, X::t1/t2,
X::t1\t2, and X::X, they cannot be usefully fed into
the label collapsing algorithm because the necessary
conditional label probabilities are meaningless. To
acquire meaningful source-side labels, we turn to a
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(a) (b)

Figure 2: Sample extraction of an SAMT grammar rule: (a) with monolingual syntax and (b) with bilingual syntax.

bilingual SAMT extension used by Chiang (2010)
and Zollmann (2011). Both a source- and a target-
side parse tree are used to extract rules from a par-
allel sentence; two SAMT-style labels are worked
out independently on each side for each nonterminal
instance, then packed into a joint label. It is there-
fore possible for a nonterminal instance to be labeled
s::t, s1\s2::t, s1+s2::t1/t2, or various other combi-
nations depending on what parse nodes the nonter-
minal spans in each tree.

Such a bilingually labeled rule is extracted in Fig-
ure 2(b). The target-side labels from Figure 2(a) are
now paired with source-side labels extracted from an
added Chinese parse tree. In this case, the abstracted
sub-phrase supported each other is given the joint
label VP::VBD+NP, while the rule’s left-hand side
becomes LCP+VP::VP.

We implement bilingual SAMT grammar extrac-
tion by modifying Thrax (Weese et al., 2011), an
open-source, Hadoop-based framework for extract-
ing standard SAMT grammars. By default, Thrax
can produce grammars labeled either on the source
or target side, but not both. It also outputs rules
that are already scored according to a user-specified

set of translation model features, meaning that the
raw rule counts needed to compute the label condi-
tional probabilities P (s | t) and P (t | s) are not di-
rectly available. We implement a new subclass of
grammar extractor with logic for independently la-
beling both sides of an SAMT rule in order to get the
necessary bilingual labels; an adaptation to the exist-
ing Thrax “rarity” feature provides the rule counts.

3 Label Collapsing in SAMT Rules

Our method of producing label-collapsed SAMT
grammars is shown graphically in Figure 3.

We first obtain an SAMT grammar with bilingual
labels, together with the frequency count for each
rule, using the modified version of Thrax described
in Section 2.3. The rules can be grouped according
to the target-side label of their left-hand sides (Fig-
ure 3(a)).

The rule counts are then used to compute label-
ing probabilities P (s | t) and P (t | s) over left-hand-
side usages of each source label s and each target
label t. These are simple maximum-likelihood es-
timates: if #(si, tj) represents the combined fre-
quency counts of all rules with si::tj on the left-hand
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(a) (b) (c) (d)

Figure 3: Stages of preparing label-collapsed rules for SAMT grammars. (a) SAMT rules with bilingual nonterminals
are extracted and collected based on their target left-hand sides. (b) Probabiliites P (t | s) and P (s | s) are computed. (c)
Nonterminals are clustered according to the label collapsing algorithm. (d) Source sides of nonterminals are removed
to create a standard SAMT grammar.

side, the source-given-target labeling probability is:

P (si | tj) =
#(si::tj)∑
t∈T #(si::t)

(5)

The computation for target given source is analo-
gous. Each monolingual label can thus be repre-
sented as a distribution over the labels it is aligned
to in the opposite language (Figure 3(b)).

Such distributions over labels are the input to the
label-collapsing algorithm, as described in Section
2.2. As shown in Figure 3(c), the algorithm results
in the original target-side labels being combined into
different groups, denoted in this case as new labels
CA and CB. We run label collapsing for varying
numbers of iterations to produce varying degrees of
coarsened label sets.

Given a mapping from original target-side labels
to collapsed groups, all nonterminals in the original
SAMT grammar are overwritten accordingly. The
source-side labels are dropped at this point: we use
them only for the purpose of label collapsing, but not
in assembling or scoring the final grammar. The re-
sulting monolingual SAMT-style grammar with col-
lapsed labels (Figure 3(d)) can now be scored and
used for decoding in the usual way.

For constructing a baseline SAMT grammar with-
out label collapsing, we merely extract a bilingual

grammar as in the first step of Figure 3, immediately
remove the source-side labels from it, and proceed
to grammar scoring.

All grammars are scored according to a set of
eight features. For an SCFG rule with left-hand-side
label t, source right-hand side f , and target right-
hand side e, they are:

• Standard maximum-likelihood phrasal transla-
tion probabilities P (f | e) and P (e | f)

• Maximum-likelihood labeling probability
P (t | f, e)

• Lexical translation probabilities Plex(f | e) and
Plex(e | f), as calculated by Thrax

• Rarity score exp( 1
c
)−1

exp(1)−1 for a rule with extracted
count c

• Binary indicator features that mark phrase pair
(as opposed to hierarchical) rules and glue rules

Scored grammars are filtered down to the sen-
tence level, retaining only those rules whose source-
side terminals match an individual tuning or testing
sentence. In addition to losslessly filtering gram-
mars in this way, we also carry out two types of
lossy pruning in order to reduce overall grammar
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System Labels Rules Per Sent.
SAMT 4181 69,401,006 48,444
Collapse 1 913 64,596,618 35,004
Collapse 2 131 60,526,479 24,510
Collapse 3 72 58,483,310 20,445
Hiero 1 36,538,657 7,738

Table 1: Grammar statistics for different degrees of label
collapsing: number of target-side labels, unique rules in
the whole grammar, and average number of pruned rules
after filtering to individual sentences.

size. One pruning pass keeps only the 80 most fre-
quently observed target right-hand sides for each
source right-hand side. A second pass globally re-
moves hierarchical rules that were extracted fewer
than six times in the training data.

4 Experiments

We conduct experiments on Chinese-to-English MT,
using systems trained from the FBIS corpus of ap-
proximately 302,000 parallel sentence pairs. We
parse both sides of the training data with the Berke-
ley parsers (Petrov and Klein, 2007) for Chinese
and English. The English side is lowercased after
parsing; the Chinese side is segmented beforehand.
Unidirectional word alignments are obtained with
GIZA++ (Och and Ney, 2003) and symmetrized, re-
sulting in a parallel parsed corpus with Viterbi word
alignments for each sentence pair. Our modified ver-
sion of Thrax takes the parsed and aligned corpus as
input and returns a list of rules, which can then be
label-collapsed and scored as previously described.

In Thrax, we retain most of the default settings for
Hiero- and SAMT-style grammars as specified in the
extractor’s configuration file. Inheriting from Hiero,
we require the right-hand side of all rules to con-
tain at least one pair of aligned terminals, no more
than two nonterminals, and no more than five termi-
nals and nonterminal elements combined. Nonter-
minals are not allowed to be adjacent on the source
side, and they may not contain unaligned boundary
words. Rules themselves are not extracted from any
span in the training data longer than 10 tokens.

Our initial bilingual SAMT grammar uses 2699
unique source-side labels and 4181 unique target-
side labels, leading to the appearance of 29,088 joint

bilingual labels in the rule set. We provide the joint
labels (along with their counts) to the label collaps-
ing algorithm, while we strip out the source-side
labels to create the baseline SAMT grammar with
4181 unique target-side labels. Table 1 summarizes
how the number of target labels, unique extracted
rules, and the average number of pruned rules avail-
able per sentence change as the initial grammar is
label-collapsed to three progressively coarser de-
grees. Once the collapsing process has occurred ex-
haustively, the original SAMT grammar becomes a
Hiero-format grammar with a single nonterminal.

Each of the five grammars in Table 1 is used to
build an MT system. All systems are tuned and de-
coded with cdec (Dyer et al., 2010), an open-source
decoder for SCFG-based MT with arbitrary rule for-
mats and nonterminal labels. We tune the systems
on the 1664-sentence NIST Open MT 2006 data set,
optimizing towards the BLEU metric. Our test sets
are the NIST 2003 data set of 919 sentences and the
NIST 2008 data set of 1357 sentences. The tun-
ing set and both test sets all have four English ref-
erences.

We evaluate systems on BLEU (Papineni et al.,
2002), METEOR (Denkowski and Lavie, 2011), and
TER (Snover et al., 2006), as calculated in all three
cases by MultEval version 0.5.0.1 These scores for
the MT ’03 test set are shown in Table 2, and those
for the MT ’08 test set in Table 3, combined by Mult-
Eval over three optimization runs on the tuning set.

MultEval also implements statistical significance
testing between systems based on multiple optimizer
runs and approximate randomization. This process
(Clark et al., 2011) randomly swaps outputs between
systems and estimates the probability that the ob-
served score difference arose by chance. We report
these results in the tables as well for three MERT
runs and a p-value of 0.05. Systems that were judged
statistically different from the SAMT baseline have
triangles in the appropriate “Sig. SAMT?” columns;
systems judged different from the Hiero baseline
have triangles under the “Sig. Hiero?” columns. An
up-triangle (N) indicates that the system was better,
while a down-triangle (O) means that the baseline
was better.

1https://github.com/jhclark/multeval

293



Metric Scores Sig. SAMT? Sig. Hiero?
System BLEU MET TER B M T B M T
SAMT 31.18 30.64 61.02 O O O
Collapse 1 31.42 31.31 60.95 N O O
Collapse 2 31.90 31.73 60.98 N N O N O
Collapse 3 32.32 31.75 60.54 N N N N O
Hiero 32.30 31.42 60.10 N N N

Table 2: MT ’03 test set results. The first section gives automatic metric scores; the remaining sections indicate
whether each system is statistically significantly better (N) or worse (O) than the SAMT and Hiero baselines.

Metric Scores Sig. SAMT? Sig. Hiero?
System BLEU MET TER B M T B M T
SAMT 22.10 24.94 63.78 O O O
Collapse 1 23.01 26.03 63.35 N N N N
Collapse 2 23.53 26.50 63.29 N N N N N
Collapse 3 23.61 26.37 63.07 N N N N N N
Hiero 23.01 25.72 63.53 N N N

Table 3: MT ’08 test set results. The first section gives automatic metric scores; the remaining sections indicate
whether each system is statistically significantly better (N) or worse (O) than the SAMT and Hiero baselines.

Figure 4: Extracted frequency of each target-side label, with labels arranged in order of decreasing frequency count.
Note the log–log scale of the plot.
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5 Analysis

Tables 2 and 3 show that the coarsened grammars
significantly improve translation performance over
the SAMT baseline. This is especially true for the
“Collapse 3” setting of 72 labels, which scores 1.14
BLEU higher on MT ’03 and 1.51 BLEU higher on
MT ’08 than the uncollapsed system.

On the easier MT ’03 set, label-collapsed systems
do not generally outperform Hiero, although Col-
lapse 3 achieves a statistical tie according to BLEU
(+0.02) and a statistical improvement over Hiero ac-
cording to METEOR (+0.33). MT ’08 appears as
a significantly harder test set: metric scores for all
systems are drastically lower, and we find approxi-
mately 7% to 8% fewer phrase pair matches per sen-
tence. In this case the label-collapsed systems per-
form better, with all three of them achieving statisti-
cal significance over Hiero in at least one metric and
statistical ties in the other. The coarsened systems’
comparatively better performance on the harder test
set suggests that the linguistic information encoded
in multiple-nonterminal grammars helps the systems
more accurately parse new types of input.

Table 1 already showed at a global scale the strong
effect of label collapsing on reducing derivational
ambiguity, as labeled variants of the same basic
structural rule were progressively combined. Since
category coarsening is purely a relabeling operation,
any reordering pattern implemented in the original
SAMT grammar still exists in the collapsed ver-
sions; therefore, any reduction in the size of the
grammar is a reduction in variant labelings. Figure
4 shows this process in more detail for the baseline
SAMT grammar and the three collapsed grammars.
For each grammar, labels are arranged in decreas-
ing order of extracted frequency, and the frequency
count of each label is plotted. The long tail of rare
categories in the SAMT grammar (1950 labels seen
fewer than 100 times each) is combined into a pro-
gressively sharper distribution at each step. Not only
are there fewer rare labels, but these hard-to-model
categories consume a proportionally smaller fraction
of the total label set: from 47% in the baseline gram-
mar down to 26% in Collapse 3.

We find that label collapsing disproportionately
affects frequently extracted and hierarchical rules
over rarer rules and phrase pairs. The 15.7% re-

duction in total grammar size between the SAMT
baseline and the Collapse 3 system affects 18.0% of
the hierarchical rules, but only 1.6% of the phrase
pairs. If rules are counted separately each time they
match another source sentence, the average reduc-
tion in size of a sentence-filtered grammar is 57.8%.

Intuitively, hierarchical rules are more affected by
label collapsing because phrase pairs do not have
many variant left-hand-side labels to begin with,
while the same hierarchical rule pattern may be in-
stantiated in the grammar by a large number of vari-
ant labelings. We can see this situation in more de-
tail by counting variants of a particular set of rules.
Labeled forms of the Hiero-style rule

X → [X1 X2] :: [the X2 of X1] (6)

are among the most frequently used rules in all five
of our systems. The way they are treated by label
collapsing thus has a strong impact on the results of
runtime decoding.

In the SAMT baseline, Rule (6) appears in the
grammar with 221 different labels in the X1 nonter-
minal slot, 53 labels for the X2 slot, and 90 choices
of left-hand side — a total of 1330 different label-
ings all together. More than three-fourths of these
variants were extracted three times or fewer from the
training data; even if they can be used in a test sen-
tence, statistical features for such low-count rules
are poorly estimated. During label collapsing, the
number of labeled variations of Rule (6) drops from
1330 to 325, to 96, and finally to 63 in the Collapse
3 grammar. There, the pattern is instantiated with 14
possible X1 labels, five X2 labels, and three different
left-hand sides.

It is difficult to measure rule sparsity directly (i.e.
to count the number of rules that are missing during
decoding), but a reduction in rule sparsity between
systems should be manifested as an increased num-
ber of hierarchical rule applications. Figure 5 shows
the average number of hierarchical rules applied per
sentence, distinguishing syntactic rules from glue
rules, on both test sets. The collapsed grammars al-
low for approximately one additional syntactic rule
application per sentence compared to the SAMT
baseline, or three additional applications compared
to Hiero. This shows an implicit reduction in miss-
ing syntactic rules in the collapsed grammars. In the
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MT 2003 MT 2008

Figure 5: Average number of hierarchical rules (both syntactic and glue rules) applied per sentence on each test set.

glue rule columns, we note that label collapsing also
promotes a shift away from generic glue rules, pos-
sibly via the creation of more permissive — but still
meaningfully labeled — syntactic rules.

6 Conclusion

We demonstrated a viable technique for reducing the
label set size in SAMT grammars by temporarily in-
ducing bilingual syntax and using it in an existing
tree-to-tree category coarsening algorithm. In col-
lapsing SAMT category labels, we were able to sig-
nificantly improve translation quality while using a
grammar less than half the size of the original. We
believe it is also more robust to test-set or domain
variation than a single-nonterminal Hiero grammar.
Collapsed grammars confer practical benefits during
both model estimation and runtime decoding. We
showed that, in particular, they suffer less from rule
sparsity and derivational ambiguity problems that
are common to larger label sets.

We can highlight two areas for potential improve-
ments in future work. In our current implementation
of label collapsing, we indiscriminately allow either
source labels or target labels to be collapsed at each
iteration of the algorithm (see Equation 3). This is
an intuitively sensible setting when collapsing bilin-
gual labels, but it is perhaps less obviously so for a
monolingually labeled system such as SAMT. An al-
ternative would be to collapse target-side labels only,
leaving the source-side labels alone since they do not
appear in the final grammar anyway. In this case, the
target labels would be represented and clustered as

distributions over a static set of latent categories.
A larger area of future concern is the stopping

point of the collapsing algorithm. In our previ-
ous work (Hanneman and Lavie, 2011), we manu-
ally identified iterations in our run of the algorithm
where the L1 distance between the most recently
collapsed label pair was markedly lower than the
L1 difference of the pair in the previous iteration.
Such an approach is more feasible in our previous
runs of 120 iterations than in ours here of nearly
2100, where it is not likely that three manually cho-
sen stopping points represent the optimal collapsing
results. In future work, we plan to work towards the
development of an automatic stopping criterion, a
more principled test for whether each successive it-
eration of label collapsing provides some useful ben-
efit to the underlying grammar.
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