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Abstract

My thesis will explore ways to improve the
performance of statistical machine translation
(SMT) in low resource conditions. Specif-
ically, it aims to reduce the dependence of
modern SMT systems on expensive parallel
data. We define low resource settings as hav-
ing only small amounts of parallel data avail-
able, which is the case for many language
pairs. All current SMT models use parallel
data during training for extracting translation
rules and estimating translation probabilities.
The theme of our approach is the integration
of information from alternate data sources,
other than parallel corpora, into the statisti-
cal model. In particular, we focus on making
use of large monolingual and comparable cor-
pora. By augmenting components of the SMT
framework, we hope to extend its applicabil-
ity beyond the small handful of language pairs
with large amounts of available parallel text.

1 Introduction

Statistical machine translation (SMT) systems are
heavily dependent on parallel data. SMT doesn’t
work well when fewer than several million lines of
bitext are available (Kolachina et al., 2012). When
the available bitext is small, statistical models per-
form poorly due to the sparse word and phrase
counts that define their parameters. Figure 1 gives a
learning curve that shows this effect. As the amount
of bitext approaches zero, performance drops dras-
tically. In this thesis, we seek to modify the SMT
model to reduce its dependence on parallel data and,
thus, enable it to apply to new language pairs.

Specifically, we plan to address the following
challenges that arise when using SMT systems in
low resource conditions:
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Figure 1: Learning curve that shows how SMT per-
formance on the Spanish to English translation task in-
creases with increasing amounts of parallel data. Perfor-
mance is measured with BLEU and drops drastically as
the amount of bitext approaches zero. These results use
the Europarl corpus and the Moses phrase-based SMT
framework, but the trend shown is typical.

• Translating unknown words. In the context
of SMT, unknown words (or out-of-vocabulary,
OOV) are defined as having never appeared in
the source side of the training parallel corpus.
When the training corpus is small, the percent
of words which are unknown can be high.

• Inducing phrase translations. In high re-
source conditions, a word aligned bitext is used
to extract a list of phrase pairs or translation
rules which are used to translate new sentences.
With more parallel data, this list is increasingly
comprehensive. Using multi-word phrases in-
stead of individual words as the basic transla-
tion unit has been shown to increase translation
performance (Koehn et al., 2003). However,
when the parallel corpus is small, so is the num-
ber of phrase pairs that can be extracted.

• Estimating translation probabilities. In the
standard SMT pipeline, translation probabil-
ities are estimated using relative frequency
counts over the training bitext. However, when
the bitext counts are sparse, probability esti-
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Language #Words Language #Words
Nepali 0.4 Somali 0.5
Uzbek 1.4 Azeri 2.6
Tamil 3.7 Albanian 6.5
Bengali 6.6 Welsh 7.5
Bosnian 12.9 Latvian 40.2
Indonesian 21.8 Romanian 24.1
Serbian 25.8 Turkish 31.2
Ukrainian 37.6 Hindi 47.4
Bulgarian 49.5 Polish 104.5
Slovak 124.3 Urdu 287.2
Farsi 710.3 Spanish 972

Table 1: Millions of monolingual web crawl and
Wikipedia word tokens

mates are likely to be noisy.

My thesis focuses on translating into English. We
assume access to a small amount of parallel data,
which is realistic, especially considering the recent
success of crowdsourcing translations (Zaidan and
Callison-Burch, 2011; Ambati, 2011; Post et al.,
2012). Additionally, we assume access to larger
monolingual corpora. Table 1 lists the 22 languages
for which we plan to perform translation experi-
ments, along with the total amount of monolingual
data that we will use for each. We use web crawled
time-stamped news articles and Wikipedia for each
language. We have extracted the Wikipedia pages
which are inter-lingually linked to English pages.

2 Translating Unknown Words

OOV words are a major challenge in low resource
SMT settings. Here, we describe several approaches
to identifying translations for unknown words.

2.1 Transliteration

For non-roman script languages, in some cases,
OOV words may be transliterated rather than trans-
lated. This is often true for named entities,
where transliterated words are pronounced approxi-
mately the same across languages but have different
spellings in the source and target language alphabets
(e.g. Russian Anna translates as English Anna). In
the case of roman script languages, of course, such
words are often translated correctly without change
(e.g. French Anna translates as English Anna).

In my prior work, Irvine et al. (2010a) and
Irvine et al. (2010b), I have presented a language-
independent approach to gathering pairs of translit-

erated words (specifically, names) in a pair of lan-
guages, built a module to transliterate from one lan-
guage to the other, and integrated the output into an
end-to-end SMT system. In my thesis, I will use
this technique to hypothesize translations for OOV
words. Additionally, I plan to include techniques
that build upon the one described in Hermjakob et
al. (2008) in order to predict when words are likely
to be transliterated rather than translated. That work
uses features based on an Arabic named entity tag-
ger. In our low resource setting, we cannot assume
access to such off-the-shelf tools and must adapt this
existing technique accordingly.

2.2 Bilingual Lexicon Induction

Bilingual lexicon induction is the task of identify-
ing word translation pairs in source and target lan-
guage monolingual or comparable corpora. The task
is well-researched, however, in prior work, Irvine
and Callison-Burch (2013), we were the first to pro-
pose using supervised methods. Because we assume
access to some small amount of parallel data, we can
extract a bilingual dictionary from it to use for posi-
tive supervision. In my prior work and in the thesis,
we use the following signals estimated over com-
parable source and target language corpora: ortho-
graphic, topic, temporal, and contextual similarity.
Here, we give brief descriptions of each.

Orthographic We measure orthographic similar-
ity between a pair of words as the normalized1 edit
distance between the two words. For non-Roman
script languages, we transliterate words into the Ro-
man script before measuring orthographic similarity.

Topic We use monolingual Wikipedia pages to es-
timate topical signatures for each source and target
language word. Signatures contain counts of how
many times a given word appears on each interlin-
gually linked Wikipedia page, and we use cosine
similarity to compare pairs of signatures.

Temporal We use time-stamped web crawl data
to estimate temporal signatures, which, for a given
word, contain counts of how many times that word
appeared in news articles with a certain date. We ex-
pect that source and target language words which are
translations of one another will appear with similar
frequencies over time in monolingual data.

1Normalized by the average of the lengths of the two words
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Contextual We score monolingual contextual
similarity by first collecting context vectors for each
source and target language word. The context vector
for a given word contain counts of how many times
words appear in its context. We use bag of words
contexts in a window of size two. We gather both
source and target language contextual vectors from
our web crawl data and Wikipedia data (separately).

Frequency Words that are translations of one an-
other are likely to have similar relative frequencies
in monolingual corpora. We measure the frequency
similarity of two words as the absolute value of the
difference between the log of their relative monolin-
gual corpus frequencies.

We propose using a supervised approach to learn-
ing how to combine the above signals into a sin-
gle discriminative binary classifier which predicts
whether a source and target language word are trans-
lations of one another or not. Given a classification
score for each source language word paired with all
English candidates, we rerank candidates and evalu-
ate on the top-k. We give some preliminary experi-
mental details and results here.

We have access to bilingual dictionaries for the 22
languages listed in Table 12. For each language, we
choose up to 8, 000 source language words among
those that occur in the monolingual data at least
three times and that have at least one translation in
our dictionary. We randomly divide the source lan-
guage words into three equally sized sets for train-
ing, development, and testing. We use the train-
ing data to train a classifier, the development data
to choose the best classification settings and feature
set, and the test set for evaluation.

For all experiments, we use a linear classifier
trained by stochastic gradient descent to minimize
squared error3 and perform 100 passes over the
training data.4 The binary classifiers predict whether
a pair of words are translations of one another or not.
The translations in our training data serve as posi-
tive supervision, and the source language words in

2Details about the dictionaries in work under review.
3We tried using logistic rather than linear regression, but

performance differences on our development set were very
small and not statistically significant.

4We use http://hunch.net/~vw/ version 6.1.4, and
run it with the following arguments that affect how updates are
made in learning: –exact adaptive norm –power t 0.5
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Figure 2: Performance goes up as features are greedily
added to the feature space. Mean performance is slightly
higher using this subset of six features (second to last bar)
than using all features (last bar). Each plot represents
results over our 22 languages.

the training data paired with random English words5

serve as negative supervision. We used our develop-
ment data to tune the number of negative examples
to three for each positive example. At test time, af-
ter scoring all source language words in the test set
paired with all English words in our candidate set,6

we rank the English candidates by their classifica-
tion scores and evaluate accuracy in the top-k.

We use raw similarity scores based on the signals
enumerated above as features. Additionally, for each
source word, we rank all English candidates with
respect to each signal and include their reciprocal
ranks as another set of features. Finally, we include
a binary feature that indicates if a given source and
target word are identical strings or not.

We train classifiers separately for each of the 22
languages listed in Table 1, and the learned weights
vary based on, for example, corpora size and the re-
latedness of the source language and English (e.g.
edit distance is informative if there are many cog-
nates). When we use the trained classifier to pre-
dict which English words are translations of a given
source word, all English words appearing at least
five times in our monolingual data are candidates,
and we rank them by their classification scores.

Figure 2, from left to right, shows a greedy search

5Among those that appear at least five times in our monolin-
gual data, consistent with our candidate set.

6All English words appearing at least five times in our
monolingual data. In practice, we further limit the set to those
that occur in the top-1000 ranked list according to at least one
of our signals.
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Lang MRR Supv. Lang MRR Supv.
Nepali 11.2 13.6 Somali 16.7 18.1
Uzbek 23.2 29.6 Azeri 16.1 29.4
Tamil 28.4 33.3 Albanian 32.0 45.3
Bengali 19.3 32.8 Welsh 36.1 56.4
Bosnian 32.6 52.8 Latvian 29.6 47.7
Indonesian 41.5 63.5 Romanian 53.3 71.6
Serbian 29.0 33.3 Turkish 31.4 52.1
Ukrainian 29.7 46.0 Hindi 18.2 34.6
Bulgarian 40.2 57.9 Polish 47.4 67.1
Slovak 34.6 53.5 Urdu 13.2 21.2
Farsi 10.5 21.1 Spanish 74.8 85.0

Table 2: Top-10 Accuracy on test set. Performance
increases for all languages moving from the baseline
(MRR) to discriminative training (Supv).

for the best subset of features. The Wikipedia topic
score is the most informative stand-alone feature,
and Wikipedia context is the most informative sec-
ond feature. Adding features to the model beyond
the six shown in the figure does not yield additional
performance gains over our set of languages.

We use a model based on the six features shown in
Figure 2 to score and rank English translation candi-
dates for the test set words in each language.

Our unsupervised baseline method is based on
ranked lists derived from each of the signals listed
above. For each source word, we generate ranked
lists of English candidates using the following six
signals: Crawls Context, Crawls Time, Wikipedia
Context, Wikipedia Topic, Edit distance, and Log
Frequency Difference. Then, for each English can-
didate we compute its mean reciprocal rank7 (MRR)
based on the six ranked lists. The baseline ranks En-
glish candidates according to the MRR scores. For
evaluation, we use the same test sets, accuracy met-
ric, and correct translations.

Table 2 gives results for the baseline and our su-
pervised technique. Across languages, the average
top-10 accuracy using the baseline is 30.4, and us-
ing our technique it is 43.9, about 44% higher.

In Section 3 we use the same features to score all
phrase pairs in a phrase-based MT model and in-
clude them as features in tuning and decoding.

7The MRR of the jth English word, ej , is 1
N

∑N
i=1

1
rankij

,
where N is the number of signals and rankij is ej’s rank ac-
cording to signal i.

2.3 Distributed Representations

Our third method for inducing OOV translations em-
ploys a similar intuition to that of contextual simi-
larity. However, unlike standard contextual vectors
that represent words as large vectors of counts of
nearby words, we propose to use distributed rep-
resentations. These word representations are low-
dimensional and are induced iteratively using the
distributed representations of nearby words, not the
nearby words themselves. Using distributed repre-
sentations helps to alleviate data sparsity problems.

Recently, Klementiev et al. (2012b) induced dis-
tributed representations for the crosslingual setting.
There, the induced embedding is learned jointly over
multiple languages so that the representations of se-
mantically similar words end up “close” to one an-
other irrespective of language. They simultaneously
use large monolingual corpora to induce represen-
tations for words in each language and use parallel
data to bring the representations together across lan-
guages. The intuition for their approach to crosslin-
gual representation induction comes from the multi-
task learning setup of Cavallanti et al. (2010). They
apply this set-up to a variant of a neural probabilistic
language model (Bengio et al., 2003).

In my thesis, I propose to use the distributed rep-
resentations proposed by Klementiev et al. (2012b)
in order to induce translations for OOV words. Ad-
ditionally, I plan to learn how to compose the rep-
resentations of individual words in a phrase into a
single representation, allowing for the induction of
phrase translations in addition to single words.

3 Inducing and Scoring a Phrase Table

Although by extracting OOV word translations we
may increase the coverage of our SMT model,
inducing phrase translations may increase perfor-
mance further. In order to do so, we need to be able
to score pairs of phrases to determine which have
high translation probabilities. Furthermore, using al-
ternate sources of data to score phrase pairs directly
extracted from a small bitext may help distinguish
good translation pairs from bad ones, which could
result from incorrect word alignments, for example.
In moving from words to phrases, we make use of
many of the same techniques described in Section 2.
Here, I present several proposals for addressing the
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major additional challenges that arise for phrases,
and Section 4 presents some experimental results.

3.1 Phrase translation induction

The difficulty in inducing a comprehensive set of
phrase translations is that the number of phrases, on
both the source and target side, is very large. In
moving from the induction of word translations to
phrase translations, the number of comparisons nec-
essary to do an exhaustive search becomes infeasi-
ble. I propose to explore several ways to speed up
that search in my thesis:

• Use distributed phrase representations.
• Use filters to limit the phrase pair search space.

Filters should be fast and could include in-
formation such as word translations, phrase
lengths, and monolingual frequencies.

• Predict when phrases should be translated as a
unit, rather than compositionally. If it is pos-
sible to accurately translate a phrase composi-
tionally from its word translations, then there is
no need to induce a translation for the phrase.

3.2 Phrase translation scoring

In our prior work, Klementiev et al. (2012a), we
have started to explore scoring a phrase table us-
ing comparable corpora. Given a set of phrase pairs,
either induced or extracted from a small bitext, the
idea is to score them using the same signals derived
from comparable corpora described in the context of
bilingual lexicon induction in Section 2.2. No matter
the source of the phrase pairs, the hope is that such
scores will help an SMT model distinguish between
good and bad translations. We estimate both phrasal
and lexical similarity features over phrase pairs. We
estimate the first using contextual, temporal, and
topical signatures over entire phrases. We estimate
the latter by using the lexical contextual, temporal,
topical, and orthographic signatures of each word
in each phrase. We use phrasal word alignments
in order to compute the lexical similarity between
phrases. That is, we compute each similarity met-
ric for each pair of aligned words and then, for each
similarity metric, average over the word pairs. This
approach is analogous to the lexical weighting fea-
ture introduced by Koehn et al. (2003).

Language Train Dev OOV Dev OOV
Words Word Types Word Tokens

Tamil 452k 44% 25%
Bengali 272k 37% 18%
Hindi 708k 34% 11%

Table 3: Information about datasets released by Post et
al. (2012). Training data gives the number of words in the
source language training set. OOV rates give the percent
of development set word types and work tokens that do
not appear in the training data.

4 Preliminary Results

Here we show preliminary results using our methods
for translating OOV words and our methods for scor-
ing a phrase table in end-to-end low resource ma-
chine translation. Post et al. (2012) used Amazon’s
Mechanical Turk to collect a small parallel corpus
for several Indian languages. In our experiments, we
use their Tamil, Bengali, and Hindi datasets. We use
the data splits given by Post et al. (2012) and, fol-
lowing that work, report results on the devtest set.
Table 3 shows statistics about the datasets.

In our experiments, we use the Moses phrase-
based machine translation framework (Koehn et al.,
2007). For each language, we extract a phrase ta-
ble from the training data with a phrase limit of
seven and, like Post et al. (2012), use the English
side of the training data to train a language model.
Throughout our experiments, we use MIRA (Chiang
et al., 2009) for tuning the feature set.

Our experiments compare the following:
• A baseline phrase-based model, using phrase

pairs extracted from the training data and the
standard phrasal and lexical translation proba-
bilities based on the bitext.

• Baseline supplemented with word translations
induced by our baseline unsupervised bilingual
lexicon induction method (Section 2.2)

• Baseline supplemented with word translations
induced by our supervised bilingual lexicon in-
duction methods (Section 2.2).

• Baseline model supplemented with additional
features, estimated over comparable corpora
(Section 3.2).

• Baseline model supplemented with induced
word translations and also additional features.

Table 4 shows our results. Adding additional
phrase table features increased BLEU scores from
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Tamil Bengali Hindi
Experiment K BLEU Diff. BLEU Diff. BLEU Diff.
Baseline 9.16 12.14 14.85
+ Mono. Features 9.70 +0.54 12.54 +0.40 15.16 +0.31
+ Unsupervised Word Translations 1 9.33 +0.17 12.11 -0.03 15.37 +0.52
+ Supervised Word Translations 1 9.76 +0.60 12.38 +0.24 15.64 +0.79
+ Mono. Feats. & Sup. Trans. 1 10.20 +1.04 13.01 +0.87 15.84 +0.99
+ Mono. Feats. & Sup. Trans. 5 10.41 +1.25 12.64 +0.50 16.02 +1.17
+ Mono. Feats. & Sup. Trans. 10 10.12 +0.96 12.57 +0.43 15.86 +1.01

Table 4: BLEU performance gains that target coverage and accuracy separately and together. We add the top-K
ranked translations for each OOV source word.

0.31 BLEU points for Hindi to 0.54 for Tamil.
Next, we monolingually induced translations for

all development and test set source words. We
experimented with adding translations for source
words with low training data frequencies in addition
to OOV words but did not observe BLEU improve-
ments beyond what was gained by translating OOVs
alone. Our BLEU score gains that result from im-
proving OOV coverage, +Supervised Word Transla-
tions, range from 0.24 for Bengali to 0.79 for Hindi
and outperform the unsupervised lexicon induction
baseline for all three languages.

Using comparable corpora to supplement both the
feature space and the coverage of OOVs results in
translations that are better than applying either tech-
nique alone. For all languages, the BLEU improve-
ments are approximately additive. For Tamil, the to-
tal BLEU point gain is 1.25, and it is 1.17 for Hindi
and 0.87 for Bengali. Table 4 shows results as we
add the top-k ranked translation for each OOV word
and vary k. For Tamil and Hindi, we get a slight
boost by adding the top-5 translations instead of the
single best but get no further gains with the top-10.

5 Previous Work

Prior work on bilingual lexicon induction has shown
that a variety of signals derived from monolingual
data, including distributional, temporal, topic, and
string similarity, are informative (Rapp, 1995; Fung
and Yee, 1998; Koehn and Knight, 2002; Schafer
and Yarowsky, 2002; Monz and Dorr, 2005; Huang
et al., 2005; Schafer, 2006; Klementiev and Roth,
2006; Haghighi et al., 2008; Mimno et al., 2009;
Mausam et al., 2010; Daumé and Jagarlamudi,
2011). This thesis builds upon this work and uses
a diverse set of signals for translating full sentences,
not just words. Recently, Ravi and Knight (2011),
Dou and Knight (2012), and Nuhn et al. (2012) have

worked toward learning a phrase-based translation
model from monolingual corpora, relying on deci-
pherment techniques. In contrast to that research
thread, we make the realistic assumption that a small
parallel corpus is available for our low resource lan-
guages. With a small parallel corpus, we are able to
take advantage of supervised techniques, changing
the problem setting dramatically.

Since the early 2000s, the AVENUE (Carbonell
et al., 2002; Probst et al., 2002; Lavie et al., 2003)
project has researched ways to rapidly develop MT
systems for low-resource languages. In contrast
to that work, my thesis will focus on a language-
independent approach as well as integrating tech-
niques into current state-of-the-art SMT frame-
works. In her thesis, Gangadharaiah (2011) tack-
les several data sparsity issues within the example-
based machine translation (EBMT) framework. Her
work attempts to tackle some of the same data spar-
sity issues that we do including, in particular, phrase
table coverage. However, our models for doing so
are quite different and focus much more on the use
of a variety of new non-parallel data resources.

Other approaches to low resource machine trans-
lation include extracting parallel sentences from
comparable corpora (e.g. Smith et al. (2010)) and
translation crowdsourcing. Our efforts are orthogo-
nal and complementary to these.

6 Conclusion

My thesis will explore using alternative data
sources, other than parallel text, to inform statisti-
cal machine translation models. In particular, I will
build upon a long thread of research on bilingual lex-
icon induction from comparable corpora. The result
of my thesis will be broadening the applicability of
current SMT frameworks to language pairs and do-
mains for which parallel data is limited.
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