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más importante que me ha pasado nunca.
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ABSTRACT

This thesis presents different contributions in the fields of fully-automatic statistical machine
translation and interactive statistical machine translation.

In the field of statistical machine translation there are three problems that are to be ad-
dressed, namely, the modelling problem, the training problem and the search problem. In this
thesis we present contributions regarding these three problems.

Regarding the modelling problem, an alternative derivation of phrase-based statistical
translation models is proposed. Such derivation introduces a set of statistical submodels gov-
erning different aspects of the translation process. In addition to this, the resulting submodels
can be introduced as components of a log-linear model.

Regarding the training problem, an alternative estimationtechnique for phrase-based
models that tries to reduce the strong heuristic component of the standard estimation tech-
nique is proposed. The proposed estimation technique considers the phrase pairs that com-
pose the phrase model as part of complete bisegmentations ofthe source and target sentences.
We theoretically and empirically demonstrate that the proposed estimation technique can be
efficiently executed. Experimental results obtained with the open-source THOT toolkit also
presented in this thesis, show that the alternative estimation technique obtains phrase mod-
els with lower perplexity than those obtained by means of thestandard estimation technique.
However, the reduction in the perplexity of the model did notallow us to obtain improvements
in the translation quality.

To deal with the search problem, we propose a search algorithm which is based on the
branch-and-bound search paradigm. The proposed algorithmgeneralises different search
strategies that can be accessed by modifying the input parameters. We carried out experiments
to evaluate the performance of the proposed search algorithm.

Additionally, we also study an alternative formalisation of the search problem in which
the best alignment at phrase-level is obtained given the source and target sentences. To solve
this problem, smoothing techniques are applied over the phrase table. In addition to this,
the standard search algorithm for phrase-based statistical machine translation is modified to
explore the space of possible alignments. Empirical results show that the proposed techniques
can be used to efficiently and robustly generate phrase-based alignments.

One disadvantage of phrase-based models is its huge size when they are estimated from
very large corpora. In this thesis, we propose techniques toalleviate this problem during
both the estimation and the decoding stages. For this purpose, main memory requirements
are transformed into hard disk requirements. Experimentalresults show that the hard disk
accesses do not significantly decrease the efficiency of the SMT system.

With respect to the contributions in the field of interactivestatistical machine translation,
on the one hand, we present alternative techniques to implement interactive machine trans-
lation systems. On the other hand, we give a proposal of an interactive machine translation
system which is able to learn from user-feedback by means of online learning techniques.
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We propose two alternative techniques for interactive statistical machine translation. The
first one is based on the generation of partial alignments at phrase level. This approach
constitutes an application of the phrase-based alignment generation techniques that are also
proposed in this thesis. The second proposal tackles the interactive machine translation pro-
cess by means of word graphs and stochastic error-correction models. The proposed ap-
proach differs from other existing approaches described inthe literature in the introduction of
error-correction techniques in the statistical frameworkof the interactive machine translation
process. We carried out experiments to evaluate the two proposed techniques, showing that
they are competitive with state-of-the-art interactive machine translation systems. In addi-
tion to this, such techniques have been used to implement an interactive machine translation
prototype following a client-server architecture.

Finally, the above mentioned interactive machine translation system with online learning
is based on the use of statistical models that can be incrementally updated. The main difficulty
defining incremental versions of the statistical models involved in the interactive translation
process appears when such models are estimated by means of the expectation-maximisation
algorithm. To solve this problem, we propose the application of the incremental version of
such algorithm. The proposed interactive machine translation system with online learning
was empirically evaluated, demonstrating that the system is able to learn from scratch or
from previously estimated models. In addition to this, the obtained results also show that the
interactive machine translation system with online learning significantly outperforms other
state-of-the-art systems described in the literature.
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RESUMEN

Esta tesis presenta diversas contribuciones en los campos de la traduccíon autoḿatica es-
tad́ıstica y la traduccíon interactiva desde un enfoque estadı́stico.

En el campo de la traducción autoḿatica estad́ıstica, se presentan contribuciones en
relacíon a los tres problemas fundamentales a abordar en dicha disciplina: el problema del
modelado, el problema del entrenamiento y el problema de la búsqueda.

Respecto al problema del modelado, se propone una derivación alternativa de los mode-
los de secuencias de palabras. Dicha derivación introduce un conjunto de submodelos prob-
abiĺısticos que gobiernan diversos aspectos del proceso de traducción. Adicionalmente, los
submodelos que se obtienen pueden introducirse como componentes de un modelo log-lineal.

Con respecto al problema del entrenamiento, se describe unatécnica alternativa de es-
timación de modelos de secuencias de palabras que trata de reducir la fuerte componente
heuŕıstica de las t́ecnicas de entrenamiento estándar. La t́ecnica de estimación propuesta con-
sidera los pares de secuencias de palabras que componen el modelo como parte de biseg-
mentaciones completas de las frases origen y destino. Se demuestra tanto téorica como
emṕıricamente que la nueva técnica de estimación puede ejecutarse eficientemente. Resulta-
dos experimentales obtenidos con la herramienta de estimación de libre uso THOT presentada
en esta tesis, demuestran que la técnica de estimación propuesta obtiene modelos con menor
perplejidad que los obtenidos con la técnica de estimación est́andar. Pese a ello, no se han
conseguido mejoras en los resultados de traducción.

Para abordar el problema de la búsqueda se propone el uso de un algoritmo basado en
el paradigma de ramificación y poda. El algoritmo propuesto generaliza distintas estrategias
de b́usqueda a las que se accede modificando los parámetros de entrada. El rendimiento de
las distintas variantes de funcionamiento que presenta el algoritmo de b́usqueda generalizado
fue evaluado empı́ricamente.

Además de lo anterior, también se aborda una modificación del problema de la búsqueda
que consiste en la obtención del mejor alineamiento a nivel de secuencias de palabras para
un par de frases. Para resolver este nuevo problema se aplican técnicas de suavizado so-
bre los modelos de secuencias de palabras y se modifica el algoritmo de b́usqueda definido
inicialmente para que pueda explorar el espacio de posiblesalineamientos. Resultados expe-
rimentales demuestran que las técnicas propuestas son capaces de generar alineamientos de
forma eficiente y robusta.

Un inconveniente del uso de modelos de secuencias de palabras es su enorme tamaño
cuando se estiman a partir de corpus muy grandes. En la tesis se proponen t́ecnicas para
aliviar este problema, tanto en la fase de estimación como en la fase de decodificación. Para
ello se transforman requerimientos de memoria en requerimientos de disco duro. Resultados
emṕıricos demuestran que los accesos a disco no degradan apreciablemente la eficiencia del
sistema.

En el campo de la traducción interactiva desde un enfoque estadı́stico, se presentan, en
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primer lugar, t́ecnicas alternativas para implementar sistemas de traducción interactiva. En
segundo lugar, también se describe una propuesta de sistema de traducción interactiva capaz
de aprender de las traducciones validadas por el usuario mediante t́ecnicas de aprendizaje
online.

Con respecto a las técnicas alternativas de traducción interactiva, se proponen dos técnicas
diferentes. La primera de ellas se basa en la generación de alineamientos parciales a nivel de
secuencias de palabras. Este enfoque constituye una aplicación de la generación de alinea-
mientos a nivel de secuencias de palabras también descrito en esta tesis. La segunda de las
técnicas propuestas aborda el proceso de traducción interactiva con la ayuda de grafos de
palabras y modelos correctores de errores estocásticos. El enfoque propuesto difiere de otros
sistemas de traducción interactiva basados en grafos de palabras en que introduce el proceso
de correccíon de errores dentro del marco estadı́stico. Ambas t́ecnicas de traducción interac-
tiva se han evaluado mediante experimentos, demostrando ser competitivas con sistemas de
traduccíon interactiva del estado del arte. Además, dichas t́ecnicas se han usado para imple-
mentar un prototipo de traducción interactiva basado en la arquitectura cliente-servidor.

Finalmente, el sistema de traducción interactiva con aprendizaje online que se men-
cionaba anteriomente, se basa en el uso de modelos estadı́sticos actualizables de manera
incremental. El principal obstáculo a la hora de obtener versiones incrementales de los mo-
delos estad́ısticos involucrados en el proceso de traducción aparece cuando dichos modelos
se estiman por medio del algoritmoexpectation-maximisation. Para resolver este problema se
propone la aplicación de la visíon incremental de dicho algoritmo. El sistema de traducción
interactiva con aprendizaje online fue evaluado experimentalmente, demostrándose que es
capaz de aprender tanto a partir de modelos previamente estimados como de modelos vacı́os.
Los resultados de los experimentos también demuestran que el rendimiento del sistema que
se propone es significativamente mejor que otros sistemas del estado del arte descritos en la
literatura.
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RESUM

Aquesta tesi presenta diverses contribucions als camps de la traduccío autom̀atica estad́ıstica
i la traduccío interactiva des d’un enfocament estadı́stic.

Al camp de la traducció autom̀atica estad́ıstica, es presenten contribucions en relació als
tres problemes fonamentals a abordar en aquesta disciplina: el problema del modelatge, el
problema de l’entrenament i el problema de la cerca.

Respecte el problema del modelatge, es proposa una derivació alternativa dels models de
seq̈uències de paraules. Aquesta derivació introdueix un conjunt de submodels probabilı́stics
que governen diversos aspectes del procés de traducció. Addicionalment, els submodels que
s’obtenen poden introduir-se com a components d’un model log-lineal.

Respecte al problema de l’entrenament, es descriu una tècnica alternativa d’estima-ció de
models de seq̈uències de paraules que tracta de reduir la forta component heuŕıstica de les
tècniques d’entrenament estàndard. La t̀ecnica d’estimació proposada considera els parells
de seq̈uències de paraules que componen el model com a part de bisegmentacions completes
de les frases origen i destı́. Es demostra tant teòrica com emṕıricament que la nova tècnica
d’estimacío pot executar-se eficientment. Resultats experimentals obtinguts amb la ferra-
menta d’estimació de lliureús THOT presentada en aquesta tesi, demostren que la tècnica
d’estimacío proposada obté models amb menor perplexitat que els obtinguts amb la tècnica
d’estimacío est̀andard. No obstant això, no s’han aconseguit millores en els resultats de tra-
duccío.

Per a abordar el problema de la cerca es proposa l’ús d’un algorisme basat en el paradigma
de ramificacío i poda. L’algorisme proposat generalitza distintes estratègies de cerca a les
quals s’accedeix modificant els paràmetres d’entrada. El rendiment de les distintes variants
de funcionament que presenta l’algorisme de cerca generalitzat s’avalùa emṕıricament.

A més a ḿes, tamb́e s’aborda una modificació del problema de la cerca que consisteix
en l’obtencío del millor alineament a nivell de seqüències de paraules per a un parell de
frases. Per resoldre aquest nou problema s’apliquen tècniques de suavitzat sobre els mod-
els de seq̈uències de paraules i es modifica l’algorisme de cerca definit inicialment perqùe
puga explorar l’espai de possibles alineaments. Els resultats experimentals demostren que les
tècniques proposades són capaces de generar alineaments de forma eficient i robusta.

Un inconvenient de l’́us de models de seqüències de parauleśes el seu enorme tamany
quan s’estimen a partir de corpus molt grans. En la tesi es proposen t̀ecniques per a alleugerir
aquest problema, tant en la fase d’estimació com en la fase de decodificación. Amb aquesta
finalitat es transformen els requeriments de memòria en requeriments de disc dur. Els resul-
tats emṕırics demostren que els accessos a disc no degraden apreciablement l’eficìencia del
sistema.

Al camp de la traducció interactiva des d’un enfocament estadı́stic, es presenten, en
primer lloc, t̀ecniques alternatives per a implementar sistemes de traducció interactiva. En
segon lloc, tamb́e es descriu una proposta de sistema de traducció interactiva capa d’aprendre
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de les traduccions validades per l’usuari mitjanant tècniques d’aprenentatge online.
Respecte a les tècniques alternatives de traducció interactiva, es proposen dues tècniques

diferents. La primera d’elles es basa en la generació d’alineaments parcials a nivell de
seq̈uències de paraules. Aquest enfocament constitueix una aplicacío de la generació
d’alineaments a nivell de seqüències de paraules també descrit en aquesta tesi. La segona
de les t̀ecniques proposades aborda el procés de traducció interactiva amb l’ajuda de grafs de
paraules i models correctors d’errades estocàstics. L’enfocament proposat difereix d’altres
sistemes de traducció interactiva basats en grafs de paraules en que introdueix el procés de
correccío d’errades dins del marc estadı́stic. Ambdues t̀ecniques de traducció interactiva
s’han avaluat mitjanant experiments, demostrant ser competitives amb sistemes de traducció
interactiva de l’estat de l’art. A ḿes a ḿes, aquestes tècniques s’han usat per a implementar
un prototip de traducció interactiva basat en l’arquitectura client-servidor.

Finalment, el sistema de traducció interactiva amb aprenentatge online que es mencionava
anterioment, es basa en l’ús de models estadı́stics actualizables de manera incremental. El
principal obstacle a l’hora d’obtenir versions incrementales dels models estadı́stics involu-
crats en el proćes de traducció apareix quan aquests models s’estimen per mitjà de l’algorisme
expectation-maximisation. Per a resoldre aquest problemaes proposa l’aplicació de la visío
incremental d’aquest algorisme. El sistema de traducció interactiva amb aprenentatge on-
line s’avalùa experimentalment, demostrant-se queés capa d’aprendre tant a partir de models
prèviament estimats com de models buits. Els resultats dels experiments tamb́e demostren
que el rendiment del sistema que es proposaés significativament millor que altres sistemes
de l’estat de l’art descrits en la literatura.
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PREFACE

Natural language processing (NLP) is the computerised approach to generating and under-
standing human languages, both oral or written. The goal of NLP is to accomplish human-like
language processing for a range of tasks or applications. NLP is a field of artificial intelli-
gence, and its origins can be found in the disciplines of linguistics, computer science and
cognitive psychology. In the field of NLP there are two distinct focuses, namely, language
processing and language generation. The first of these refers to the analysis of language for
the purpose of producing a meaningful representation, while the latter refers to the produc-
tion of language from a representation. Natural language processing provides both theory
and implementations for a range of applications, includinginformation retrieval, information
extraction, question-answering, summarisation, machinetranslation, dialogue systems, etc.

This thesis explores the area of machine translation (MT), which was the first computer-
based application related to natural language. The discipline of MT investigates the use
of computer software to translate text or speech from one language to another. The first
proposals for MT using computers dates back to the 1950’s, and were based on information
theory, expertise in breaking enemy codes during the secondworld war and speculation about
the underlying principles of natural language. Even after more than 50 years of research, MT
remains an open problem.

Current MT systems use different translation technologies. These translation technologies
can be classified into two main approaches: rule-based systems and corpus-based systems.
Rule-based systems use a set of translation rules created byhuman translators to generate
their output. These rules determine how to translate from one language to another. Corpus-
based systems make use of sets of translation examples (alsocalled corpus or parallel texts)
from one language to another. The translation examples are used to infer the translation of
the source text.

This thesis approaches MT under the statistical framework.Statistical MT (SMT) sys-
tems are a kind of corpus-based MT systems that use parallel texts to estimate the parameters
of the statistical models involved in the translation process. Once the statistical models have
been estimated, they are used to infer the translation of newsentences. Different statisti-
cal translation models have been proposed since the beginning of the research in SMT. The
IBM models were the first statistical translation models used in SMT. In these models, the
fundamental unit of translation is a word in a given language. This restricted conception of
the translation process does not allow to obtain good translation results due to its inability to
capture context information. To solve this problem, singlewords were replaced as the funda-
mental unit of translation by multiple words in a new family of statistical translation models.
Among the different multi-word statistical translation models that have been proposed so far,
the so-called phrase-based models currently constitute the state-of-the-art in SMT. Phrase-
based models work by translating sequences of words or phrases. These phrases are not
linguistically motivated; instead, they are extracted from corpora using statistical methods.
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Current MT systems are not able to produce ready-to-use texts. Indeed, MT systems
usually require human post-editing in order to achieve high-quality translations. This moti-
vates an alternative application of MT in which the MT systemcollaborates with the user to
generate the output translations. This alternative application receives the name of computer-
assisted translation (CAT). The canonical example of CAT system is represented by the so-
called memory-based machine translation (MBMT) systems. MBMT systems store user-
validated translations (translation memories) for its reuse in the translation of similar texts.
These reused translations are post-edited by the user so as to generate the target text. How-
ever, CAT is a broad and imprecise term covering a range of tools. In this thesis, we will
focus on a specific instantiation of the CAT paradigm which receives the name of interactive
machine translation (IMT). In the IMT framework, the user obtains her desired translations in
a series of interactions with the MT system. IMT differs frompost-editing CAT techniques
in its capability to take advantage of the knowledge of the human translator (it should be
noticed that when applying post-editing CAT techniques, the CAT system and its user work
in separated serial processes).

The scientific goals of this thesis can be divided into two groups as follows:

1. Fully automatic phrase-based SMT. We develop contributions regarding the three
problems that are to be addressed in SMT, namely, the modelling, the estimation and
the search problems. With respect to the modelling problem,we propose an alternative
phrase-based model derivation that allows us to obtain a setof probabilistic models
governing different aspects of the translation process. Regarding the estimation prob-
lem, we describe a new estimation procedure that tries to reduce the strong heuristic
component of the standard estimation algorithm. Both the new and the standard esti-
mation techniques were implemented in a publicly availabletoolkit called THOT which
is also presented in this thesis. With respect to the search problem, we describe a search
algorithm that is based in the branch-and-bound paradigm. The proposed search algo-
rithm generalises a set of search strategies that can be accessed by only modifying the
input parameters of the algorithm. In addition to this, we also study a modification of
the search problem that consists in the generation of alignments at phrase level. Finally,
one important disadvantage of phrase-based models is theirhuge size when estimated
from very large corpora. We propose techniques to alleviatethis problem during both
the estimation and the decoding stages.

2. Interactive phrase-based SMT. We propose two novel IMT techniques. The first one
constitutes an application of the phrase-level alignment generation techniques that were
studied for fully automatic phrase-based SMT. The second IMT technique combines
phrase-based translation models and stochastic error-correction models in a unified
statistical framework. In addition to this, we describe an IMT system able to learn
from user feedback by means of online learning techniques.

This thesis is structured in four parts, containing a total of nine chapters plus the bibliog-
raphy section. In the following figure we show the dependencies between chapters:
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The content of each chapter is as follows:

Chapter 1 introduces the disciplines of NLP and MT. Among the different translation
technologies used in MT, this chapter is focused on the SMT framework, briefly intro-
ducing the main SMT techniques that have been described in the literature. In addition
to this, the discipline of IMT is also introduced. Finally, we present the automatic
evaluation measures and the main features of the bilingual corpora that were used to
empirically evaluate the proposals presented in this thesis.

Chapter 2 presents the list of scientific and technologic goals of thisthesis. These
goals are classified into fully automatic phrase-based SMT goals and interactive phrase-
based SMT goals.

Chapter 3 describes different proposals regarding both the modelling and the estima-
tion problem in SMT. First, a novel estimation technique forphrase-based models that
tries to reduce the strong heuristic component of the standard estimation technique is
presented. Second, we describe techniques to deal with verylarge corpora during the
estimation of phrase-based models. Finally, we show a specific derivation for phrase-
based models.

DOM-DSIC-UPV xv



Chapter 4 presents different proposals regarding the search problemin SMT. First, a
generalised search algorithm based on the branch-and-bound paradigm is defined. Sec-
ond we describe techniques to deal with huge phrase-based models during the search
stage. Finally, we study a modification of the search problemthat consists in the gen-
eration of alignments at phrase level.

Chapter 5 presents the empirical results of the evaluation of the fully automatic phrase-
based SMT techniques presented in chapters3 and4.

Chapter 6 describes two novel IMT techniques. The first one is based on the phrase-
level alignment generation techniques described in Chapter 4. The second one com-
bines phrase-based models and stochastic error-correction models in a unified statistical
framework.

Chapter 7 describes an IMT system able to learn from user feedback by means of
online learning techniques.

Chapter 8 presents the empirical results of the evaluation of the phrase-based IMT
techniques presented in chapters6 and7.

Chapter 9 presents a summary of the work presented in this thesis, including a list of
scientific publications, followed by a list of future directions for further developments
of the work presented here.

The previous content is complemented by a set of appendices:

Appendix A shows a detailed derivation of the incremental expectation-maximisation
algorithm for the HMM-based word alignment model. The results of this derivation
are used in Chapter7.

Appendix B presents the open-source THOT toolkit for statistical machine translation.
The THOT toolkit has been used to carry out the experiments presentedin this thesis.

Appendix C describes the main features of a web-based IMT prototype that has been
developed following the techniques proposed in this thesis.

Appendix D presents the list of mathematical symbols and acronyms usedin this the-
sis.
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CHAPTER 1

I NTRODUCTION

1.1 Natural Language Processing

Natural language processing (NLP) is the computerised approach to generating and under-
standing human languages, both oral or written. The goal of NLP is to accomplish human-like
language processing for a range of tasks or applications. NLP is a field of artificial intelli-
gence, and its origins can be found in the disciplines of linguistics, computer science and
cognitive psychology. In the field of NLP there are two distinct focuses, namely, language
processing and language generation. The first of these refers to the analysis of language for
the purpose of producing a meaningful representation, while the latter refers to the produc-
tion of language from a representation. Natural language processing provides both theory
and implementations for a range of applications, includinginformation retrieval, information
extraction question-answering, summarisation, machine translation, dialogue systems, etc.

This thesis explores the area of machine translation (MT), which was the first computer-
based application related to natural language. The discipline of MT investigates the use of
computer software to translate text or speech from one language to another.

1.2 Machine Translation

Multiplicity of languages is inherent to modern society. Phenomena such as the globalisation
and technological development have dramatically increased the need of translating informa-
tion from one language to another. This necessity can be found in different fields including
political institutions, industry, education or entertainment. A good example of multilingual-
ism can be found in the European Union (EU) political institutions. The EU has 27 Member
States and 23 official languages. Translation in the European institutions concerns legislative,
policy and administrative documents. According to [Com08], in 2008 the EU employed 1750
translators working full time on translating documents andon other language-related tasks.
To cope with a level of demand that fluctuates in response to political imperatives, the EU
used external translation providers which generated approximately the fourth part of the EU
translation output. The EU also maintained a web translation unit specialised in the trans-
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lation of web pages. As a result, in 2008 the EU translation services translated more than
1 800 000 pages and spent about 1000 million Euros on translation and interpreting.

The high demand of translations cannot be completely satisfied by human translators,
motivating a great interest in the development of machine translation (MT) techniques. The
aim of MT is to carry out the translation process from one language to another by means of a
computer. MT techniques are specially useful to translate formal documents such as manuals,
official reports, financial reports, etc. where the strict adherence to layout and stylistic rules
is considered important to produce high quality translations. MT has gained more and more
importance in the last years and is already being used by companies and political institutions.

The first proposals for MT using computers dates back to the 1950’s, and were based
on information theory, expertise in breaking enemy codes during the second world war and
speculation about the underlying principles of natural language. Early work in MT took the
simplistic view that the only differences between languages resided in their vocabularies and
the permitted word orders. The results obtained following these principles were poor, since
the proposed MT systems simply used word dictionaries to select the appropriate words for
translation and reordered the resulting words following the word-order rules of the target
language. Even after more than 50 years of research, MT remains an open problem.

In the following sections we will briefly describe the main strategies that have been his-
torically applied to tackle the problem of MT.

1.2.1 MT Systems Taxonomy

The different approximations to the MT problem can be classified using different criteria:

1. Depending on the type input: text or speech.

2. Depending on the type of the application which uses the translations. These applica-
tions can be divided into four different groups: applications that translate the input into
a database query; applications that produce an approximated translation of the input
for its correction in a post-edition stage by the user; applications that interactively gen-
erate the output in collaboration with the user; and finally,fully automated translation
systems. Currently, fully automated translation systems can only work on restricted
domains.

3. Depending on the translation technology. We can identifytwo main approaches: rule-
based systems and corpus-based systems. In spite of the factthat these systems use
opposite technologies, a number of proposals combining both approaches can be found
in the literature.

The vast majority of the introductory works on MT [Hob92, HS92, Som98, Tru99, Lop08]
classify MT systems depending on the translation technology that these systems use. In the
following sections, we will focus on the different translation technologies that have been
proposed so far.
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1.2.2 Rule-Based Systems

Rule-based systems use a set of translation rules created byhuman translators to generate
their output. These rules determine how to translate from one language to another. The
process of creating the translation rules is very costly andrequires the knowledge provided
by expert linguists in both the source and the target languages. Regular rule-based systems
execute two different steps to generate their translations, namely, the analysis step and the
generation step. The analysis step extracts information from the source text. Once the analy-
sis step has been executed, the generation step produces thetarget text. One extra step can be
introduced between the analysis and the generation steps: the transference step. The trans-
ference step transforms the result of the analysis step intoan abstract, less language-specific
representation. A particular case of the transfer step usesan interlingua, i.e., an abstract lan-
guage representation. The target sentence is then generated from the interlingua. The use of
an interlingua requires a deep analysis of the source text, in addition to this, there is no lan-
guage that is globally accepted for its use as an interlingua; by these reasons not all rule-based
systems use it. To avoid the necessity of an interlingua, thetransference step is executed. The
transference step allows to reduce the complexity of the analysis step. The previous consid-
erations can be depicted as a diagram by means of the so-called Vauquois triangle[Vau75]
(see Figure1.1).

Rule-based systems can be classified according to the importance assigned to the analysis
and transference steps. Under this criterion, we find three different rule-based approaches,
namely, the direct approach, the transfer approach and the interlingual approach.

Direct Approach

The direct approach is the translation strategy adopted by the first machine translation systems
that were proposed. The direct approach uses a word-to-wordtranslation strategy including a
morpho-syntactic analysis of the source text. The morpho-syntactic analysis tries to capture
grammar categories and other morphological information, but excludes relationships between
words or groups of words.

Transfer Approach

This approach first generates a logical representation of the source text. Once this logical
representation has been generated, a set of transfer rules is applied to obtain its equivalent
representation in the target language. Finally, the targettext is generated from the target
language logical representation.

Interlingual Approach

The Interlingual approach first performs a deep analysis of the source text. As a result of
this analysis, an abstract language representation is obtained. This representation is called
interlingua and is independent of both the source and the target languages. After obtaining
this conceptual representation, the translation is generated; in other words, the source text
is first understood and then translated. The interlingual approach has one advantage with
respect to the previous approaches, specifically, we only need to define a correspondence
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between each language and the interlingua instead of defining correspondences between each
language pair.

Transfer

Direct

Interlingua

Analysis Generation

Source language Target language

Figure 1.1: Vauquois triangle.

1.2.3 Corpus-Based Systems

Corpus-based systems make use of the so-called empirical approaches to MT. The main fea-
ture of corpus-based systems is that they use sets of translation examples (also called corpus
or parallel texts) from one language to another. The translation examples are used to infer the
translation of the source text. Once a corpus-based system has been implemented, the soft-
ware can be quickly adapted for its use with different language pairs or different domains, as
opposed to rule-based systems, which are specific for a givenlanguage pair.

Corpus-based systems can be classified into two groups: the example-based machine
translation systems and the statistical machine translation systems. Additionally, there exist
other approaches that are different to the previous ones andwill also be mentioned in later
sections.

Example-Based Machine Translation (EBMT) Systems

The example-based approach to machine translation uses a set of translation examples as
its main knowledge base. EBMT systems execute two steps to generate their translations,
namely, the comparison and the recombination steps: first, aset of hypotheses that are similar
to the source text is extracted from the whole corpus (comparison). Second, the hypotheses
are recombined to generate the final translation of the source text (recombination).

One important translation technology derived from the example-based approach to MT
is the so-called memory-based machine translation (MBMT).MBMT allows to assist human
translators in the translation of texts. MBMT stores user-validated translations (translation
memories) for its reuse in the translation of similar texts.
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Statistical Machine Translation (SMT) Systems

The statistical approach to MT requires the availability ofa great amount of parallel text con-
taining relevant information for the translation process.This parallel text is used to estimate
the parameters of a set of statistical models involved in thetranslation process. Once the
statistical models have been estimated, they are used to infer the translation of new source
sentences.

Some authors [Som98] classify the statistical approach into the example-basedapproach
because of the necessity of parallel text to estimate the statistical models. However, the
statistical approach differs from the example-based approach because of the different way in
which the comparison-recombination steps described aboveare implemented. Specifically,
the statistical approach is focused on statistical parameter estimation. By this reason, other
authors consider that the statistical approach can be classified as a separate approach.

In the first works on SMT, the statistical models had to be simplified. Specifically, a sim-
plified grammar was used instead of a complete grammar of the target language. The transfer
rules were replaced by two different statistical models, namely, a model that captures lexical
relationships between source and target words; and a model that captures the relationships
between the positions of the words of the source and target sentences.

More recently, and due to the great increase in the linguistic resources, better and more
complex statistical models have been obtained. This will beexplained with more detail in
section1.3.

Other Corpus-Based Systems

There exit alternative approaches that can be followed to implement corpus-based systems.
Examples of these alternative approaches are the connectionist approach, the finite state ap-
proach and the synchronous context free grammars approach.The connectionist approach
uses artificial neural networks to tackle the problem of MT, and some authors consider that it
is a subclass of the statistical approach. The finite state approach to machine translation uses
the mathematical tools provided by the automata theory. Finally, the synchronous context
free grammars approach applies context free grammars to MT.Both the finite state approach
and the synchronous context free grammars approach can alsobe classified into the statistical
approach.

1.3 Statistical Machine Translation

The statistical approach to MT formalises the problem of generating translations under a
statistical point of view. This approach is classified into the corpus-based approaches, as was
explained in section1.2.3. The availability of corpora, specifically parallel-texts, is required
to estimate the parameters of the statistical models involved in the translation process. Such
statistical models can be described as amathematical theoryabout how a sentence in the
source language is translated into its equivalent in the target language. It is worthy of note that
one important advantage of the SMT systems is their ability to work with different language
pairs if the corresponding parallel texts to estimate the parameters of the statistical models
are available.
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More formally, given a source sentencefJ
1 ≡ f1...fj ...fJ in the source languageF , we

want to find its equivalent target sentenceeI1 ≡ e1...ei...eI
a in the target languageE . From the

set of all possible sentences of the target language, we are interested in that with the highest
probability according to the following equation:

êÎ1 = argmax
I,eI1

{Pr(eI1|f
J
1 )} (1.1)

The early works on SMT were based on the use ofgenerative models. A generative model
is a full probability model of all statistical variables that are required to randomly generating
observable data. Generative models decomposePr(eI1|f

J
1 ) applying the Bayes decision rule.

Taking into account thatPr(fJ
1 ) does not depend oneI1 we arrive to the following expression:

êÎ1 = argmax
I,eI1

{Pr(eI1) · Pr(fJ
1 |e

I
1)} (1.2)

This equation can be seen as a representation of the process by which a linguist translate
a source sentence into its equivalent target sentence. Obtaining the final translation requires
the exploration of all target language sentences, calculating the probabilityPr(eI1) for each
sentenceeI1 and the conditional probabilityPr(fJ

1 |e
I
1). After the exploration is completed,

we return the translation̂eÎ1 of highest probability. This corresponds to the so-callednoisy
channel model. In the noisy channel model, the sentence ofE is obtained by transmitting
the source sentence ofF through anoisy channel. This noisy channel has the property of
transforming the sentences ofF into their equivalent in the languageE .

Equation (1.2) is the so-calledfundamental equation of machine translation[BDDM93],
where:Pr(eI1) represents the probability of generating the target sentence, andPr(fJ

1 |e
I
1)

is the probability of generatingeI1 givenfJ
1 . Since the real probability distributionsPr(eI1)

andPr(fJ
1 |e

I
1) are not known, they are approximated by means of parametric statistical

models. Typically, the values of the parameters of such statistical models are obtained by
means of the well-knownmaximum-likelihoodestimation method.

Statistical parametric models have a set of parametersΘ associated with either a known
probability density function or a probability mass function, denoted asp(·|Θ). Given a set of
training samplesX = {x1,x2, ...,xN}, thelog-likelihood functionis defined as the logarithm
of the probability density associated with the given observed data:

L(Θ,x) = log p(x1,x2, ...,xN |Θ) =

N∑

i=1

log p(xi|Θ) (1.3)

The method of maximum-likelihood estimatesΘ by finding the value ofΘ that maximises
L(Θ,x). This is the maximum-likelihood (ML) estimator ofΘ:

Θ̂ = argmax
Θ

{L(Θ,x)} (1.4)

Typically, the two distributions that appear in Equation (1.2) are modelled separately.
Specifically, the probability distributionPr(eI1) is modelled by means of alanguage

afj andei note thei’th word and thej’th word of the sentencesfJ
1 andeI1 respectively.
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modelandPr(fJ
1 |e

I
1) is modelled by means of atranslation model. Therefore, we have

to find two sets of parametersΘLM and ΘTM corresponding to the language and the
translation models respectively. Given the training set composed of sentence pairsX =
{(f1, e1), (f2, e2), ..., (fN , eN )}, and following the ML criterion we arrive to the following
expressions:

Θ̂LM = argmax
ΘLM

{ N∑

n=1

log p(en|ΘLM )

}

(1.5)

Θ̂TM = argmax
ΘTM

{ N∑

n=1

log p(fn|en; ΘTM )

}

(1.6)

It is worth pointing out that the translation process can also be carried out by directly
modelling the posterior probabilityPr(eI1|f

J
1 ). This is explained with more detail in sec-

tion 1.4.4.
SMT can be viewed as a specific instance of a classification problem where the object

to be classified is the source sentencefJ
1 to be translated and the set of possible classes are

the set of possible sentences in the target languageeI1. Therefore, under this point of view
the decision rule stated in Equation (1.2) is optimal under the assumption of a zero-one loss
function. In SMT, the zero-one loss function is better knownas sentence error rate (SER)
and considers that there is an error if the translation givenby the system is not identical
to the reference translation. Therefore, by applying Equation (1.2) we are minimising the
probability of error using SER as a loss function. Although SER has been commonly used as
loss function in several works on SMT, alternative proposals of loss functions can be found
in the literature (for more details see [AFOMGVC08]).

Figure 1.2 shows the architecture of the translation process using theBayes
rule [NNO+00]. As it is shown in the figure, the translation process requires four differ-
ent modules:

• Translation model (p(fJ
1 |e

I
1)): the translation model measures how goodfJ

1 is as a
translation ofeI1. Regular translation models include a lexical submodel (also called
statistical dictionary) which assigns probabilities to the translation of target wordsej
by source wordsfi. Translation models also include an alignment submodel which
assigns probabilities to the relationships between the word positions of the source and
the target sentences.

• Language model (p(eI1)): This model measures the well-formedness of the sentenceeI1
as a sentence of the languageE .

• Global search: this module executes the translation process. For this purpose, Equa-
tion (1.2) is solved, obtaining the target sentenceêÎ1 of highest probability given by
both the translation and the language models.

• Pre/postprocess: the pre/postprocessing stages comprisea series of input/output trans-
formations that are useful to increase the performance of the translation system.
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Preprocess

Postprocess

Global search

Translation model

Language model

Source sentence

Target sentence

Pr(eI1)

fJ
1

eI1

Pr(fJ
1 |e

I
1)

êÎ1 = argmax{Pr(eI1) · Pr(fJ
1 |e

I
1)}

eI1

Figure 1.2: Architecture of the translation process using the Bayes rule.

The building process of an SMT system following the Bayes decision rule involves ad-
dressing three problems [Ney01]:

1. themodelling problem, that is, how to structure the dependencies of source and target
language sentences.

2. thetraining problem, that is, how to estimate the model parameters given the training
data.

3. thesearch problem, that is, how to find the best translation candidate among allpossible
target language sentences.

1.4 Statistical Models for Machine Translation

The above mentioned modelling problem involves finding goodapproximations for the two
probability distributions that are shown in Equation (1.2).

To approximate the probability distributionPr(eI1) which is shown in Equation (1.2),
the vast majority of the works on SMT in the literature use theso-calledstatisticaln-gram
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language models. Regarding the probability distributionPr(fJ
1 |e

I
1), it is approximated by a

statistical translation model. In the following sections we will briefly explain the statistical
models that are commonly used in SMT.

1.4.1 n-gram Language Models

Statistical language models are formulated as a probability distributionp(x) for stringsx.
This probability distribution tries to reflect how frequently does the stringx appear.

The most widely used statistical language models are, by far, then-gram language mod-
els. We will introduce then-gram language models considering thatn = 2; these models
are the so-calledbigram language models. Let us consider the sentencex composed of the
wordsx1x2...x|x|

b, we can expressPr(x) without loss of generality as follows:

Pr(x) = p(x1) ·p(x2|x1) ·p(x3|x1x2) · ... ·p(x|x||x1...x|x|−1) =

|x|
∏

i=1

p(xi|x1...xi−1) (1.7)

Bigram models assume that the probability of a given word depends only on the immedi-
ately preceding word:

Pr(x) =

|x|
∏

i=1

p(xi|x1...xi−1) ≈

|x|
∏

i=1

p(xi|xi−1) (1.8)

The special tokenBOS which denotes the begin of a sentence is introduced so thatx0 is
BOS. Additionally, to make

∑

w p(w) = 1 is necessary to add another special tokenEOS

which denotes the end of a sentence.
To estimatep(xi|xi−1), the frequency of the wordxi given the previous wordxi−1, we

count the number of occurrences of the bigramxi−1xi in the training text and normalise,
which corresponds to a ML estimation:

p(xi|xi−1) =
c(xi−1xi)

∑

xi
c(xi−1xi)

(1.9)

Wherec(xi) is the count of the number of occurrences of the wordxi in the source text.
Forn-grams withn > 2, instead of conditioning the probability of a word on the identity

of just the preceding word, we condition this probability onthe identity of the lastn − 1
words. Here we takex−n+2 throughx0 to beBOS andx|x|+1 to beEOS. Thus, the sentence
probability is calculated as follows:

p(x) =

|x|+1
∏

i=1

p(xi|xi−n+1...xi−2xi−1) (1.10)

Regarding the estimation of then-gram probabilities, the corresponding equation is very
similar to Equation (1.9) for bigram models:

p(xi|x
i−1
i−n+1) =

c(xi−1
i−n+1)

∑

xi
c(xi

i−n+1)
(1.11)

b|x| represents the length of the stringx.
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Wherexi−1
i−n+1 denotes the segment of the source sentence which starts at the(i−n+1)’th

word and finishes at the(i− 1)’th word.
The wordsxi−1

i−n+1 are usually calledhistoryof then-gram. n is calledorder of then-
gram. In the literature on SMT, the value ofn has typically been set to3. These are the
so-calledtrigram language models. More recently, and due to the availabilityof larger and
larger training corpora,n is set to5.

A wide variety of then-gram language model estimation techniques described in the
literature are implemented in the SRILM toolkit [Sto02]. The SRILM toolkit also provides
tools and code to access the parameters of previously estimated language models.

Complexity Measures

Some measures to judge the performance of a language model have been proposed in the
literature (see [Ros00]). The simplest one of this measures is theaverage log-likelihood
of the test samples. The average log-likelihood for the testset is given by the following
expression:

AL(X|Θ) =
1

N

N∑

i=1

log p(xi|Θ) (1.12)

whereX = {x1,x2, ...,xN} are the test samples andΘ is the set of language model param-
eters. This measure can be seen as an empirical estimation ofthe cross entropyof the real
probability distribution (but unknown)Pr with respect to the model distribution given byΘ:

H(Pr; p(·|Θ)) = −
N∑

i=1

Pr(xi) · log p(xi|Θ) (1.13)

The most widely used performance measure for statistical language models is the so-
calledperplexity:

PP(Pr; p(·|Θ)) = 2H(Pr;p(·|Θ)) (1.14)

The perplexity of a language model given a test set can be interpreted as the geometric av-
erage of the branching factor of the given language with respect to the model. The perplexity
measures both the model performance and the language complexity.

An alternative way to measure the language model performance is to measure its impact
in the specific application in which this language model is used. Typically, the lower the
perplexity the lower the error rates of the application. As an informal rule, [Ros00] states that
a 5% perplexity reduction does not produce significant improvements; a reduction between
10% and20% may produce an appreciable improvement and finally, a reduction above30%
usually produces a great improvement in the error rates.

n-gram Model Smoothing

The above describedn-gram language models cannot assign probabilities greaterthan zero
to events that have not been seen during the training process. To solve this problem, the
n-gram language model probabilities are modified using smoothing techniques. The term
“smoothing” comes from the aim of these techniques. Specifically, the smoothing techniques
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try to obtain more uniform probability distributions, increasing the probabilities equal or al-
most equal to zero and decreasing the probabilities equal oralmost equal to one. For this
purpose, a certain probability mass isdiscountedfrom certain events and added to others.
The smoothing techniques not only allow to avoid events withnull probability, but also sig-
nificantly improve the performance ofn-gram language models.

Several smoothing techniques have been proposed in the literature such as the Jelinek-
Mercer smoothing, the Katz smoothing, the Witten-Bell smoothing, etc. (see [CG96] for
more details). Although we will not describe the smoothing techniques in detail, the vast
majority of them can be summarised by means of the following expression [KN95]:

ps(xi|x
i−1
i−n+1) =

{

α(xi|x
i−1
i−n+1) if c(xi

i−n+1) > 0

γ(xi−1
i−n+1) · ps(xi|x

i−1
i−n+2) if c(xi

i−n+1) = 0
(1.15)

According to Equation (1.15) if a givenn-gram has been seen during the training stage,
we use the distributionα(xi|x

i−1
i−n+1); otherwise, we use the lower orderbackoffdistribution

ps(xi|x
i−1
i−n+2), where the scale factorγ(xi−1

i−n+1) is introduced to make the conditional dis-
tribution sum up to one. All the models that can be described in this way are calledbackoff
models, and the scale factorγ is usually calledbackoff weight. The canonical example of
backoff smoothing is the so-called Katz smoothing.

Finally, there is another kind of smoothing algorithms thatcan be expressed as a linear
interpolation of higher and lower ordern-grams:

ps(xi|x
i−1
i−n+1) = λx

i−1
i−n+1

· pML(xi|x
i−1
i−n+1) + (1− λx

i−1
i−n+1

) · ps(xi|x
i−1
i−n+2) (1.16)

WherepML(·) is then-gram probability estimated by means of the ML criterion andλx
i−1
i−n+1

and(1 − λx
i−1
i−n+1

) are the interpolation weights. This kind of language modelsreceives the

name ofinterpolated language models.

1.4.2 Single-Word Alignment Models

The IBM models [BDDM93] were the first alignment models used in SMT. The IBM models
were developed at the IBM T.J. Watson research institution.In spite of the fact that the
IBM models no longer constitute the state of the art in SMT, they are still used in statistical
machine translation for different purposes. There are five different types of IBM models,
ranging from the IBM 1 Model to the IBM 5 Model. The IBM models are based on the
concept of alignment between the words of the source and the target sentences(fJ

1 , e
I
1).

Formally, an alignment is a correspondence between word positions of the source and
the target sentencesfJ

1 andeI1: a ⊂ {1 · · · J} × {1 · · · I}. However, in [BDDM93], the
alignments are restricted to be functionsa : {1 · · · J} → {0 · · · I}, whereaj = i if the j’th
source position is aligned with thei’th target position. Additionally,aj = 0 notes that the
word positionj of fJ

1 has not been aligned with any word positioneI1 (or that it has been
aligned with thenull worde0). LetA(fJ

1 , e
I
1) be the set of all possible alignments betweeneI1

andfJ
1 , and letPr(fJ

1 , a
J
1 |e

I
1) be the probability of translatingfJ

1 by eI1 given the alignment
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hidden variableaJ1 . We formulatePr(fJ
1 |e

I
1) as follows:

Pr(fJ
1 |e

I
1) =

∑

aJ
1∈A(fJ

1 ,eI1)

Pr(fJ
1 , a

J
1 |e

I
1) (1.17)

Under a generative point of view,Pr(fJ
1 , a

J
1 |e

I
1) can be decomposed without loss of

generality as follows:

Pr(fJ
1 , a

J
1 |e

I
1) = Pr(J |eI1) ·

J∏

j=1

Pr(fj |f
j−1
1 , aj1, e

I
1) · Pr(aj |f

j−1
1 , aj−1

1 , eI1) (1.18)

Given this general equation and depending on the specific type of IBM model, we make dif-
ferent assumptions. The first assumption is common to the fivemodel types. Specifically,
the probability distributionPr(fj |f

j−1
1 , aj1, e

I
1) is approximated byp(fj |eaj

) (which consti-
tutes an statistical dictionary of words). The different IBM models differ in the assumptions
that are made over the alignment probabilitiesPr(aj |f

j−1
1 , aj−1

1 , eI1). These differences are
briefly described here:

• IBM 1 Model : uniform alignment probabilities are assumed.

• IBM 2 Model : Pr(aj |f
j−1
1 , aj−1

1 , eI1) is approximated byp(aj |i, J, I), a zero-order
model which establishes dependencies between absolute word positions of the source
and the target sentences.

• IBM 3 Model : a fertility modelp(φ|e) is added (representing the probability that the
word e generatesφ source words). The alignment probability for the IBM 3 Model
is approximated by a zero-order model calleddistortion modelp(i|aj , J, I), which
establishes dependencies between absolute word positionsof the source and the target
sentences.

• IBM 4 and IBM 5 models: they use a distortion model with first-order dependencies
between the relative word positions of the source and the target sentences.

IBM model parameter estimation is carried out by means of theexpectation-maximisation
(EM) algorithm (refer to section1.5.1for more details). The specific details of the application
of the EM algorithm to estimate the IBM model parameters can be found in [BDDM93]. In
addition to this, there exists a publicly-available software tool that allows to estimate IBM
model parameters. This package is the so-called GIZA++ toolkit [Och00].

The search problem using IBM models is formalised followingEquation (1.2); alterna-
tively, the so-calledmaximum-approximationcan also be used:

êÎ1 = argmax
eI1

{
Pr(eI1) ·

∑

aJ
1

Pr(fJ
1 , a

J
1 |e

I
1)
}
≈ argmax

eI1

{Pr(eI1) ·max
aJ
1

Pr(fJ
1 , a

J
1 |e

I
1)}

(1.19)
In the maximum-approximation, the maximisation process iscarried out obtaining the

probability of the best alignment for the source and the target sentences. The best alignment
for a given sentence pair is often referred to as theViterbi alignment.
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Apart from the IBM models, other single-word alignment models have been proposed.
The most important of those single-word alignment models are the hidden Markov model
(HMM) based alignment models [VNT96]. The HMM-based alignment models are similar
to IBM models, specifically, they use a statistical dictionary of words and a first order align-
ment modelp(aj |aj−1, I). HMM-based alignment models have been extended in different
works [TIM02, DB05].

1.4.3 Multi-Word Alignment Models

The main disadvantage of the single-word alignment models is their inability to capture con-
text information. Because of this, when single-word modelsare used, the responsibility of
capturing context information exclusively lies on the language model. One possible solution
to this problem consists in the definition of translation models that establish relationships
between groups of words of the source and the target words instead of single words. This so-
lution has been tested in the literature in different ways: multi-word joint probability models
are described in [MW02]; the so-called alignment templates approach is defined in [OTN99];
Finally, the estimation and application of the so-called Phrase-based models is discussed
in [TC01, MW02, ZON02, Tom03]. Phrase-based models are the standard translation mod-
els used in regular SMT systems.

A key concept used by these models is the concept ofphrase. Specifically, a phrase is a
set of one or more consecutive words of the source or the target sentences. For example, given
the source sentencef4

1 ≡ f1f2f3f4 composed of four words, the following are examples of
valid phrases off4

1 : f1, f2
1 ≡ f1f2, f3

2 ≡ f2f3, f4
1 ≡ f1f2f3f4, etc. We will use the symbols

f̃ andẽ, to denote an unspecified source or target phrase, respectively. It should be noted that
in this context, phrases are not linguistically motivated.

Joint Probability Models

Joint probability alignment models were proposed in [MW02]. Joint probability alignment
models assume that lexical correspondences can be established at phrase-level (the concept
of phrase has been explained above). This assumption is the basis of a model which is able
to capture sets of equivalent phrase-pairs.

The joint probability model does not assume that the target sentences are generated from
the source sentences. Instead, it is assumed that the sourceand the target sentences are
generated simultaneously. This allows to estimate a joint probability model. Once the joint
probability model has been estimated, it can be easily converted into a conditional probability
model.

The model is based on the so-calledbag of conceptsC, where each conceptci ∈ C de-
termines a phrase pair(f̃i, ẽi) of the source and the target sentences. This bag of concepts
defines a phrase partition of the source and the target sentences. Only those bags of concepts
that allow to obtain both the source and the target sentencesafter applying the corresponding
reordering operations will be considered. Since a bag of conceptsC may or may not be suc-
cessfully used to generate the sentence pair(fJ

1 , e
I
1), the predicateL(fJ

1 , e
I
1, C) is defined to

test this property. Once the bag of concepts has been generated, every conceptci contained in
the bag of concepts is analysed, determining its associatedphrase pair(f̃i, ẽi) which is gen-
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erated according to the probability distributionp(f̃i, ẽi) (f̃i and ẽi have at least one word).
Finally, the phrase pairs are reordered in order to obtain both the source and the target sen-
tences. Under this model, the probability of a given sentence pair (fJ

1 , e
I
1) is obtained by

summing over all possible bags of conceptsC ∈ C:

p(fJ
1 , e

I
1) =

∑

C∈C|L(fJ
1 ,eI1,C)

∏

ci∈C

p(f̃i, ẽi) (1.20)

The joint probability model that we have described above presents a major drawback due
to its inability to impose constraints on the reorderings. To solve this problem, an absolute-
position distortion model is included [MW02].

The estimation of the model parameters is carried out by means of the EM algorithm. To
simplify the estimation process, certain heuristic prunings are introduced. The details of the
estimation process can be found in [MW02].

Alignment Templates

The key concept of this approach is the concept of alignment template [OTN99, Och02]. An
alignment template is a phrase pair of the categorised source and target sentences plus an
alignment between the words contained in this phrase pair.

Alignment templates model decomposes translation probability by the introduction of
two hidden variables: the alignment templates sequence,ãK1 , and the word alignmentszK1
between the templates.

Pr(fJ
1 |e

I
1) =

∑

zK
1 ,ãK

1

Pr(ãK1 |eI1) · Pr(zK1 |ãK1 , eI1) · Pr(fJ
1 |z

K
1 , ãK1 , eI1) (1.21)

It should be noted that the vectorãK1 determines a partition of the source and the target
sentences intoK phrases. This allows us to define the phrase vectorsf̃K

1 ≡ fJ
1 and ẽK1 ≡

eI1. Taking this into account, the probability distributionPr(fJ
1 |e

I
1) can be approximated as

follows:

p(fJ
1 |e

I
1) =

∑

zK
1 ,ãK

1

K∏

k=1

p(ãk|ãk−1) · p(zk|ẽk) · p(f̃k|zk, ẽk) (1.22)

Thus, we have three different statistical models that are tobe estimated:

• Phrase alignment modelp(ãk|ãk−1)

• Alignment template modelp(zk|ẽk)

• Statistical dictionary of phrase pairsp(f̃k|zk, ẽk)

The estimation of alignment templates models has the following steps: first, single-word
alignment matrices for the sentence pairs contained in the training corpora are generated; sec-
ond, bilingual word classes are trained and third, a set of phrase pairs that are consistent with
the previously obtained word alignment matrices is collected. The exact details of alignment
templates model estimation can be found in [Och02].
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Phrase-Based Models

Phrase-based models constitute another alternative to overcome the limitations that the single-
word models present. Phrase-based models also use statistical dictionaries of phrase pairs, as
well as the alignment templates model.

The translation of the source sentencefJ
1 into its equivalent target sentenceeI1 using

phrase-based models can be explained under a generative point of view as follows:

1. The source sentence is divided intoK phrasesfJ
1 ≡ f̃K

1

2. We choose the target phrase translations for each source phrase

3. The target phrase translations are reordered to compose the target sentenceeI1 ≡ ẽK1

Similarly to IBM translation models (see section1.4.2), phrase-based models assume
that the relationships between the source and the target phrases are explained by means of a
hidden alignment variablẽaK1 ≡ ã1ã2...ãK . This hidden alignment variable summarises all
the decisions made during the generative process.

According to the generative process explained above, the translation using phrase-based
models implies the generation of a completebisegmentationof the source and the target sen-
tences. A bilingual segmentation or bisegmentation of length K of a sentence pair(fJ

1 , e
I
1),

Ã(fJ
1 , e

I
1), is defined as a triple(f̃K

1 , ẽK1 , ãK1 ), where the hidden variablẽaK1 can be seen
as a specific one-to-one mapping between theK segments/phrases of both sentences(1 ≤
K ≤ min(I, J)). A bisegmentation can be seen as a phrase-level alignment orphrase-based
alignmentbetween two sentence pairs.

The hidden variablẽaK1 allows us to reexpress the probability distributionPr(fJ
1 |e

I
1)

without loss of generality as follows:

Pr(fJ
1 |e

I
1) =

∑

ãK
1

Pr(ãK1 , f̃K
1 |ẽK1 ) =

∑

ãK
1

Pr(ãK1 |ẽK1 ) · Pr(f̃K
1 |ãK1 , ẽK1 ) (1.23)

Different assumptions can be made to model the previous probability distributions. Mono-
tonic alignments and uniform segmentation probabilities are assumed in [ZON02], obtaining
the following expression:

p(fJ
1 |e

I
1) = α(eI1)

∑

ãK
1

p(f̃K
1 |ẽK1 ) (1.24)

where:

p(f̃K
1 |ẽK1 ) =

K∏

k=1

p(f̃k|ẽk) (1.25)

Jeśus Toḿas [Tom03] does not assume monotonic alignments:

p(fJ
1 |e

I
1) =

∑

ãK
1

K∏

k=1

p(ãk|ã
k−1
1 ) · p(f̃k|ẽãk

) (1.26)
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A simple distortion model is proposed in [KOM03], this distortion model replaces
p(ãk|ã

k−1
1 ) with d(ak − bk−1), whereak notes the starting position of the source phrase

which was translated by thek-th target phrase andbk−1 notes the ending position of the
source phrase which was translated by the(k − 1)-th target phrase. The distortion model
can be estimated by means of a joint probability model [MW02] or implemented using the
formula:d(ak − bk−1) = α|ak−bk−1−1|.

The search problem using phrase-based models is formalisedusing the maximum-
approximation, where the segmentation lengthK should also be maximised:

êÎ1 = argmax
I,eI1

{
Pr(eI1) ·

∑

ãK
1

Pr(ãK1 , f̃K
1 |ẽK1 )

}

≈ argmax
I,eI1

{Pr(eI1) · max
K,ãK

1

Pr(ãK1 , f̃K
1 |ẽK1 )} (1.27)

where it should be noted thateI1 ≡ ẽK1 .
The main disadvantages of these models are their poor generalisation capability and the

high space complexity of the phrase translation tables [Tom03]. Different solutions to deal
with the problem of the space complexity have been proposed in the literature [CBBS05,
ZV05, OMGVC08].

Regarding the estimation of phrase-based model parameters, different proposals can be
found in the literature. The most commonly used phrase-based model estimation technique
is based on the relative frequencies of the phrase pairs thatare extracted from word align-
ment matrices [Och02], the details of this estimation technique are similar to that of the
Alignment Templates model described in section1.4.3. This estimation technique has been
implemented in the publicly-available open-source THOT [OGVC05] toolkit. Additionally,
different techniques that try to reduce the heuristic component that the standard estimation
technique present have been defined in [TC01, OGVC05, BCBOK06, AFJC07]. In addition
to this, there are proposals that try to combine phrase-based models with linguistic informa-
tion, such as the factored models described in [KH07].

1.4.4 Log-Linear Models

In the early days of SMT, the translation process was formalised as a maximisation of a
function with two terms, namely, the statistical language model and the statistical translation
model (this is the fundamental equation of statistical machine translation, see section1.3).
The use of a language and a translation model is beneficial because our estimates for each
model are errorful. By applying them together we hope to counterbalance their errors. More
recently, alternative formalisations have been proposed.Such formalisations are based on the
direct modelling of the posterior probabilityPr(eI1|f

J
1 ), replacing the generative models by

discriminative models. Discriminative models are a class of models used in machinelearning
for modelling the dependence of an unobserved variable on anobserved variable and they
differ from the generative models in that the former ones do not allow to randomly generate
samples from the joint distribution of the unobserved and observed variables. The so-called
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log-linear models [PRW98, ON02] constitute an example of discriminative models:

Pr(eI1|f
J
1 ) =

exp
(
∑M

m=1 λmhm(fJ
1 , e

I
1)
)

∑

e′I
′

1
exp

(
∑M

m=1 λmhm(fJ
1 , e

′I′

1 )
) (1.28)

Log-linear models use a set of feature functionshm(fJ
1 , e

I
1) each one with its corre-

sponding weightλm. In the previous equation, the denominator depends only on the source
sentencefJ

1 , so it can be omitted during the search process. As a result ofthe previous
considerations, we arrive at a new expression which consists in a log-linear combination of
individual modelsh(·, ·):

êÎ1 = argmax
I,eI1

{ M∑

m=1

λmhm(fJ
1 , e

I
1)

}

(1.29)

The direct optimisation of the posterior probability in theBayes decision rule is referred
to asdiscriminative training[Ney95]. Since the features of regular SMT log-linear models
are usually implemented by means of generative models, discriminative training is applied
here only to estimate the weights involved in the log-linearcombination. Given the training
setX = {(f1, e1), (f2, e2), ..., (fN , eN )}, and following the ML criterion:

λ̂M
1 = argmax

λM
1

{ N∏

n=1

p(en|fn;λ
M
1 )

}

(1.30)

To solve the maximisation problem shown in Equation (1.30) the so-called generalised
iterative scaling algorithm is used (see section1.5.2 for more details). Alternatively, the
ML criterion can be replaced by a criterion based on automatic evaluation methods. In this
case, we assume that the best model is the one that produces the smallest overall error with
respect to a given error function. This new optimisation problem can be solved by means
of the minimum error rate training algorithm (see section1.5.3 for more details). The so-
called Moses toolkit [KHB+07] (as well as its predecessor, the Pharaoh decoder [KOM03])
implements a SMT system based on log-linear models. The toolkit provides the functionality
of training the log-linear combination weights by means of the minimum error rate training
algorithm and phrase-based model estimation using standard estimation techniques.

Discriminative modelling is useful because it frees us fromthe generative modelling re-
quirement that each term in our translation model must have an associated event in the trans-
lation process. Generative models are often chosen for computational reasons rather than for
their accuracy. By contrast, discriminative models allow us to define a set of features that
may help to improve translation. One crucial aspect in discriminative modelling is defining
useful features.

1.5 Parameter Estimation Techniques

Once the statistical models have been completely defined, the next step is to estimate the
set of parameters of these statistical models. This is the so-called training problem (see
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section1.3). In previous sections we have mentioned three well-known parameter estimation
techniques, namely, the expectation-maximisation algorithm, the generalised iterative scaling
algorithm and the minimum error rate training algorithm. Inthe following sections we will
briefly describe these three estimation techniques.

1.5.1 The Expectation-Maximisation Algorithm

The expectation-maximisation (EM) algorithm [DLR77, Wu83] is used for finding ML esti-
mates of parameters in statistical models (please refer to section1.3for an explanation of the
ML criterion), where the model depends on unobserved hiddenvariables.

The EM algorithm has two different applications. The first occurs when the data has
missing values, due to problems with or limitations of the observation process. The second
occurs when optimising the log-likelihood function is analytically intractable but when the
log-likelihood function can be simplified by assuming the existence of additional but missing
(or hidden) parameters.

We assume that dataX is observed and generated by some distribution governed by the
the set of parametersΘ. In addition to this, we assume that acomplete dataset existsZ =
(X ,Y). The complete data comprises the incomplete data and also amissingor hidden data
setY. Finally we assume a probability density function for the complete data:

p(z|Θ) = p(x,y|Θ) = p(y|x,Θ)p(x|Θ) (1.31)

We use the previous equation to define a new expression of the log-likelihood,L(Θ, z) =
L(Θ,x,y). This is the so-calledcomplete data log-likelihood function. It is worth mention-
ing that this new log-likelihood is a random variable sinceY is also randomly distributed.
The original log-likelihoodL(Θ,x) is referred to as the incomplete-data likelihood function.

EM algorithm first finds the expected value of the complete data log-likelihood,
log p(x,y|Θ), with respect to the hidden data given the incomplete data and a previous esti-
mation of the model parameters:

Q(Θ,Θt−1) = E[log p(x,y|Θ)|x,Θ(t−1)] (1.32)

WhereΘ(t−1) are the currently estimated model parameters andΘ are the new parameters
that are being optimised to increaseQ. The evaluation of theQ function is the so-called E
step of the EM algorithm.

The M step finds the set of parametersΘ that maximises theQ function computed at the
E step.

Θ(t) = argmax
Θ

Q(Θ,Θ(t−1)) (1.33)

The EM algorithm estimates the set of parametersΘ of a model iteratively, starting from
some initial guess. Each iteration executes the E and the M steps. As shown in [DLR77],
each EM iteration improves the log-likelihood of the incomplete dataL(Θ,x) or leaves it
unchanged. Indeed for most models the algorithm will converge to a local maximum of
L(Θ,x).

The M step of the EM algorithm may be only partially implemented, with the new esti-
mate for the parameters improving the likelihood but not necessarily maximising it. Such a
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partial M step always improves the likelihood as well. Dempster et al. [DLR77] refer to such
variants as generalised EM (GEM) algorithms.

1.5.2 Generalised Iterative Scaling

The generalised iterative scaling (GIS) algorithm [DR72] can be used to find a ML estimate
of the log-linear combination weightsλM

1 shown in Equation (1.29). The application of the
GIS algorithm is very costly due to the necessity of computing the normalisation factor that
is shown in Equation (1.28). Och and Ney [ON02] greatly reduce the computation costs
by constraining the calculation of the normalisation factor to the set of N-best translations
generated by the SMT system.

1.5.3 Minimum Error Rate Training

Log-linear model weights can also be adjusted by means of theminimum error rate training
(MERT) algorithm [Och03]. The MERT algorithm uses a given translation quality measure to
estimate the above mentioned log-linear weights. The MERT algorithm can be implemented
by means of different optimisation algorithms. Och [Och03] proposes the use of the Powell’s
conjugate gradient descent method [Pow64]. Alternatively, the so-called downhill-simplex
algorithm [NM65] can also be used.

1.6 Search Algorithms

Once the statistical models involved in the translation process have been estimated, the re-
maining step consists in defining how the target sentence is generated from the source sen-
tence. This is the so-called search problem (see section1.3). In the purely statistical approach
to MT (see section1.3), the search problem is expressed formally by means of the fundamen-
tal equation of machine translation (see Equation (1.2)) or, alternatively, by means of Equa-
tion (1.29) corresponding to the use of log-linear models. The search problem as presented
in equations1.2and1.29was demonstrated to be an NP-complete problem [Kni99, UM06].

The vast majority of the search algorithms that have been proposed so far share the same
basic idea. Specifically, the search process starts from anull-hypothesis(that is, a hypothesis
that does not contain any words) and works by iteratively extending partial hypotheses. The
extension of a partial hypothesis adds new words to this hypothesis. In typical search algo-
rithms, the translations are built from left to right. This iterative process is repeated until a
completehypothesis has been generated. The hypothesis extension procedure is driven by the
statistical models involved in the translation process. Each partial hypothesis has an associ-
ated score. The score associated to a hypothesis gives a measure of how good this hypothesis
is as a partial translation of the source sentence.

Different search algorithms have been proposed in the literature. These search algorithms
can be classified into four groups: the branch-and-bound search algorithms, the dynamic
programming based algorithms, the search algorithms basedon greedy techniques and the
search algorithms based on linear programming.
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Branch-and-bound algorithms for SMT includeA⋆ search [OUN01] and the so-called
stack-decoding algorithms [BBD+96, WW97, GJK+01, OUN01]. A⋆ search and stack de-
coding algorithms use a stack data structure to incrementally extend partial hypotheses. The
stack orders the hypothesis by ascending order of the score assigned to the hypotheses by the
statistical models involved in the translation process.A⋆ search algorithms are optimal, since
the search problem has been demonstrated to be NP-complete,we cannot expect to obtain an
efficient search. Branch-and-bound algorithms typically follow a best-first search strategy. A
depth-first search strategy has also been adopted in [BBD+96].

The DP-based algorithms [Til01, ZON02, GV03] decompose the problem of translating
the source sentence into a set of sub-problems that are solved separately. The final solution
is computed as a combination of the sub-problems. This procedure is based on the Bellman
optimality principle [Bel57]. The DP-based algorithms for MT use a breadth-first search
strategy.

The greedy algorithms for MT were described in [BBD+94, Wan98, GJK+01]. These
algorithms differ from the previous ones in that they do not work by incrementally extending
an initial null-hypothesis. By contrast, the greedy algorithm first heuristically generates a
complete hypothesis that is iteratively improved by the application of different operators.
The greedy algorithms are not commonly used in MT due to the quality of the results that
they obtain, which are worse than those obtained by other search techniques. The main and
only advantage of the greedy decoding algorithms is their low time complexity.

Finally, a different search strategy based on linear programming, and more specifically
in integer programming has been described in [GJK+01]. This search strategy obtains high
quality results but has a high computational complexity.

1.7 Alternative Techniques for Corpus-Based MT

The corpus-based techniques mentioned in section1.2.3 not only includes the purely sta-
tistical approach described above, but also a number of alternative approaches. The most
commonly used of these alternative approaches are the finitestate approach and the context
free grammar approach. These approaches can also be classified into the statistical approach
to MT.

1.7.1 MT based on Stochastic Finite State Transducers

One alternative corpus-based approach to MT is based on the use of stochastic finite
state transducers (SFSTs) for MT [VP92, CGV94, LJS+95, Als96b, Als96a, AX97, Vid97,
KAO98, ABC+00].

SFSTs can be trained from bilingual corpora, obtaining a joint probability model. An
SFST is a finite-state automaton which accepts sentences given in the source language and
returns sentences given in the target language.

A particular kind of SFST is the so-called subsequential transducer [OGV93]. Subse-
quential transducers are deterministic SFST’s. The main advantage of the subsequential
transducers consists in their capability todelay their output until a sufficient number of
source symbols has been seen. This is done to ensure the correctness of the output. The
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search problem when using SFSTs is commonly solved by means of the well-known Viterbi
algorithm [Vit67].

The OSTIA [OGV93] (onward subsequential transducer inference algorithm) and the
OMEGA [Vil00] (from spanish: OSTIA mejorado empleando garantı́as y alineamientos)
algorithms allow to automatically generate SFST’s. The OSTIA algorithm exclusively uses
finite-state automaton techniques and the OMEGA algorithm combines finite-state automa-
ton techniques with additional information extracted by means of statistical methods. Finally,
an additional technique that allows SFSTs inference is the so-called GIATI technique [CV04]
(grammatical inference and alignments for transducer inference). The GIATI technique has
been implemented in the publicly-available GREAT [GSC08] toolkit.

1.7.2 MT based on synchronous context-free grammars

Context-free grammars (CFG) applied to MT confers two advantages with respect to the MT
techniques described in previous sections. First, they areclosely tied to some linguistic rep-
resentations of syntax. Second, in their synchronous form (synchronous CFG, or SCFG),
they can easily represent long-distance reordering without the exponential complexity of per-
mutation. However, these advantages comes with new modelling challenges that are to be
solved. Because of this, the context free grammar approach to MT is currently an area of
active research.

Different approaches to SMT can be expressed in the SCFG formalism. One important
advantage of this is that the search problem with SCFG modelsis equivalent to CFG pars-
ing [Mel04]. In the following sections we will briefly describe three applications of SCFGs
that are representative of their use in SMT, namely bracketing grammars, syntax-based trans-
lation and hierarchical phrase-based translation. For a more detailed review of the literature
on SCFGs applied to MT, please refer to [Lop08].

Bracketing Grammars

One reason to use SCFGs is efficient expression of reordering. In the previously described
techniques, long-distance reordering is difficult to model. The most permissive approach
(arbitrary permutation) is exponential in sentence length. By contrast, SCFGs can represent
long-distance reordering while remaining polynomial in sentence length. This motivates the
use of bracketing grammars. They represent all possible reorderings consistent with a binary
bracketing of the input string [Wu96].

Stochastic inversion transduction grammars (SITGs) are described in [Wu97]. A recursive
statistical translation model with some similarities withthe SITGs is proposed in [VV05]. A
lexicalised bracketing grammar, in which non-terminal symbols are annotated with words
is described in [ZG05]. A related formalism is the head transduction grammar [ABD00].
Additionally, Xiong et al. [XLL06] adapted bracketing grammars to phrase translation.

Syntax-Based Translation

Syntax-based translation [WW98, YK01] tries to capture syntactic information from both the
source and the target languages. Typically, a translation system using syntax-based models
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works as follows: first, the system is given a source sentencecontaining syntactic labels and
hierarchically represented by means of a tree data structure. From this tree, a set of node
reordering operations is applied obtaining a new labelled tree. The structure of the resulting
tree is equivalent to that of the source sentence, but it has been built according to the syntax
rules of the target language. Finally, the source words contained in the tree are replaced by
their corresponding translations in the target language.

Additional works on syntax-based translation can be found in the literature [GHKM04,
KG05, GGK+06]. A slightly different proposal of syntax-based translation system can be
found in [Ima02], where a method to hierarchically extract equivalent phrases pairs from an
aligned bilingual corpus is described. According to this approach, two phrases are equivalent
if they can be directly translated by means of an EBMT system.

Hierarchical Phrase-Based Translation

SCFG models, since they enable only word-to-word translation, are not able to capture con-
text information. As it was explained above, one way to alleviate this problem is to use
multi-word translation models such as the phrase-based models. Ideally, we would like to
benefit from the insights behind both hierarchical models and phrase-based models. This is
accomplished in hierarchical phrase-based translation [Chi05, Chi07].

1.8 Interactive Machine Translation

Current MT systems are not able to produce ready-to-use texts [NIS06, CBFK+07]. Indeed,
MT systems usually require human post-editing in order to achieve high-quality translations.

One way of taking advantage of MT systems is to interactivelycombine them with the
knowledge of a human translator, constituting the Interactive Machine Translation (IMT)
paradigm. This IMT paradigm can be considered a special typeof the so-called computer-
assisted translation (CAT) paradigm [IC97].

An important contribution to IMT technology was carried outwithin the TransType (TT)
project [FIP97, LFL00, LLL02, FLL02, Fos02]. This project entailed a focus shift in which
interaction is directly aimed at the production of the target text, rather than at the disambigua-
tion of the source text, as in former interactive systems. The idea proposed in that work was
to embed data driven MT techniques within the interactive translation environment.

Following these TT ideas, Barrachina et al. [BBC+09] proposed a new approach to IMT.
In this approach, fully-fledged SMT systems are used to produce full target sentence hy-
potheses, or portions thereof, which can be partially or completely accepted and amended by
a human translator. Each partially corrected text segment,or prefix, is then used by the SMT
system as additional information to achieve improved suggestions. Figure1.3 illustrates a
typical IMT session. In interaction-0, the system suggestsa translation (es). In interaction-
1, the user moves the mouse to accept the prefix composed of thefirst eight characters “To
view ” (ep) and presses thea key (k), then the system suggests completing the sentence
with “ list of resources” (a newes). Interactions 2 and 3 are similar. In the final interaction,
the user completely accepts the current suggestion.

Figure1.4(inspired from [VRCGV07]) shows a schematic view of these ideas. Here,fJ
1

is the input sentence andeI1 is the output derived by the IMT system fromfJ
1 . By observing
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Figure 1.3: IMT session to translate a Spanish sentence into English.

source(fJ
1 ): Para ver la lista de recursos

reference(êÎ1): To view a listing of resources

interaction-0
ep

es To view the resources list

interaction-1
ep To view
k a
es list of resources

interaction-2
ep To view a list

k list i

es list i ng resources

interaction-3
ep To view a listing
k o
es o f resources

acceptance ep To view a listing of resources

fJ
1 andeI1, the user interacts with the IMT system, validating prefixesand/or pressing keys

(k) corresponding to the next correct character, until the desired output̂eÎ1 is produced. The
models used by the IMT system are obtained through a classical batch training process from
a previously given training sequence of pairs (fn, en) from the task being considered.

       Interactive 
     SMT System

 Batch
Learning

feedback/interactions

. . .

Models

fJ
1

fJ
1

eI1

êÎ1

k

f1, e1

f2, e2

Figure 1.4: An Interactive SMT system.

In the IMT scenario we have to find an extensiones for a given prefixep:

ês = argmax
es

{
p(es | f

J
1 , ep)

}
(1.34)
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Applying the Bayes rule, we arrive at the following expression:

ês = argmax
es

{
p(es | ep) · p(f

J
1 | ep, es)

}
(1.35)

where the termp(ep) has been dropped since it does not depend ones.
Thus, the search is restricted to those sentenceseI1 which containep as prefix. It is

also worth mentioning that the similarities between Equation (1.35) and Equation (1.2) (note
that epes ≡ eI1) allow us to use the same models if the search procedures are adequately
modified [BHV+05, BBC+09].

It should be noted that the statistical models are defined at word level while the IMT
interface described in Figure1.3works at character level. This is not an important issue since
the transformations that are required in the statistical models for their use at character level
are trivial.

1.9 Evaluation

In this section we will review the automatic evaluation measures that are commonly used
in three different tasks: MT, word-alignment generation and IMT. Among all the automatic
measures that have been described, we will pay special attention to those that will be used to
evaluate the techniques proposed in this thesis.

1.9.1 MT evaluation

In recent years, various methods have been proposed to automatically evaluate machine
translation quality by comparing hypothesis translationswith reference translations. Ex-
amples of such methods are word error rate (WER), position-independent word error rate
(PER) [ABC+00, CNO+04], generation string accuracy [BRW00], multi-reference word
error rate [NOL00], BLEU score [PRWZ01], NIST score [Dod02], METEO [BL05] and
TER [SDS+06]. All these criteria try to approximate human assessment and some works re-
port a high degree of correlation to human evaluation [PRWZ01, Dod02]. By contrast, other
authors such as [CBFK+07] report substantial differences between human and automatic
evaluations. Because of this, automatic MT evaluation still remains an open problem.

In this thesis, the BLEU score will be used to measure the translation quality. The BLEU
(bilingual evaluation understudy) score computes the geometric mean of the precision ofn-
grams of various lengths between a hypothesis and a set of reference translations multiplied
by a factor BP(·) that penalises short sentences:

BLEU = BP(·) exp

(
N∑

n=1

log pn
N

)

Herepn denotes the precision ofn-grams in the hypothesis translation. Typically, a value of
N = 4 is used.
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1.9.2 Word Alignment Evaluation

The generation of word and phrase alignments is strongly related to the SMT framework,
since statistical alignment models constitute one key component of regular SMT systems.
The performance of statistical alignment models can be measured by means of automatic
methods, such as precision (P ), recall (R), F-measure (F ) and alignment error rate (AER)
(see [ON00]). In a word alignment task we are given a parallel text and a reference alignment
Gwhich is compared with the system alignmentA. BothA andG are sets whose elements are
alignments between the words of the parallel text. BothA andG can be split into two subsets
AS ,AP andGS , GP , respectively representingSureandProbablealignments. Precision,
recall, F-measure and alignment error rate are computed as follows:

PT =
|AT ∩GT |

|AT |

RT =
|AT ∩GT |

|GT |

FT =
2PT ·RT

|PT +RT |

AER = 1−
|AS ∩GS |+ |AP ∩GP |

|AP |+ |GS |

whereT is the alignment type, and can be set to eitherS orP . In this thesis all the previously
described alignment quality measures will be used.

1.9.3 IMT Evaluation

The IMT framework has its own evaluation measures since in this case, the main goal of auto-
matic assessment is to estimate the effort of the human translator. For this purpose the follow-
ing measures have been proposed: key-stroke ratio (KSR), mouse-action ratio (MAR), key-
stroke and mouse-action ratio (KSMR) (these three measuresare described in [BBC+09])
and word-stroke ratio (WSR) [TC06].

The above mentioned IMT evaluation measures are based on theconcept oflongest com-
mon character prefix(LCP). The LCP is obtained by comparing the translation given by the
IMT system with the reference sentence that the user has in mind. Specifically, the first non-
matching character of the system translation marks the end of the LCP. The user moves the
mouse pointer to this first non-matching character and then replaces it with the corresponding
reference character. After this, a new system hypothesis isproduced. This process is iterated
until a full match with the reference is obtained. Each computation of the LCP would cor-
respond to the user looking for the next error and moving the pointer to the corresponding
position of the translation hypothesis, increasing the number of mouse-actions. Each charac-
ter replacement, on the other hand, would correspond to a key-stroke of the user. If the first
non-matching character is the first character of the new system hypothesis in a given iteration,
no LCP computation is needed; that is, no mouse-actions are made by the user.

In this thesis, the following three IMT evaluation techniques will be used:

• Key-stroke ratio (KSR): Number of key-strokes divided by the total number of refer-
ence characters.
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• Mouse-action ratio (MAR): Number of pointer movements plus one more count per
sentence (aimed at simulating the user action needed to accept the final translation),
divided by the total number of reference characters.

• Key-stroke and mouse-action ratio(KSMR): Number of key-strokes plus number of
mouse-actions divided by the total number of reference characters.

When we evaluate an IMT system, it is also important to estimate the human effort re-
duction that can be obtained using this IMT system with respect to using a conventional SMT
system followed by human post-editing. For this purpose, the KSR measure defined above
can be compared with thecharacter error rate(CER) measure. The CER measure is de-
fined as the minimum number of characters that are to be inserted, deleted or substituted to
transform the sentences generated by the translation system into the reference translations.
However, the CER measure constitutes a rough estimation of the post-editing effort, since
professional translators typically use text editors with autocompletion capabilities to gener-
ate the target translations. To solve this problem, we can use thepost-editing key stroke ratio
(PKSR) measure defined in [RTV10]. This measure has been applied in the field of computer-
assisted transcription of text images, but can also be used here without any modification. The
PKSR measure is calculated as the number of keystrokes that the user of the post-editing sys-
tem must enter to achieve the reference translation, divided by the total number of reference
characters. When the user enters a character to correct some incorrect word, the post-editing
system automatically completes such word with the most probable word contained in the task
vocabulary.

1.10 Corpus

This section describes the different parallel corpora thatwill be used to test the techniques
proposed in this thesis. Available corpora is usually divided in two parts: the training and
the test parts. The training part is used to train statistical models and the test part to obtain
quality measures like those defined in section1.9. Additionally, some corpora also include a
development part which is used to adjust specific parametersof the statistical models such as
the log-linear combination weights described in section1.4.4.

1.10.1 EuTrans-I Corpus

The EuTrans-I task [Vid97, ABC+00] comes from a limited-domain Spanish-English ma-
chine translation application for human-to-human communication situations in the front-desk
of a hotel. It was semi-automatically built from a small dataset of sentence pairs collected
from traveller-oriented booklets.

Table1.1shows the main figures of the EuTrans-I corpus. As can be seen,the EuTrans-I
corpus is a very simple corpus with small vocabularies and very low perplexities. By this
reason, the EuTrans-I corpus is no longer used in the SMT field. However, it is described
here because it will be used to test certain techniques proposed in this thesis.
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Table 1.1: EuTrans-I corpus statistics.

Spanish English

Training
Sentences 10 000
Running words 97 131 99 292
Vocabulary 686 513

Test
Sentences 2 996
Running words 35 023 35 590
Perplexity (trigrams) 4.9 3.6

Table 1.2: Europarl corpus statistics for three different language pairs.

Spanish English French English German English

Training
Sentences 730 740 688 031 751 088
Running words 15.6M 15.2M 13.8M 15.3M 15.2M 16.0M
Vocabulary 113 886 72 742 69 034 86 803 205 378 74 711

Dev
Sentences 2 000 2 000 2 000
Running words 60 276 57 945 65 029 57 945 54 247 57 945
Perplexity (trigrams) 66.5 62.8 45.0 62.8 113.7 62.8

Test
Sentences 3 064 (2 000+1 064) 3 064 (2 000+1 064) 3 064 (2 000+1 064)
Running words 91 650 85 226 98 720 85 226 82 351 85 226
Perplexity (trigrams) 91.9 103.3 61.5 103.3 177.8 103.3

1.10.2 Europarl Corpus

Europarl corpus [Koe05] is extracted from the proceedings of the European Parliament, which
are written in the different languages of the European Union. Specifically, this is the version
which was used in the shared task of the NAACL 2006 Workshop onStatistical Machine
Translation [KM06]. Table1.2 shows some statistics of this corpus, which includes parallel
texts for three European language pairs, specifically Spanish-English, French-English and
German-English. As it can be observed, the Europarl corpus contains a great number of sen-
tences and great vocabulary sizes. These features are common to other well-known corpora
described in the literature.

It is worthy of note that the test data is not only composed of sentence pairs extracted from
the European Union government records, but also from the editorials of the Project Syndi-
cate Websitec which are published in all the four languages of the shared task. According
to [KM06], this new test data differs from the Europarl data in various ways. The text type
are editorials instead of speech transcripts. The domain isgeneral politics, economics and
science. However, it is also mostly political content and opinion.

In summary, the test corpus is composed of2 000 in-domainsentence pairs and1 064
out-domainsentence pairs. This feature makes this corpus specially attractive for testing
statistical model adaptation techniques.

The NAACL 2006 version of the Europarl corpus also provides specific data to train the
language models. Table1.3shows the main figures of the monolingual texts. There is twice

chttp://www.project-syndicate.com
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as much language modelling data, since training data for themachine translation system is
filtered against sentences of length larger than 40 words.

Table 1.3: Europarl language model data.

English Spanish French German
Sentences 1 003 349 1 070 305 1 066 974 1 078 141
Running words 27.4M 29.1M 31.6M 26.5M
Vocabulary 86 698 151 111 109 597 277 197

1.10.3 Hansards Corpus

The Canadian Hansards corpus [Ger01] consists of a set of aligned texts in the French and the
English languages extracted from the official records of theCanadian Parliament. A subset
of this corpus was used in the HLT/NAACL 2003 workshop on “Building and Using Parallel
Texts: Data Driven Machine Translation and Beyond” to carryout alignment experiments
(see [MP03] for more details). The main figures of this corpus are shown in Table1.4.
The corpus has a development set consisting of37 manually aligned sentence pairs and a
development set of447 manually aligned sentence pairs. The manual alignments assign
two different confidence degrees: Sure (S) or Probable (P), allowing to obtain the automatic
alignment quality measures described in section1.9.

1.10.4 Xerox Corpus

The Xerox corpus [SdIfIV+01] consists of translation of Xerox printer manuals involving
three different pairs of languages: French-English, Spanish-English, and German-English.
The main features of these corpora are shown in Table1.5. Partitions into training, devel-
opment, and test were performed by randomly selecting (without replacement) a specific
number of development and test sentences and leaving the remaining ones for training.

The Xerox corpus has been typically used to test IMT techniques (see [BBC+09]) and is
also used in this thesis for the same purpose.

Table 1.4: Hansards corpus statistics.

French English

Training
Sentences 1 130 104
Running words 22.9M 19.9M
Vocabulary 86 591 68 019

Dev
Sentences 37
Running words 704 661
Perplexity (trigrams) 66.2 83.4

Test
Sentences 447
Running words 7 559 7 011
Perplexity (trigrams) 52.1 71.6
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Table 1.5: Xerox corpus statistics for three different language pairs.

Spanish English French English German English

Training
Sentences 55 761 52 844 49 376
Running words 657 172 571 960 573 170 542 762 440 682 506 877
Vocabulary 29 565 25 627 27 399 24 958 37 338 24 899

Dev
Sentences 1 012 994 964
Running words 13 808 12 111 9 801 9 480 8 283 9 162
Perplexity (trigrams) 34.0 46.2 74.1 96.2 124.3 68.4

Test
Sentences 1125 984 996
Running words 9 358 7 634 9 805 9 572 9 823 10 792
Perplexity (trigrams) 59.6 107.0 135.4 192.6 169.2 92.8

Table 1.6: EU corpus statistics for three different language pairs.

Spanish English French English German English

Training
Sentences 214 473 215 216 222 644
Running words 5.8M 5.2M 6.5M 5.9M 6.1M 6.4M
Vocabulary 97 444 83 738 91 307 83 746 152 696 86 185

Dev
Sentences 400 400 400
Running words 11 471 10 080 12 250 11 106 10 730 11 106
Perplexity (trigrams) 46.1 59.4 34.3 42.6 60.8 41.7

Test
Sentences 800 800 800
Running words 22 631 19 944 23 945 21 906 20 791 21 906
Perplexity (trigrams) 45.2 60.8 36.2 44.7 63.6 43.9

1.10.5 EU Corpus

The EU corpora was extracted from the Bulletin of the European Union, which exists in
all official languages of the European Union [KG03] and is publicly available on the Inter-
net. Table1.6 shows the main figures of this corpus, which includes parallel texts in the
language pairs Spanish-English, French-English and German-English. The main features of
these corpora are shown in Table 2. The training, the development and the test sets were
obtained in a similar way as with the Xerox corpus (see section 1.10.4). As well as the
Xerox corpus, the EU corpus has also been typically used to carry out IMT experiments
(see [SdIfIV+01, BBC+09]).

1.11 Summary

In this chapter we have introduced the field of MT, classifying the main MT systems that
have been proposed so far according to the specific translation technology that these MT
systems use. We have paid special attention to the statistical approach to MT since it is the
approach in which this thesis is focused. Three different problems are to be solved when
building SMT systems, namely, the modelling problem, the training problem and the search
problem. We have described the main approaches to define the statistical models involved
in the translation process, including the statisticaln-gram language models, the single-word
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alignment models and the phrase-based alignment models, which are of special importance
in this thesis. Regarding the training problems we have described the ML criterion and the
well-known EM training algorithm, as well as other trainingalgorithms, such as the GIS
algorithm and the MERT algorithm. Finally, we have provideda brief overview of the search
problem, describing the main search algorithms that have been applied to SMT.

The output of fully automatic MT systems is not error free. Because of this, an alternative
framework in which the MT system and its user collaborate to generate correct translations
was proposed. This is the so-called IMT framework. In this chapter we have provided a brief
introduction to the IMT framework since this thesis also presents contributions on this topic.

Finally, we have also described the parallel corpora as wellas the evaluation measures
used to test the techniques proposed in this thesis.
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CHAPTER 2

SCIENTIFIC AND TECHNOLOGIC

GOALS

This thesis is focused on the statistical approach to MT, andmore specifically on statistical
phrase-based machine translation. The scientific ([SC]) and technologic ([TC]) goals of this
thesis can be classified into two groups, namely, fully-automatic phrase-based SMT goals and
interactive phrase-based SMT goals:

1. Fully-automatic phrase-based SMT goals

• Improved phrase-based model estimation[SC]

The standard phrase-based model estimation techniques have a strong heuristic
component. The generative process of phrase-based models explicitly involves
the bisegmentation of the source and the target sentences. Nevertheless, phrase-
based models are commonly estimated without taking into account any infor-
mation about bisegmentations. We propose an alternative phrase-based model
estimation technique which considers phrase pairs as part of complete bisegmen-
tations of the source and the target sentences.

• Phrase-based model estimation from very large corpora[TC]

Phrase-based models have huge memory requirements when estimated from large
corpora. These high memory requirements often make the estimation unfeasible.
To solve this problem we propose a specific estimation technique that allows us
to transform main memory requirements into disk space requirements.

• Development of open-source software for phrase-based SMT[TC]

Open-source software constitutes a valuable resource for the research community.
In this thesis we present the THOT toolkit for SMT. The THOT toolkit allows to
estimate phrase-based models using two different estimation techniques, namely,
the well-known, standard phrase-based model estimation technique and the im-
proved phrase-based model estimation technique proposed in this thesis.
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• Specific phrase-based model derivation[SC]
Standard phrase-based models are composed of a set of translation probabili-
ties between phrase pairs. Typically, these statistical dictionaries of phrase pairs
constitute the key features of the log-linear combinationsused by current SMT
systems. In addition to this, some extra features are added to help improving the
translation quality. These extra features usually lack of aformal justification. We
give a specific phrase-based model derivation that, after making the appropriate
assumptions, allows us to obtain a set of statistical submodels governing differ-
ent aspects of the translation process. These submodels canalso be added as
individual features of a log-linear combination. The specific phrase-based model
derivation proposed here is used as a key component of other proposals presented
in this thesis.

• Branch-and-bound search for phrase-based SMT[SC]
The branch-and-bound search paradigm constitutes one possible way to tackle
the search problem in SMT. SMT search algorithms make a trade-off between
efficiency and translation quality. Here we propose a branch-and-bound algorithm
for phrase-based SMT. This search algorithm offers severalways to make such a
trade-off by modifying its parameters.

• Efficient decoding with large phrase-based models[TC]
Since phrase-based models basically consists in statistical dictionaries of phrase
pairs, their estimation from very large corpora yields a huge number of parameters
which are to be stored in memory. The handling of millions of model parame-
ters has become a bottleneck in the field of SMT. We propose a way to solve this
problem which is strongly inspired by a classic concept of computer architecture:
cache memory. The proposed technique allows us to transformmain memory re-
quirements into disk requirements. In addition to this, we also propose a specific
data structure with very low memory requirements to represent the phrase pairs
that compose the phrase models.

• Generation of phrase-based alignments[SC]
The problem of finding the best alignment at phrase level has not been extensively
addressed in the literature. This problem is interesting since a range of different
applications from phrase-based SMT systems to machine-aided NLP tools can
benefit from the availability of phrase-based alignments. We propose the use
of smoothed phrase-based statistical alignment models together with a specific
search algorithm to compute the best phrase-to-phrase alignment for a pair of
sentences.

2. Interactive phrase-based SMT goals

• Alternative IMT techniques [SC]
Common IMT techniques rely on a word graph data structure that represents pos-
sible translations of the given source sentence. During theIMT process for the
source sentence, the system makes use of the word graph generated for that sen-
tence in order to complete the prefixes accepted by the human translator. A com-
mon problem in IMT arises when the user sets a prefix which cannot be found
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in the word graph. The common procedure to face this problem is to perform
a tolerant search in the word graph based on the well known concept of Leven-
shtein distance, allowing us to obtain the most similar string for the given prefix.
This tolerant search is not included in the statistical formalisation of the IMT sys-
tem. In this thesis we propose an alternative formalisationof the IMT framework
in which the tolerant search is conducted by a stochastic error-correction model.
This new IMT framework can also be applied to other machine-aided NLP tools.
Alternatively, we propose a new IMT technique which is not based on the use
of word graphs. This new IMT technique modifies the phrase-based alignment
generation techniques also proposed in this thesis to obtain the suffixes required
in the IMT framework.

• Online learning for IMT [SC]

The vast majority of the existing work on IMT makes use of the well-known
batch learning paradigm. In the batch learning paradigm, the training of the IMT
system and the interactive translation process are carriedout in separate stages.
This paradigm is not able to take advantage of the new knowledge produced by
the user of the IMT system. In this thesis, we propose the application of the online
learning paradigm to the IMT framework. In the online learning paradigm, the
training and prediction stages are no longer separated. This feature is particularly
useful in IMT since it allows the user feedback to be taken into account.
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CHAPTER 3

PHRASE-BASED STATISTICAL

M ACHINE TRANSLATION

3.1 Introduction

Since they were proposed, phrase-based models have received increasing attention from the
SMT community and they currently constitute the state-of-the-art in this discipline. One
of the most interesting properties of phrase-based models is their ability to capture context
information in contrast with single-word alignment models(represented by the IBM and the
HMM-based alignment models). Typically, very strong assumptions are made during the
derivation of standard phrase-based models, reducing themto mere statistical dictionaries
of phrase pairs (also called bilingual phrases). In spite ofthese strong assumptions, the
estimation of phrase-based models is a challenging issue due to its computational complexity
both in terms of time and space. In the last years, this problem has become even worse due
to the availability of larger and larger corpora.

This chapter is devoted to the study of different issues regarding the modelling and the
training problems in phrase-based SMT (PB-SMT): as an introduction, the standard estima-
tion technique for phrase-based models is described in section 3.2. We propose an alternative
way to carry out the estimation of phrase-based models in section 3.3. A specific phrase-
based model estimation technique which is able to work with very large corpora is proposed
in section3.4. We give an alternative phrase-based model derivation in section 3.5. Finally,
we provide a summary of the chapter in section3.6.

In addition to the previously described content, the majority of the techniques proposed
in this chapter have been implemented into the open-source THOT toolkit for phrase-based
statistical machine translation. The THOT toolkit is described in AppendixB.

3.2 Standard Estimation of Phrase-Based Models

As mentioned above, PB-SMT systems are based on statisticaldictionaries of phrase pairs,
also called phrase tables, that must be previously estimated in order to perform the translation.
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Different techniques have been proposed in the literature to carry out this estimation process
(we will give more details on this in section3.3). Among these techniques, there is one
that has become the standard technique implemented in regular PB-SMT systems due to its
efficiency and good performance. This standard estimation technique first extracts a set of
bilingual phrases from a training corpus according to a predefined extraction criterion. After
this extraction process, a probability distribution is estimated for the resulting bilingual phrase
dictionary following standard ML estimation techniques.

According to [KOM03], there are three ways of obtaining the bilingual phrases from a
parallel training corpus:

1. From word-based alignments.

2. From syntactic phrases (see [YK01] for more details).

3. From sentence alignments, by means of a joint probabilitymodel (see [MW02]).

The standard phrase-based model estimation technique usesthe first method, in which the
bilingual phrases are extracted from a bilingual, word-aligned training corpus. The extraction
process is driven by an additional constraint: each bilingual phrase must be consistent with
its corresponding word alignment matrix,A, as shown in equation (3.1) (which is the same
given in [Och02] for the alignment template approach).

BP(fJ
1 , e

I
1, A) = {(f j+m

j , ei+n
i |∀(i′, j′) ∈ A :

j ≤ j′ ≤ j +m ⇐⇒ i ≤ i′ ≤ i+ n} (3.1)

Hence, the set of consistent bilingual phrases is constituted by those bilingual phrases where
all the words within the source phrase are only aligned to thewords of the target phrase and
viceversa. Figure3.1 shows a word alignment matrix example along with its corresponding
set of consistent bilingual phrases. The phrase pair (casa –house) is an example of a con-
sistent phrase pair, since the word “casa” is aligned with the word “house”. By contrast, the
phrase pair (casa – green) is not consistent with the alignment matrix, since the word “casa”
is aligned with the word “house”, which is not included in thephrase pair.

The word alignment matrices are supposed to be manually generated by linguistic experts;
however, due to the cost of such generation, in practise theyare obtained using single-word
alignment models. This can be done by means of the GIZA++ toolkit, which generates word
alignments for the training data as a by-product of the estimation of IBM models.

Since word alignment matrices obtained via the estimation of IBM models are restricted
to being functions (each word of the source sentence can be aligned with one and only one
word of the target sentence), some authors [Och02] have proposed performing operations
between alignment matrices in order to obtain better alignments. The common procedure
consists of estimating IBM models in both directions and performing different operations
with the resulting alignment matrices such as union or intersection. Figures3.2aand3.2b
show the result of the union operation and the intersection operation, respectively, executed
on two alignment matrices.

One issue that may arise during the estimation process basedon IBM-generated word-
alignment matrices is the occurrence of words that are not aligned into the matrices (the
so-calledspuriousandzero fertility words, see [BDDM93]). These special words are not
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. .
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la casa verde . the green house .

Figure 3.1: Set of consistent bilingual phrases (right) given a word alignment matrix
(left).
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(b) Intersection operation

Figure 3.2: Example of the execution of different operations between two alignment
matrices.

taken into account by equation (3.1) and must be considered separately. A simple way to
solve this problem consists in modifying the consistence condition given by equation (3.1)
to exclude those words that are not aligned at all (see [Och02]). In addition to this, only
those phrase pairs with at least one aligned word may form a consistent phrase pair. For
instance, let us consider the alignment matrix that is obtained by means of the intersection
operation in Figure3.2b, where the source words “casa” and “verde”, and the target words
“green” and “house” are not aligned. Under these circumstances, some extra phrase pairs
would be consistent with the alignment matrix, including the following: (La casa – the),
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(la casa – the green), (la casa – the green), (casa verde – green), etc. By contrast, the phrase
pair (casa – house) would not be inBP, since it would not contain any aligned words.

Once the phrase pairs are collected, the phrase translationprobability distribution is cal-
culated via relative frequency (RF) estimation as follows:

p(f̃ |ẽ) =
c(f̃ , ẽ)

∑

f̃ ′ c(f̃ ′, ẽ)
(3.2)

We will refer to this standard estimation method for phrase-based models as RF estima-
tion.

3.2.1 Implementation Details

In this section we will show the implementation details of the algorithm implemented by the
standard estimation technique to extract the set of consistent bilingual phrases. This will be
useful to compare the algorithmic complexity of the standard estimation technique and that
of the alternative estimation technique presented in this thesis.

Algorithm 3.1shows thephrase extract algorithm. Thephrase extract algo-
rithm allows to extract the set of consistent bilingual phrases given the source and the target
sentences and their corresponding alignment matrix. This algorithm is identical to that pro-
posed in [Och02]. The first twowhile loops (lines3 and5) iterates over the set of possible
source phrases. Thequasi consecutive predicate is introduced here to appropriately
handle unaligned words. Specifically, this predicate is evaluated to true if the aligned source
positions contained in the setSP are consecutive, with the possible exception of words that
are not aligned at all. At line9, the source phrasef j′′

j′ is completely determined. After that,

two innerwhile loops (lines13 and15) are used to iterate over the target phrases,ei2i1 , that

can be used to obtain consistent phrase pairs of the form(f j′′

j′ , e
i2
i1
).

The time complexity of thephrase extract algorithm given the input parameters
(fJ

1 , e
I
1, A) is in O(I2J2) (the first twowhile loops are executed inO(I2) and the two inner

while loops have a time complexity inO(J2)).

3.3 Bisegmentation-based RF Estimation

The standard estimation method presented in the previous section is heuristic for two rea-
sons. First, the bilingual phrases are obtained from a givensingle-word alignment matrix,
which forces us to impose a heuristic consistence restriction in order to extract them. Second,
as was previously explained, the translation process usingphrase-based models involves the
generation of a bisegmentationa between the source and target sentences; however, the ex-
tracted bilingual phrases are not considered as part of complete bisegmentations during the
estimation of the model. The first problem cannot be solved without changing the whole esti-
mation method. By contrast, an alternative estimation technique that tries to solve the second

aThe concept of bisegmentation was explained in section1.4.3, a bisegmentation is basically defined as a one to
one mapping between the source and the target phrases that compose the sentenceseI1 andfJ

1 .
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input : eI1,fJ
1 ,A

output : BP
auxiliar : SP (set of source positions),T P (set of target positions)
begin1

i1 := 12

while i1 ≤ I do3

i2 := i14

while i2 ≤ I do5

SP := {j|∃i : i1 ≤ i ≤ i2 ∧A(i, j)}6

if quasi consecutive (SP) then7

j1 := min(SP)8

j2 := max(SP)9

T P := {i|∃j : j1 ≤ j ≤ j2 ∧A(i, j)}10

if T P ⊆ {i1, i1 + 1, ..., i2} then11

j′ := j112

while j′ = j1 ∨ (j′ > 0 ∧ ∀i : A(i, j′) = 0) do13

j′′ := j214

while j′′ = j2 ∨ (j′′ ≤ J ∧ ∀i : A(i, j′′) = 0) do15

BP := BP ∪ {(f j′′

j′
, ei2i1)}16

j′′ := j′′ + 117

j′ := j′ − 118

i2 := i2 + 119

i1 := i1 + 120

end21

Algorithm 3.1: Pseudocode for thephrase extract algorithm.

problem while maintaining the use of single-word alignmentmatrices can be proposed. We
will refer to this new estimation technique asbisegmentation-based RF(BRF) estimation.

In the following sections we describe the details of our proposed alternative estimation
technique. Specifically, in section3.3.1 some complexity issues regarding the estimation
of phrase-based models are reviewed. The algorithm that implements our proposed tech-
nique is described in section3.3.2. Some implementation details are given in section3.3.3.
Finally, some possible extensions and applications of the proposed algorithms are given in
section3.3.4.

3.3.1 Complexity Issues

The translation of a given sentence into another sentence inthe target language using phrase-
based models is a complex task. According to the generative process of phrase-based models,
a complete bisegmentation of both the source and the target sentences has to be generated. To
illustrate the complexity of this task, we will calculate the total number of bisegmentations
for a given sentence pair.

Before calculating the number of bisegmentations for a sentence pair, it is illustrative to
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Table 3.1: Set of all monolingual segmentations for a source sentence of4 words and
their representation as a binary number of3 bits.

Segmentation Code
f1f2f3f4 000
f1f2f3 − f4 001
f1f2 − f3f4 010
f1f2 − f3 − f4 011
f1 − f2f3f4 100
f1 − f2f3 − f4 101
f1 − f2 − f3f4 110
f1 − f2 − f3 − f4 111

calculate the number of monolingual segmentations for a single sentence. For this purpose,
we will show that, given a sentence composed ofn words, any monolingual segmentation of
this sentence can be represented by a binary number ofn− 1 bits.

Let us consider that we are given a sentence in the source language composed of four
words:f4

1 = f1f2f3f4. The monolingual segmentation of length2 where the first wordf1 is
in the first phrase and the rest of the wordsf2f3f4 are in the second phrase, (f1 − f2f3f4),
can be represented as a binary number of3 bits: 100. In this binary number, then’th bitb is
set to1 if the n’th word and the(n+ 1)’th word of the sentence belong to different phrases.
Table3.1shows a complete example of the set of all possible monolingual segmentations for
the sentencef4

1 and how these segmentations are represented by means of binary numbers. As
can be seen in the table, the number of monolingual segmentations is equal to the number of
possible bit combinations. Thus, we conclude that the number of monolingual segmentations
of a sentence composed ofn words is2n−1.

Since a bisegmentation of two sentences is a one-to-one mapping betweenK source and
target phrases, we are interested in the total number of monolingual segmentations of a given
length, because only those segmentations with the same length can be combined.

If we represent the monolingual segmentations with binary numbers as was explained
above, the segmentation length will be given by the number ofbits that are set to1. The
number of monolingual segmentations of lengthK will be given by all those binary numbers
with K − 1 bits set to1 andJ − K bits set to0. This number is given by the number of
permutations of2 elements where the first one is repeatedK − 1 times and the second is
repeatedJ −K times, and we will note it asP J−1

(K−1)(J−K).
LetMSfJ

1 ,eI1,K
be the set of all possible monotonic segmentations of lengthK given the

source sentencefJ
1 and the target sentenceeI1. The total number of monotonic bisegmen-

tations of lengthK (with 1 ≤ K ≤ min(I, J)), |MSfJ
1 ,eI1,K

|, is given by the following
expression:

|MSfJ
1 ,eI1,K

| = P J−1
(K−1)(J−K) · P

I−1
(K−1)(I−K) (3.3)

Hence, the total number of monotonic bisegmentations for each possible value ofK,

bHere we assume that the first bit is the leftmost bit.
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|MSeI1,f
J
1
|, is given by:

|MSfJ
1 ,eI1

| =

min(I,J)
∑

k=1

|MSfJ
1 ,eI1,k

| (3.4)

Let SfJ
1 ,eI1,K

be the set of all possible non-monotonic bisegmentations oflengthK given

fJ
1 andeI1. The total number of non-monotonic bisegmentations of length K, |SfJ

1 ,eI1,K
|, is

given by:
|SfJ

1 ,eI1,K
| = |MSfJ

1 ,eI1,K
| ·K! (3.5)

where the factorial term comes from the fact that a monolingual segmentation of lengthK
can be permuted inK! different ways.

Let SfJ
1 ,eI1

be the set of all possible non-monotonic bisegmentations. The total number
of non-monotonic bisegmentations for each possible value of K, |SfJ

1 ,eI1
|, is calculated in the

same way as it was shown for the monotonic case:

|SfJ
1 ,eI1

| =

min(I,J)
∑

k=1

|SfJ
1 ,eI1,k

| (3.6)

The huge number of non-monotonic bisegmentations for a sentence pair constitutes a se-
rious challenge if phrase-based models are intended to be estimated by means of the EM
algorithm, since the E-step has to compute sufficient statistics for each possible bisegmenta-
tion. According to our previous calculations, a brute forcealgorithm implementing the E-step
would have factorial complexity.

The calculation of the expectation during the estimation ofphrase-based models using
the EM algorithm has long been suspected of being NP-hard. Marcu and Wong [MW02]
proposed an approximated E-step based on the Viterbi alignments of the training pairs. An
exponential-time dynamic program to systematically explore the set of possible bisegmen-
tations was proposed in [DGZK06]; in practise, however, the space of alignments has to be
pruned severely using word alignments to control the running time of EM. More recently, the
computation of the E-step for phrase-based models has been demonstrated to be an NP-hard
problem [DK08]. Finally, a proposal based on sampling is applied to estimate a Bayesian
translation model in [DBCK08].

We propose an alternative estimation technique for phrase-based models which is also
based on word alignments as well as the standard estimation technique described in sec-
tion 3.2. In contrast to the standard estimation technique, our proposal extracts the phrase
counts from the space of possible bisegmentations. The wordalignments are used here to
constrain this space of possible bisegmentations, making the estimation process feasible. Our
proposal does not use the EM algorithm, but the techniques proposed here can be applied to
greatly simplify the time requirements of the E-step. In this sense, our proposal can be seen
as the predecessor of the work presented in [DGZK06], where the EM algorithm is used to
estimate phrase-based models and the set of possible bisegmentations is constrained to those
that can be obtained using consistent phrase pairs. However, in that work, the authors claim
that even if this constraint is imposed, the problem is stillintractable. To reduce the compu-
tational cost, De Nero et al. [DGZK06] introduce a maximum phrase length of three words
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during the training. In addition to this, different factorscause their estimation algorithm to
rule out more than one half of the training set. As will be demonstrated in section3.3.3, The
proposal presented here does not have such disadvantages.

3.3.2 Algorithm

In this section we give a new proposal for model estimation. The estimation procedure has
three steps that are repeated for each sentence pair and its corresponding alignment matrix
(fJ

1 , e
I
1, A):

1. Obtain the setBP(fJ
1 , e

I
1, A) of all consistent bilingual phrases.

2. Obtain the setSBP(fJ
1 ,eI1,A) of all possible bilingual segmentations of the pair(fJ

1 , e
I
1)

that can be composed using the extracted bilingual phrases.

3. Update the counts (actually fractional counts) for everydifferent phrase pair(f̃ , ẽ) in
the setSBP(fJ

1 ,eI1,A), as:

c(f̃ , ẽ) = c′(f̃ , ẽ) +
c(f̃ , ẽ|SBP(fJ

1 ,eI1,A))

|SBP(fJ
1 ,eI1,A)|

wherec′(f̃ , ẽ) is the previous count of(f̃ , ẽ), c(f̃ , ẽ|SBP(fJ
1 ,eI1,A)) is the number of

times that the pair(f̃ , ẽ) occurs inSBP(fJ
1 ,eI1,A), and| · | denotes the cardinality of the

setSBP(fJ
1 ,eI1,A).

Afterwards the probability of every phrase pair(f̃ , ẽ) is computed again by relative frequency
estimation as follows:

p(f̃ |ẽ) =
c(f̃ , ẽ)

∑

f̃ ′ c(f̃ ′, ẽ)

Step 2 implies that if a bilingual phrase cannot be part of anybisegmentation for a given
sentence pair, this bilingual phrase will not be extracted.For this reason, BRF estimation
extracts fewer bilingual phrases than the RF estimation.

Figure 3.3 shows all possible bisegmentations for the word alignment matrix given in
Figure3.1. Phrase alignments are represented here using boxes. The counts and fractional
counts for each extracted bilingual phrase will differ for each estimation method, as shown in
Table3.2for the RF and the BRF estimation methods, respectively.

3.3.3 Implementation Details

The key aspect of the BRF estimation algorithm described in the previous section is the
generation of the setSBP(fJ

1 ,eI1,A) containing all those bisegmentations for a sentence pair
that can be composed using consistent phrase pairs.

Algorithm 3.2shows the pseudocode for thebrf phr extract algorithm. Such algo-
rithm calculates the phrase counts for a given sentence pairfrom the set of bisegmentations
composed of consistent phrase pairs. The algorithm takes asinput the sentence pair and
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Figure 3.3: Possible bisegmentations for a given word-alignment matrix.

Table 3.2: Bilingual phrase counts and fractional counts for RF and BRF estimation,
respectively, for the sentence pair shown in Figure3.1.

f̃ – ẽ RF BRF
la – the 1 3/5
casa – house 1 1/5
verde – green 1 1/5
casa verde – green house 1 1/5
la casa verde – the green house 1 1/5
. – . 1 3/5
casa verde . – green house . 1 1/5
la casa verde . – the green house . 1 1/5

its word alignment matrix(fJ
1 , e

I
1, A), the set of consistent phrase pairsBP and the set of

source positions that are to be aligned (SP). The setSP initially contains every position
of the source sentence, that is,SP = {j|1 ≤ j ≤ J}. Similarly, the setT P initially con-
tains every position of the target sentence, that is,T P = {i|1 ≤ i ≤ I}. Given these input
parameters, the algorithm recursively obtains phrase counts from the constrained set of biseg-
mentationsSBP(fJ

1 ,eI1,A). The algorithm works by extending partial bisegmentationsusing
consistent phrase pairs from the setBP, only those extensions that do not cause overlapping
alignments are considered (the target positions to be aligned must be contained inT P). The
recursion ends when all the source and the target sentence positions have been aligned (the
setsSP andT P are empty).

It is worthy of note that Algorithm3.2 works by exploring the tree of possible biseg-
mentations. Considering the example depicted in Figure3.3, the tree containing the set of
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input : fJ
1 ,eI1,A,BP,SP (set of source positions that are to be aligned),
T P (set of target positions that are to be aligned)

output : C (set of phrase counts inSBP(fJ
1 ,eI1,A)),

S (bisegmentation size|SBP(fJ
1 ,eI1,A)|)

begin1

if SP 6= ∅ then2

j1 := min(SP)3

j2 := max(SP)4

j := j15

while j ≤ j2 do6

forall (f j
j1
, ei2i1) ∈ BP ∧ {i1, i1 + 1, ..., i2} ∈ T P do7

SP ′ := SP − {j1, j1 + 1, ..., j}8

T P ′ := T P − {i1, i1 + 1, ..., i2}9

(C′, S′) :=brf phr extract (fJ
1 ,eI1,A,BP,SP ′,T P ′)10

C := C ∪ C′ ∪ {(f j
j1
, ei2i1)× S′}11

S := S + S′12

j := j + 113

else14

C := ∅15

if T P := ∅ then16

S := 117

else18

S := 019

end20

Algorithm 3.2: Pseudocode for thebrf phr extract algorithm.

possible bisegmentations has the form given in Figure3.4. In the tree of possible bisegmen-
tations, each bisegmentation is given by a path from the rootof the tree to one of its leafs.
The node numbers show the order in which the nodes are visitedby thebrf phr extract
algorithm. Each edge of the tree represents a bisegmentation decision and is labelled with the
corresponding phrase pair implied by this bisegmentation decision. The set of possible labels
for each edge of the tree is the setBP of consistent phrase pairs.

The computational complexity of thebrf phr extract algorithm is given by the
number of nodes of the bisegmentation tree. This size may vary depending on the given word
alignment matrixA. If the word alignment matrices do not contain unaligned target words,
then there is at most one consistent pair(f j2

j1
, ei2i1) ∈ BP for a given source phrasef j2

j1
. Under

these circumstances, in the best case scenario, where all the words of the source and the target
sentences are mutually aligned, the complexity of the algorithm is linear with the length of
the source sentence,J . By contrast, in the worst case scenario, where each source word is
aligned with only one target word and the word alignments arelocated in the main diagonal
of the alignment matrixA, the complexity is inO(2J−1). This exponential complexity comes
from the fact that, in the above described conditions, each monolingual segmentation of the
source sentencefJ

1 is contained inSBP(fJ
1 ,eI1,A), resulting in a bisegmentation tree containing
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Figure 3.4: Tree of possible bisegmentations for a sentence pair.

2J−1 leafs (each leaf corresponds to one complete bisegmentation). There are a great number
of possible situations between the best and the worst case scenarios. One example of these
situations is the word alignment matrix given in Figure3.1, which presents a non-monotonic
alignment. This non-monotonic alignment reduces the number of possible bisegmentations
to only five (see Figure3.3). The existence of unaligned words in the word alignment matri-
ces may vary the number of bisegmentations, but the upper bound of the complexity is still
exponential.

Efficient Estimation Algorithm

The exponential complexity of Algorithm3.2, although it is far from the factorial complexity
of the brute force algorithm to enumerate the set of non-monotonic bisegmentations, is not
acceptable when the algorithm is to be applied to long sentences. However, the time com-
plexity can be greatly improved if certain results obtainedduring the exploration of the tree
of possible bisegmentations are reutilised. Specifically,those partial bisegmentations with
the same set of aligned source and target positions can be completed in the same way. As a
result of this, we can establish a set of equivalence classesfor the partial bisegmentations. For
each equivalence class representing a set of partial bisegmentations, the number of possible
completions,S, and the set of phrase counts,C, that corresponds to these completions are
computed. For example, in the example given in Figure3.4, nodes4, 6 and9 represent three
partial bisegmentations belonging to the same equivalenceclass.
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input : fJ
1 ,eI1,A,BP,SP (set of source positions that are to be aligned),
T P (set of target positions that are to be aligned)

output : C (set of phrase counts inSBP(fJ
1 ,eI1,A)),

S (bisegmentation size|SBP(fJ
1 ,eI1,A)|)

auxiliar : EC (Set of equivalence classes),
C(SP,T P) (set of phrase counts for the equivalence class(SP, T P)),
S(SP,T P) (bisegmentation size for the equivalence class(SP, T P))

begin1

if SP 6= ∅ then2

j1 := min(SP)3

j2 := max(SP)4

j := j15

while j ≤ j2 do6

forall (f j
j1
, ei2i1) ∈ BP ∧ {i1, i1 + 1, ..., i2} ∈ T P do7

SP ′ := SP − {j1, j1 + 1, ..., j}8

T P ′ := T P − {i1, i1 + 1, ..., i2}9

if (SP ′, T P ′) /∈ EC then10

(C′, S′) :=brf phr extract (fJ
1 ,eI1,A,BP,SP ′,T P ′)11

C(SP′,T P′) := C′12

S(SP′,T P′) := S′13

EC := EC ∪ {(SP ′, T P ′)}14

C := C ∪ C(SP′,T P′) ∪ {(f j
j1
, ei2i1)× S(SP′,T P′)}15

S := S + S(SP′,T P′)16

j := j + 117

else18

C := ∅19

if T P := ∅ then20

S := 121

else22

S := 023

end24

Algorithm 3.3: Pseudocode for thebrf phr extract dp algorithm.

The previous considerations allow us to propose a recursivedynamic programming algo-
rithm to extract phrase counts using BRF estimation. Algorithm 3.3 shows the implementa-
tion details of the new proposal. The proposed algorithm stores the number of bisegmenta-
tions and the phrase counts associated to each equivalence class and reuses it when possible.
The equivalence class for a given partial bisegmentation isgiven by the sets(SP , T P) of
source and target positions to be aligned.

Again, the complexity of Algorithm3.3is given by the number of nodes contained in the
bisegmentation tree. Since now the equivalent nodes of the bisegmentation tree are processed
only once, we have to calculate the number of equivalence classes. Each equivalence class
may be reached from different father nodes. Thus, the complexity will be given by the number
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of equivalence classes multiplied by a constant representing the maximum number of father
nodes that reach to an equivalence class. Since in the bisegmentation tree, two nodes can
only be connected with edges labelled with phrase pairs of the setBP, an upper bound for
the maximum number of father nodes is|BP|.

The number of equivalence classes is given by the number of possible combinations of
the values for the setsSP and T P. Given a source sentencefJ

1 , there are onlyJ + 1
possible values forSP, from SP0 to SPJ : SP0 = {1, 2, ..., J}, SP1 = {2, 3, ..., J},
SP2 = {3, 4, ..., J},..., SPJ−1 = {J} andSPJ = {}. Let EC be the set of equivalence
classes andECSP be the set of equivalence classes for a given setSP. Then, the total number
of equivalence classes is given by the expression:

|EC| =
J∑

j=0

|ECSPj
| (3.7)

To calculate the number of equivalence classes for the setSPj , |ECSPj
|, first we define

two auxiliary subsets of the setBP: BPj1,j2 andBPmin. The setBPj1,j2 is composed of
those phrase pairs(f j2

j1
, ei2i1) ∈ BP where the words{ei1 , ..., ei2} do not appear in phrase

pairs(f j′′

j′ , e
i′′

i′ ) ∈ BP wherej′′ < j1:

BPj1,j2 = {(f j2
j1
, ei2i1) ∈ BP |¬∃(f j′′

j′ , e
i′′

i′ ) ∈ BP : (j′′ < j1 ∧

{ei1 , ..., ei2} ∩ {ei′ , ..., ei′′} 6= ∅)} (3.8)

BPmin is defined as the set of phrase pairs(f j2
j1
, ei2i1) ∈ BP wheref j2

j1
is the shortest

source phrase ending in positionj2 for which there exists (ifj1 > 1) at least one phrase pair
in BP of the form(f j1−1

j′ , ei
′′

i′ ):

BPmin = {(f j2
j1
, ei2i1) ∈ BP |

((¬∃(f j2
j′ , ·) ∈ BP : j′ > j1 ∧ (j1 = 1 ∨ (f j1−1

j′′ , ·) ∈ BP)) ∨

(∃(f j2
j′ , ·) ∈ BP : j′ > j1 ∧ (f j′−1

j′′ , ·) /∈ BP))} (3.9)

Once we have defined the setsBPj1,j2 andBPmin, |ECSPj
| is given by the following

recurrence:

|ECSPj
| =







1 if j = 0

0 if j > 0 ∧ ¬∃(f j
j′ , e

i2
i1
) ∈ BPmin

|ECSPj′−1
| × |BPj′,j | if j > 0 ∧ ∃(f j

j′ , e
i2
i1
) ∈ BPmin

(3.10)

In the previous recurrence,|ECSP0
| is equal to1 since givenSP0 = {1, 2, ..., J}, there

is only one possible value forT P: {1, 2, ..., I} (these values are set during the initialisation
of Algorithm 3.3). Regarding the values of|ECSPj

|, with j > 1, the setBPmin is used to
determine if there are consistent phrase pairs whose sourcephrases end in positionj. If there
are no phrase pairs inBPmin whose source phrases end in positionj, then|ECSPj

| = 0.
Otherwise,BPmin also provides the starting positionj′ of the shortest source phrase end-
ing in positionj. Under this circumstances,|ECSPj

| is given by the number of equivalence
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classes forSPj′−1, |ECSPj′−1
|, multiplied by|BPj′,j |; where|BPj′,j | represents the num-

ber of values that the setT P can take when we align the source positions{j′, ..., j}. Note
that the definition of|BPj′,j | given by Equation (3.8) allows us to avoid counting overlapping
alignments for the target positions when we align the set of source positions{j′, ..., j} after
having aligned the set of source positions{1, ..., j′ − 1}.

According to the previous considerations, Algorithm3.3is able to achieve great savings in
the computational cost with respect to the implementation given by Algorithm3.2, specially
if the word alignment matrices do not contain unaligned words. Let us consider the case
in which we are given a source sentence composed ofJ words, where each source word
is aligned with one and only one target word, and the word alignments are located in the
main diagonal of the word alignment matrixA. Under these circumstances, there are a total
of 2J−1 possible bisegmentations and onlyJ + 1 equivalence classes, since according to
Equation (3.10), |ECSPj

| = 1, ∀j | 0 ≤ j ≤ J (note that|BPj′,j | = 1 for all possible
values ofj′ andj). Since this is the worst case scenario, we can conclude that, if the word
alignment matrices do not contain unaligned words, the timecomplexity of the algorithm is
in O(J · |BP|) (as was explained above,|BP| is an upper bound for the maximum number
of father nodes that reach to an equivalence class). If thereare unaligned words in the word
alignment matrices, the situation is completely different, since now|BPj′,j | may be greater
than one. Under these circumstances and according to Equation (3.10), |ECSPj

| may grow
geometrically with respect to|ECSPj′−1

|. In spite of the fact that this may substantially
increase the time complexity of the algorithm, a low rate of unaligned words in the word
alignment matrices can be expected (this will be empirically demonstrated in section5.5).

3.3.4 Possible Extensions and Applications of the Proposed Algorithms

The brf phr extract dp algorithm allows to efficiently obtain the number of possible
bisegmentations and the set of phrase counts extracted fromSBP(fJ

1 ,eI1,A) for a given sen-

tence pair(fJ
1 , e

I
1) and its corresponding alignment matrixA. The algorithm can be straight-

forwardly modified to obtain more detailed information about the bisegmentation process,
including information about phrase lengths or about reorderings. In addition to this, given a
previously estimated phrase model, the proposed algorithmcan also be modified to obtain the
Viterbi alignment or the sum of the probability for each possible phrase alignment contained
in SBP(fJ

1 ,eI1,A). These modified versions of the initial algorithm can be usedto partially
compute the E step of the EM algorithm. This partial computation can be justified by means
of the sparse version of the EM algorithm proposed in [NH98].

Typically, the estimation techniques for phrase-based models that can be found in the
literature rely on word alignments. This results in phrase translation tables composed of
phrase pairs which are contained in the setBP of consistent phrase pairs. This may constitute
an important limitation, since desirable phrases can be eliminated due to errors in the word
alignments. Breaking this limitation is not trivial due to the huge size of the setSfJ

1 ,eI1
. One

possible solution to this problem would consist in obtaining a uniform random sample of the
restricted set of bisegmentationsSBP(fJ

1 ,eI1,A) combined in some way with the unrestricted
set of bisegmentationsSfJ

1 ,eI1
. From the resulting set of random samples, a phrase-based

model could be built by collecting counts or using a better theoretically founded estimation
technique such as the Monte-Carlo EM algorithm described in[WT90]. It is easy to obtain
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Figure 3.5: Tree of possible bisegmentations including the required information to
generate random walks: each edge of the tree is labeled with the number ofreachable
leafs.

random samples from the setSfJ
1 ,eI1

due to the regularities that this set presents. By contrast,
the generation of random samples from the setSBP(fJ

1 ,eI1,A) is not easy, since this set does
not present such regularities.

Thebrf phr extract dp algorithm obtains the number of bisegmentations for each
equivalence class (or, in other words, the number of bisegmentations that can be reached
following a given edge of the tree) as a by-product. As it willbe shown, this information can
be exploited to obtain random samples from the setSBP(fJ

1 ,eI1,A).
Since the set of possible bisegmentations presents a tree structure, our problem of gener-

ating random samples is equivalent to the problem of generating random paths in the biseg-
mentation tree. One way to generate such random paths consists in, starting from the root
of the tree, randomly select which one of the edges of the current node is added to the path.
This is often referred to as arandom walk. Unfortunately, this straightforward technique pri-
orizes the random walks with smallest lengths (or, in other words, the bisegmentations with
smallest lengths). To solve this problem, we can assign weights to each edge depending on
the number of bisegmentations that can be reached from it. For this purpose, we would need
a labeled bisegmentation tree as the one presented in Figure3.5, where each edge is labeled
with the number of leafs that can be accessed from it. These labels can be efficiently obtained
by means of thebrf phr extract dp algorithm.

After labeling the bisegmentation tree, Algorithm3.4 generates random walks with uni-
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input : fJ
1 ,eI1,A,BP,
S∀(SP,T P) (bisegmentation size for each equivalence class(SP, T P)),
SP (set of source positions that are to be aligned),
T P (set of target positions that are to be aligned),
πfJ

1
(partial partition of the source sentence),

πeI1
(partial partition of the target sentence)

output : ΠfJ
1

(partition of the source sentence),
ΠeI1

(partition of the target sentence)
auxiliar : x (random number in(0, 1])
begin1

if SP 6= ∅ then2

j1 := min(SP)3

j2 := max(SP)4

j := j15

n := 06

while j ≤ j2 do7

forall (f j
j1
, ei2i1) ∈ BP ∧ {i1, i1 + 1, ..., i2} ∈ T P do8

n := n+ 19

SPn := SP − {j1, j1 + 1, ..., j}10

T Pn := T P − {i1, i1 + 1, ..., i2}11

πn

fJ
1
:= (πfJ

1
; f j

j1
)12

πn

eI1
:= (πeI1

; ei2i1)13

j := j + 114

x :=rand()15

N := n16

k | 1 ≤ k ≤ N ∧
∑n=k−1

n=1 S(SPn,T Pn)
∑

n=N
n=1 S(SPn,T Pn)

< x ≤
∑n=k

n=1 S(SPn,T Pn)
∑

n=N
n=1 S(SPn,T Pn)17

bisegm random walk( fJ
1 ,eI1,A,BP,S∀(SP,T P),SP

k,T Pk,πk

fJ
1

,πk

eI1
)18

else19

ΠfJ
1
:= πfJ

1
20

ΠeI1
:= πeI1

21

end22

Algorithm 3.4: Pseudocode for thebisegm random walk algorithm.

form probability for the set of possible bisegmentations. For this purpose, at each step of the
generation of the random walk, if there are a total ofN candidate edges to be extended, the
k’th edge of the tree is chosen by generating a random number between zero and one. Each
one of theN candidate edges is assigned a probability equal to the number of leafs that can
be reached from it divided by the number of leafs that can be reached from theN edges.
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3.4 Phrase-based Model Estimation from Very Large Cor-
pora

The translation of a given source sentence using phrase-based models requires that all its
constituent phrases have been seen during the training process. This requirement is hard to
achieve in practise, since the number of phrases to be learntfor a given language is huge. As
a result of this, phrase-based models have a poor generalisation capability.

A common strategy to overcome the lack of generality that thephrase-based models
present consists in the acquisition of larger and larger training corpora. Recently, very large
corpora have been made available, as for example, the Europarl corpus, or the Arabic-English
corpus used in the annual NIST machine translation evaluation campaigns. These corpora are
composed of millions of sentence pairs and tens of millions of running words.

However, the use of larger corpora extraordinarily increases the number of parameters
to be learnt and the memory size required to store them. For example, Callison Burch et
al. [CBBS05] report that the storage of the parameters of a phrase-basedmodel for the above
mentioned NIST Arabic-English corpus may require up to 30 GBytes of memory if standard
lookup tables are used. Therefore, dealing with very large corpora has become a bottleneck
in SMT, as has happened in other well-known pattern recognition tasks.

One typical way to reduce the number of parameters containedin a phrase model is to
impose a constraint over the length of the phrases. Such a constraint does not affect negatively
the translation quality if the maximum phrase length allowed is sufficiently high. However,
this constraint is not enough to solve the above-mentioned scalability problems of the phrase-
based models, as it will be shown in section3.4.1.

Most of the authors of works on PB-SMT have shown the importance of dealing with
larger corpora and longer sentences in order to build statistical machine translation systems.
For example, [KOM03] concludes that longer phrases results in better translation quality but
at the cost of managing huge translation lookup tables. Also, in [Til03, VVW03, VZH+03]
this problem is also apparent.

3.4.1 Some Model Statistics

To illustrate the huge size of the phrase tables we have computed some statistics for different
phrase models estimated from the Europarl corpusc. Table3.3 shows the number of phrase
pairs, Spanish words and English words contained in eight phrase-models ranging over the
maximum phrase length for both languages. As it can be observed, the size of the models
may become huge if the maximum phrase length is increased.

3.4.2 Training Procedure

Even if very efficient data structures in terms of space complexity are used, important prob-
lems arise when phrase models are to be estimated from very large corpora. In order to
overcome this limitation, we propose an algorithm which trains phrase models from corpora
of an arbitrary size.

cWe used the standard estimation technique described in section3.2to obtain the phrase-based models
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Table 3.3: Statistics of different phrase models estimated from the Europarl corpus
ranging over the maximum phrase size (denoted bym).

m Phrases English words Spanish words
1 937 433 2 085 329 937 433
2 4 313 219 10 840 699 7 689 005
3 9 969 817 29 078 625 24 658 799
4 16 500 370 55 378 535 50 781 011
5 22 935 135 87 051 762 82 954 836
6 28 928 890 122 136 760 118 917 366
7 31 227 305 159 525 055 157 425 528
8 39 456 451 198 444 311 197 636 688

One possible way to solve this problem, which allows to traincorpora of an arbitrary
size, is given by the algorithmfrag by frag training given in Algorithm3.5. This
algorithm is based on the use of phrase counts instead of probabilities and works as follows:

1. First, it splits the corpus (given in the filealign file) into fragments of a fixed number
of aligned sentence pairs (fragment size). The splitting technique that is used here
is very simple and corpus independent. In addition to this, its functionality is imple-
mented by standard tools as for example the ”split” command which can be found in
UNIX-like operating systems.

2. Then, a phrase model estimation process is carried out foreach fragment. Thesub-
modelfor each fragment will be composed of a series of phrase counts labelled with
an identifier associated to the corpus fragment from which the counts were extracted
(fid); by this reason, such identifier is required by the trainingalgorithm.

3. Finally, once the submodels have been generated, they aremerged into a single file.
This file is lexicographically ordered and the phrase countsthat compose the model
are then merged. The lexicographical ordering of the input file allows us to merge the
counts without having to store the whole model in memory.

The labelling process which has been mentioned above is doneto allow a correct merging
of the phrase counts. Figure3.6shows an example of a file containing sorted counts with their
corresponding labels.

The details of the merging process can be found in the algorithm merge counts given
by Algorithm 3.6. Such an algorithm takes a file with sorted counts and returnsthe final
phrase-based model. Themerge counts algorithm takes advantage of the lexicographical
ordering of the input file to merge the counts without having to store the whole model in
memory. Specifically, the algorithm reads a block of model entries sharing the same target
phrase (line4). After that, the contribution of each entry of the block to the target (line10)
and joint counts (line12) are processed. Finally, the counts for each phrase pair arewritten
to file (line15).

The above mentioned process yields a phrase model composed of a set of phrase counts
that is identical to the one obtained from the whole corpus. It is worth noticing that the
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input : fragment size, align file (alignment file)
output : phr model (phrase-based model)
begin1

fragments := split( align file, fragment size)2

open( counts file,’a’ ) // open for appending3

fid := 14

forall f ∈ fragments do5

train (f, fid) >> counts file // ‘‘ >>’’ means append to file6

fid := fid+ 17

sorted counts file := sort counts( counts file)8

phr model := merge counts( sorted counts file)9

end10

Algorithm 3.5: Pseudocode for thefrag by frag training algorithm.

trg phr1 ||| src phr1 ||| c(trg phr1, fid1) c((trg phr1, src phr1), fid1) fid1
trg phr1 ||| src phr2 ||| c(trg phr1, fid1) c((trg phr1, src phr2), fid1) fid1
trg phr1 ||| src phr2 ||| c(trg phr1, fid2) c((trg phr1, src phr2), fid2) fid2
trg phr1 ||| src phr3 ||| c(trg phr1, fid3) c((trg phr1, src phr3), fid3) fid3
trg phr2 ||| src phr3 ||| c(trg phr2, fid2) c((trg phr2, src phr3), fid2) fid2
trg phr2 ||| src phr3 ||| c(trg phr2, fid3) c((trg phr2, src phr3), fid3) fid3
trg phr3 ||| src phr3 ||| c(trg phr3, fid1) c((trg phr3, src phr3), fid1) fid1

. . .

Figure 3.6: Example of a file containing sorted counts.

obtained set of counts allows us to efficiently generate direct and inverse phrase model prob-
abilities if appropriate data structures are used. One example of the data structures that allow
us to efficiently calculate direct and inverse phrase probabilities from phrase counts will be
presented in section4.3.

The proposed algorithm introduces time overhead because ofthe necessity of sorting
and merging the phrase counts. This overhead will be empirically measured in section5.1.
However, it is important to stress that the training and sorting steps executed by the algorithm
can be parallelised, resulting in a very efficient method to train phrase models.

It is worth pointing out that our proposed estimation algorithm constitutes an application
of theMapReducesoftware framework [DG04]. MapReduce builds on the observation that
many tasks have the same basic structure: a computation is applied over a large number
of records (e.g., parallel sentences) to generate partial results (map step), which are then
aggregated in some fashion (reduce step). The MapReduce software framework has been
applied to estimate phrase-based models and word alignmentmodels in other works, such
as [DCML08, GV08]. The estimation methods described in these works are similar to the
one described above.
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input : sorted counts file (sorted counts file)
output : phr model (phrase-based model)
auxiliar : BE (block of entries of the file with sorted counts)

F (set of fragment identifiers)
JCs (joint count for source phrases)
(t, s, ftc, fjc, fid) (entry of the file with sorted counts)
S (set of source phrases)

begin1

open( sortedcountsfile,’r’ ) ; open( phr model,’w’)2

while not end of( sortedcountsfile) do3

BE := read block with same trg phr (sorted counts file)4

// The BE variable stores the next block
// of entries which shares the same target phrase
tc := 05

F := ∅6

JCs := 0, ∀s7

forall (t, s, ftc, fjc, fid) ∈ BE do8

// An entry of BE includes: target phrase ( t),
// source phrase ( s), target count ( ftc),
// joint count ( fjc), fragment identifier ( fid)
if fid /∈ F then9

tc := tc+ ftc10

F := F ∪ fid11

JCs := JCs + fjc12

if s /∈ S then S := S ∪ s13

forall s ∈ S do14

write( phr model,(t,s,tc,JCs))15

end16

Algorithm 3.6: Pseudocode for themerge counts algorithm.

3.5 Specific Phrase-Based Model Derivation

The assumptions that are typically made during the derivation of phrase based models reduce
them to mere statistical dictionaries of phrase pairs plus asimple distortion model. These are
very strong assumptions, since the translation process using phrase-based models requires the
generation of bisegmentations of the source and the target sentences, and the bisegmentation
process can be carried out in a huge number of ways, as was explained in section3.3.1.

In this section we propose a phrase-based model derivation that allows us to incorporate
specific probability distributions governing the basic aspects of the bisegmentation process.
As will be shown in section3.5.3, the resulting submodels that are obtained by means of
our proposed model derivation can also be added as individual components of a log-linear
translation model. In this sense, our model derivation provides a well-founded criterion to
add certain components to log-linear translation models.

Additionally, the model derivation presented here is specifically designed for its use by
standard search algorithms. As it was explained in section1.6, search algorithms for SMT
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typically generate their translations by adding words to the translation hypotheses from left to
right. Informally, the generative process followed by these search algorithms has three steps:

1. Choose the next word or group of words of the source sentence to be translated.

2. Choose the target translation of the untranslated sourcewords, and append it at the
right of the hypothesis.

3. If there still are untranslated source words, goto1.

This generative process contrasts with the standard generative process for phrase-based
models described in section1.4.3. In such generative process, the source sentence is first
divided into phrases, then, the target phrases that translate each source phrase are chosen, and
finally, the target phrases are reordered to compose the target sentence. As will be shown,
our proposed generative process reflects the way in which standard search algorithms work,
allowing a more natural implementation of such algorithms.

3.5.1 Generative Process

Given the probability distributionPr(fJ
1 |e

I
1), we define the generative process of our pro-

posed phrase model as follows:

1. ChooseK as the length of the bisegmentation, where1 ≤ K ≤ min(I, J)

2. Fork = 1 toK do:

(a) Choose the ending position of thek’th phrase ineI1, ak, determining thek’th
target phrase,eak

ak−1+1, wherea0 = 0 andak > ak−1

(b) Choose the number ofskippedwords for thek’th phrase infJ
1 , bk, with respect to

the ending positionβk−1 of the previous source phrase (bk is an integer number)

(c) Choose the length of thek’th phrase offJ
1 , ck, determining thek’th source

phrase,fβk
αk

, whereck should be greater than zero and:

αk = βk − ck + 1

βk = βk−1 + bk + ck

β0 = 0

(d) Choose thek’th phrase offJ
1 , fβk

αk
, as translation of thek’th phrase ofeI1, eak

ak−1+1

The bisegmentation decisions made during the generative process are summarised by the
hidden variablesK, aK1 , bK1 andcK1 , which store the bisegmentation length, the ending posi-
tions of the target phrases, the number of skipped source words with respect to the previous
source phrase and the length of the source phrases for thek’th bisegmentation step respec-
tively.

At each step of thefor loop of the generative process, the hidden variablesaK1 , bK1 andcK1
are extended with a new value. The newly added values have to be chosen so as to generate
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correct bisegmentations of the source and the target sentences. Correct bisegmentations are
composed of a set of phrases containing all the words of the source and the target sentences
without overlappings. This can be formally stated as follows:

ea1
1 ea2

a1+1...e
aK

aK−1+1 ≡ eI1 (3.11)

L
(
fβ1
α1

fβ2
α2

...fβK
αK

, [(α1, β1), (α2, β2), ..., (αK , βK)]
)

≡ fJ
1 (3.12)

where the functionL(·) takes the concatenation of the source phrases obtained during the
generative process and their associated indices as input, and returns a linearisation of such
concatenation of source phrases (for instance, given the source sentencef1f2f3, the concate-
nationf3

2 f1 and the indices[(2, 3)(1, 1)], L(f3
2 f1, [(2, 3), (1, 1)]) = f1f2f3).

As an example of how the above explained generative process works, Figure3.7 shows
a bisegmentation example for a sentence pair and the corresponding values of the hidden
variables according to the generative process.

the

green
house

.

la

ca
sa

v
er

d
e .

K = 4
a41 = {1, 2, 3, 4}
b41 = {0, 1,−2, 1}
c41 = {1, 1, 1, 1}

Figure 3.7: Bisegmentation example for a sentence pair (left) and the set of values for
the hidden variables according to our proposed generative process (right).

3.5.2 Model Derivation

The generative process described in the previous section can be more formally expressed as
follows:

Pr(fJ
1 |e

I
1) = Pr(J |eI1) ·

∑

K,aK
1 ,bK1 ,cK1

Pr(fJ
1 ,K, aK1 , bK1 , cK1 |eI1, J) (3.13)

= Pr(J |eI1) ·
∑

K

Pr(K|eI1, J) ·
∑

aK
1 ,bK1 ,cK1

Pr(fJ
1 , a

K
1 , bK1 , cK1 |eI1, J,K) (3.14)

In the previous equation, the probability distributionPr(J |eI1) is introduced for complete-
ness and the termPr(fJ

1 , a
K
1 , bK1 , cK1 |eI1, J,K) can be decomposed without loss of generality
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as a product for each step of the bisegmentation process:

Pr(fJ
1 , a

K
1 , bK1 , cK1 |eI1, J,K) =

K∏

k=1

[

Pr(ak|e
I
1, J,K, ak−1

1 , bk−1
1 , ck−1

1 , fβ1
α1

, ..., fβk−1
αk−1

)

Pr(bk|e
I
1, J,K, ak1 , b

k−1
1 , ck−1

1 , fβ1
α1

, ..., fβk−1
αk−1

)

Pr(ck|e
I
1, J,K, ak1 , b

k
1 , c

k−1
1 , fβ1

α1
, ..., fβk−1

αk−1
)

Pr(fβk
αk

|eI1, J,K, ak1 , b
k
1 , c

k
1 , f

β1
α1

, ..., fβk−1
αk−1

)

]

(3.15)

The previous decomposition ofPr(fJ
1 |e

I
1) exactly reflects the generative process given

in section3.5.1. From this point, we are forced to make a series of assumptions to obtain a
tractable expression of the model:

Pr(J |eI1) ≈ p(J |I) (3.16)

Pr(K|eI1, J) ≈ p(K|I, J) (3.17)

Pr(ak|e
I
1, J,K, ak−1

1 , bk−1
1 , ck−1

1 , fβ1
α1

, ..., fβk−1
αk−1

) ≈ p(ak|ak−1) (3.18)

Pr(bk|e
I
1, J,K, ak1 , b

k−1
1 , ck−1

1 , fβ1
α1

, ..., fβk−1
αk−1

) ≈ p(bk) (3.19)

Pr(ck|e
I
1, J,K, ak1 , b

k
1 , c

k−1
1 , fβ1

α1
, ..., fβk−1

αk−1
) ≈ p(ck|ak, ak−1) (3.20)

Pr(fβk
αk

|eI1, J,K, ak1 , b
k
1 , c

k
1 , f

β1
α1

, ..., fβk−1
αk−1

) ≈ p(fβk
αk

|eak

ak−1+1) (3.21)

The resulting model is composed of the following submodels:

• Source length submodel(p(J |I)): generates probabilities for the length of the source
sentence given the length of the target sentence.

• Bisegmentation length submodel(p(K|I, J)): assigns probabilities to each segmen-
tation length given the lengths of the source and the target sentences.

• Target phrase length submodel(p(ak|ak−1)): assigns probabilities to the ending po-
sition of a target phrase given the ending position of the previous target phrase. This
submodel can be seen as a submodel for the length of the targetphrases.

• Distortion submodel (p(bk)): this submodel assigns probabilities to the number of
skipped source words with respect to the ending position of the last aligned source
phrase. This submodel can be seen as a distortion model.

• Source phrase length submodel(p(ck|ak, ak−1)): assigns probabilities to the length
of the source phrases given the ending positions of the current and the previous target
phrases. This submodel can be seen as a source phrase length submodel given the
length of the target phrase.

• Phrase translation submodel(p(fβk
αk

|eak

ak−1+1)): this submodel constitutes a statistical
dictionary of phrase pairs.
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After making the above explained assumptions, the expression of our proposed phrase
model is as follows:

p(fJ
1 |e

I
1) = p(J |I)

∑

K

[

p(K|I, J) ·

∑

aK
1 ,bK1 ,cK1

( K∏

k=1

p(ak|ak−1) ·

p(bk) · p(ck|ak, ak−1) ·

p(fβk
αk

|eak

ak−1+1)

)]

(3.22)

We make additional assumptions to generate probabilities for each submodel:

• p(J |I) = φI(J + 0.5)− φI(J − 0.5),
whereφI(·) denotes the cumulative distribution function (cdf) for thenormal distribu-
tion (the cdf is used here to integrate the normal density function over an interval of
length1). We use a specific normal distribution with meanµ|eI1|

and standard deviation

σ|eI1|
for each possible target sentence length|eI1|.

• p(K|I, J) = 1
min (I,J) ,

that is, we use a uniform probability distribution.

• p(ak|ak−1) = δ(1− δ)ak−ak−1−1,
where we propose the use of a geometric distribution with probability of successδ on
each trial to assign probabilities to the length of the target phrases. The use of a geo-
metric distribution penalises long target phrases. Alternatively, a uniform distribution
can be used:p(ak|ak−1) = 1

Imax−ak−1
, whereImax is a constant representing the

maximum target sentence length. Roughly speaking, such distribution would penalise
the length of the bisegmentations.

• p(bk) =
1

2−δ
δ(1− δ)abs(bk)

where we propose the use of a modified geometric distributionwith probability of
successδ on each trial to assign probabilities to the number of skipped source words.
The original geometric distribution, which is defined for positive numbers, is modified
here becausebk takes integer values. Specifically, the scaling factor1

2−δ
is added. The

use of a geometric distribution penalises longer reorderings.

• p(ck|ak, ak−1) =
1

1+τ
δ(1− δ)abs(ck−(ak−ak−1))

whereτ =
∑ak−ak−1−1

i=1 δ(1− δ)i. We again propose the use of a modified geometric
distribution with probability of successδ on each trial to assign probabilities to the
length of the source phrases given the length of the target phrases. The original geo-
metric distribution is modified here because the termck − (ak − ak−1) takes integer
values (ck and(ak − ak−1) are greater than zero). In this case, the scaling factor1

1+τ

was introduced. The use of a geometric distribution penalises the difference between
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the source and the target phrase lengths. Alternatively, a Poisson distribution or a uni-
form distribution (in this case, the length of the bisegmentations would be penalised)
could have been used.

Regarding the phrase translation submodel (p(fβk
αk

|eak

ak−1+1)), its probabilities are ob-
tained by means of the RF or the BRF estimation techniques described in sections3.2and3.3
respectively.

In the final expression of our model, some of the resulting submodels aredeficient. We
say that a statistical model is deficient if it has the property of not concentrating all of its prob-
ability on events that can be explained by the generative process. As it is noted in [BDDM93],
deficiency is the price we pay to obtain tractable model expressions. In our case, the source
phrase length submodel, the target phrase length submodel and the distortion submodel are
deficient. Specifically, the target phrase length model may assign probabilities greater than
zero to bisegmentations that do not satisfy the condition given by Equation (3.11). The defi-
ciency of the target phrase length model can be corrected by slightly relaxing the modelling
assumptions, obtaining the following submodel:p(ak|I,K, k, ak−1). Regarding the source
phrase length submodel and the reordering submodel, they may assign probabilities greater
than zero to bisegmentations that do not satisfy the condition given by Equation (3.12). In
this case, the required modifications to obtain non-deficient models are more complex since
zero- or one-order dependencies do not add enough information to ensure that the correctness
condition holds.

3.5.3 Log-Linear Model

As stated in section1.4.4, log-linear models constitute the state-of-the-art in statistical ma-
chine translation. In this section we will show how our phrase-based model derivation can be
used as a criterion to add components to a log-linear model for SMT.

According to Equation (3.13), and following the maximum-approximation, the funda-
mental equation of machine translation (see section1.3) can be reframed as:

êÎ1 ≈ argmax
I,eI1

{
Pr(eI1) · max

K,aK
1 ,bK1 ,cK1

Pr(fJ
1 ,K, aK1 , bK1 , cK1 | eI1)

}
(3.23)

Following the log-linear approach, Equation (3.23) can be rewritten as follows:

êÎ1 = argmax
I,eI1

{ max
K,aK

1 ,bK1 ,cK1

M∑

m=1

λm · hm(fJ
1 ,K, aK1 , bK1 , cK1 , eI1)} (3.24)

According to Equation (3.24), we introduce a set of seven feature functions in our log-
linear model (fromh1 to h7): an n-gram language model (h1), a source sentence-length
model (h2), inverse and direct phrase-based models (h3 andh4 respectively), a target phrase-
length model (h5), a source phrase-length model (h6), and a distortion model (h7). The
details for each feature function are listed below:

• n-gram language model (h1)
h1(e

I
1) =

∏I+1
i=1 p(ei|e

i−1
i−n+1)

d

de0 denotes thebegin-of-sentencesymbol (BOS), eI+1 denotes theend-of-sentencesymbol (EOS), eji ≡
ei...ej
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• source sentence-length model (h2)
h2(e

I
1, f

J
1 ) = log(p(J |I))

• inverse phrase-based model (h3)
h3(e

I
1,K, aK1 , bK1 , cK1 , fJ

1 ) = log(
∏K

k=1 p(f
βk
αk

|eak

ak−1+1))

• direct phrase-based model (h4)
h4(e

I
1,K, aK1 , bK1 , cK1 , fJ

1 ) = log(
∏K

k=1 p(e
ak

ak−1+1|f
βk
αk

))

• target phrase-length model (h5)
h5(K, aK1 ) = log(

∏K
k=1 p(ak|ak−1))

• source phrase-length model (h6)
h6(K, aK1 , cK1 ) = log(

∏K
k=1 p(ck|ak, ak−1))

• distortion model (h7)
h7(K, bK1 ) = log(

∏K
k=1 p(bk))

It is worthy of note that, excepth4, all the above described log-linear components have
been obtained from a proper decomposition of the probability distributionPr(eI1|f

J
1 ).

3.6 Summary

In this chapter we have studied different aspects of the modelling and the training problems
in PB-SMT. We have proposed an alternative technique to train phrase models which we have
called BRF estimation. BRF estimation tries to reduce the strong heuristic component that
the standard estimation technique presents by counting thefrequencies of the phrase pairs in
the set of possible bisegmentations. Since the set of possible bisegmentations has a huge size,
we prune it by means of the set of consistent phrase pairs in which the standard estimation
technique is based. Specifically, only those bisegmentations that are compatible with the
set of consistent pairs are considered when collecting the bilingual counts. As it has been
shown, our BRF estimation technique can be efficiently implemented by means of dynamic
programming techniques.

We have described an estimation technique able to work with very large corpora. Our pro-
posed technique allows to transform main memory requirements into hard disk requirements.
In contrast with existing estimation techniques, our proposed technique is able to obtain the
necessary information to generate direct and inverse phrase pair probabilities by executing
the estimation algorithm in only one translation direction.

Finally, we have given a specific phrase-based model derivation. The generative process
associated to this derivation generates the translations from left to right as well as the regular
decoding algorithms described in the literature do. Our proposed phrase model includes a set
of submodels governing different aspects of the bisegmentation process, such as the length of
the source and the target phrases, reordering of the phrases, etc. In addition to this, we have
described a log-linear model which includes all these submodels as components, resulting in
a fully-fledged state-of-the-art statistical translationmodel.
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CHAPTER 4

SEARCH FOR PHRASE-BASED

STATISTICAL M ACHINE

TRANSLATION

4.1 Introduction

As was already explained in section1.3, the building process of an SMT system involves
addressing three problems, namely, the modelling, the training and the search problems. In
the previous chapter, different solutions for the modelling and the training problems in PB-
SMT were proposed. In this chapter we study the search problem in PB-SMT.

The goal of the search, also referred to as generation or decoding, is to find the best trans-
lation candidate for a given source sentence among all possible target language sentences. For
this purpose, search algorithms explore a graph-structured search space which represents the
set of possible translations. This search space exploration is guided by the statistical models
involved in the translation process. A specific translationof a source sentence is given by a
path in the graph representing the search space. The best translation is given by the path of
highest probability.

The rest of this chapter is organised as follows: a branch-and-bound search algorithm
for PB-SMT is described in section4.2. Specific decoding techniques to deal with large
phrase-based models are described in section4.3. In section4.4 we formalise the concept
of phrase-level alignment for a sentence pair. Also, a modification of the branch-and-bound
search algorithm to find the phrase-level alignment of highest probability is proposed. Finally,
we provide a summary of the chapter in section4.5.

4.2 Branch-and-Bound Search for PB-SMT

In this section we propose a specific way to solve the search problem in PB-SMT based on
the well-known branch-and-bound paradigm [LD60].
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The search problem in SMT is formally defined as a maximisation problem where the
goal is to find the target translationeI1 of highest probability given the source sentencefJ

1 .
As was explained in section1.3, the most basic formulation of this probability is given by the
product of the language and translation model probabilities.

The language and translation models can be instantiated in different ways. Here we pro-
pose the use of ann-gram model as language model and a phrase-based model as translation
model. This phrase-based model is defined according to the derivation presented in sec-
tion 3.5. In such derivation, the translation process for a sentencepair is explained by means
of a specific set of hidden alignment variables(K, aK1 , bK1 , cK1 ). The meaning of each hidden
variable is the following:

• K: bisegmentation length.

• aK1 : vector of ending positions of theK target phrases.

• bK1 : vector with the number of skipped source positions with respect to the ending
position of the previously aligned source phrase.

• cK1 : vector of lengths of theK source phrases.

Given the previous assumptions and following the maximum-approximation, the search
problem can be formally expressed as follows:

êÎ1 = argmax
I,eI1

{Pr(eI1) · Pr(fJ
1 |e

I
1)}

≈ argmax
I,eI1

{ I∏

i=1

p(ei|e
i−1
i−n+1) · p(J |I) ·

max
K,aK

1 ,bK1 ,cK1

K∏

k=1

[

p(ak|ak−1) · p(bk) · p(ck|ak, ak−1) · p(f
βk
αk

|eak

ak−1+1)

]}

(4.1)

where the following submodels are included: ann-gram language model,p(ei|e
i−1
i−n+1), a

source sentence length submodel,p(J |I), a bisegmentation length submodel,p(K|I, J),
a target phrase length submodel,p(ak|ak−1), a reordering submodel,p(bk), a source
phrase length submodel,p(ck|ak, ak−1), and an inverse phrase translation submodel,
p(fβk

αk
|eak

ak−1+1); theα andβ variables are defined as follows:

αk = βk − ck + 1

βk = βk−1 + bk + ck

β0 = 0

The maximisation problem given by Equation (4.1) can be solved using different search
algorithms. Since the search problem in SMT has been demonstrated to be NP-complete [Kni99,
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UM06], we cannot expect to develop efficient search algorithms that obtain the optimal so-
lution. In the search algorithms that have been proposed so far, the well-known technique
of dynamic programming [Bel57] is combined with techniques that introduce certain restric-
tions in the search space, such as beam search [Jel98]. As a consequence of the introduction
of such restrictions, the resulting search algorithm does not guarantee finding the optimal
solution.

As was explained in section1.6, the vast majority of the search algorithms start from a
null-hypothesis and iteratively extend partial hypotheses by adding words from left to right.
This iterative process is repeated until a complete hypothesis has been generated. The hy-
pothesis extension procedure is driven by the statistical models involved in the translation
process.

For the sake of simplicity, we will work with the maximisation following the Bayes rule
given by Equation (4.1). However, this formulation can be straightforwardly extended to the
log-linear model defined in section3.5.3.

The remaining part of this section is structured as follows:we present a dynamic pro-
gramming algorithm to solve Equation (4.1) in section4.2.1. The definition of the dynamic
programming algorithm will help us to define and study the properties of our proposed basic
branch-and-bound algorithm for PB-SMT in section4.2.2, including the necessary exten-
sions that are required to perform hypotheses recombination. A monotone version of the
previously presented algorithm is described in section4.2.3. Stack pruning techniques and
multiple-stack algorithms are introduced in section4.2.4. Required modifications to obtain a
breadth-first search algorithm are presented in section4.2.5. Generalised multiple-stack algo-
rithms for best- and breadth-first search are explained in sections4.2.6and4.2.7respectively.
Additional pruning techniques to restrict the search spaceare described in section4.2.8. Rest
score estimation techniques are presented in section4.2.9. Finally, the concept of word graph
and how are they generated is described in section4.2.10

4.2.1 Dynamic Programming Algorithm

The search problem in PB-SMT was formalised as a dynamic programming problem in [Zen07].
In this section we apply this formalisation to the search problem defined by Equation (4.1).
As will be shown in the following sections, the formalisation of the search problem in PB-
SMT as a dynamic programming problem will help us in defining our branch-and-bound
search algorithm as well as in analysing its time complexity.

Dynamic Programming Equations

The search space can be represented by a directed acyclic graph in which the states repre-
sent partial hypotheses and the edges represent extensionsof these partial hypotheses. Given
a sentence pair(fJ

1 , e
I
1), a complete translation is determined by a path of lengthK in the

search graph, whereK is the length of the bisegmentation. Thek’th edge within a path
adds thek’th target phrase to the partial translation and the(k + 1)’th state represents the
current partial translation along with a valid set of valuesof the bisegmentation variables,
(aK1 , bK1 , cK1 ). Figure4.1 shows an example of a path of length3 in the search graph when
translating the Spanish source sentence “la casa verde .” into English. Starting from the
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fJ
1 :la casa verde .
eI1:
aK1 :{}
bK1 :{}
cK1 :{}

((1, 1), “the” )

fJ
1 :la casa verde .
eI1:the
aK1 :{1}
bK1 :{0}
cK1 :{1}

((2, 3), “green house”)

fJ
1 :la casa verde.
eI1:the green house
aK1 :{1, 3}
bK1 :{0, 0}
cK1 :{1, 2}

((4, 4), “.” )

fJ
1 :la casa verde.
eI1:the green house .
aK1 :{1, 3, 4}
bK1 :{0, 0, 0}
cK1 :{1, 2, 1}

Figure 4.1: Example of a path in the search graph. The path determines a posible
translation of the Spanish source sentence “la casa verde .” along with a valid set of
values for the bisegmentation variables(aK

1 , bK1 , cK1 ).

null hypothesis, a complete hypothesis is built by adding new phrase pairs to the hypothe-
sis. Each arc of the path is labelled with a pair of elements,((j, j′), ẽ), where(j, j′) rep-
resents the boundaries of the source phrase to be aligned andẽ represents the newly added
target phrase. Each node of the path reflects the source sentence,fJ

1 , with its aligned source
phrases (underlined words offJ

1 ), the partial translation,eI1, and the current values of the
bisegmentation variables,(aK1 , bK1 , cK1 ). After three hypothesis extensions, the final transla-
tion “the green house .” is obtained.
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Each possible hypothesis extension of a partial hypothesiswill be assigned a probability
given by the language and translation models. Among all possible paths of the search graph,
we will be interested in that of the highest probability. As has been explained above, a
state of the graph represents a partial hypothesis which contains detailed information about
the bisegmentation process and the target words that compose the partial translation of the
source sentence. It is worthy of note that only a subset of this information is relevant to assign
a probability to further extensions of the partial hypothesis. The minimum information that
is required to assign probabilities to hypothesis extensions is called state of the language
and translation models. This minimum information may also include information required
to guarantee that the generated hypotheses can be explainedby the generative process of
the statistical models. Two partial hypotheses sharing thesame state of the language and
translation models can be completed in the same way and thus we will only be interested in
the hypothesis of higher probability. The state information for the language and translation
models is determined by the specific modelling assumptions.

For the statistical models that appear in Equation (4.1), the state information is composed
of the following elements:

• SP : represents the set of currently unaligned positions of thesource sentence.SP
allows to check that the constraints of the bisegmentation are satisfied (all source words
have to be aligned without overlaps).SP is also involved in the generation of phrase
translation probabilities.

• m: represents the number of target words that compose the partial translation,em1 , of
the source sentence.

• σ: represents the lastn− 1 target words that has been added to the partial translation,
em1 , wheren is the order of then-gram language model. In other words,σ is the
language model history of the current partial hypothesis.

• j: represents the rightmost source position of the last source phrase that has been
aligned.j is required to appropriately generate distortion probabilities.

According to the previous considerations, the search graphdefined above can be greatly
simplified. Specifically, a state of the graph can be represented by a quadruple(SP ,m, σ, j).
We define the quantityQ(SP ,m, σ, j) to denote the maximum probability of a path leading
from the initial state to the state(SP ,m, σ, j). In addition to this, we also definêQ as
the probability of the optimal translation. We obtain the following dynamic programming
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recursion equations:

Q({1, ..., J}, 0,BOS, 0) = 1 (4.2)

Q(SP ,m, σ, j) = max
j′′,j′|j′≤j≤J∧{j′,j′+1,...,j}∩SP=∅
m′,ẽ,σ′|m′+|ẽ|=m∧σ=tail (n−1,σ′ẽ)
{

Q(SP ∪ {j′, j′ + 1, ..., j},m′, σ′, j′′) ·

m∏

i=m′+1

p(ei|e
i−1
i−n+1) ·

p(m|m′ + 1) · p(j′ − j′′) ·

p(j − j′ + 1|m,m′ + 1) · p(f j
j′ |ẽ)

}

(4.3)

Q̂ = max
m,σ,j

{

Q(∅,m, σ, j) · p(EOS|σ) · p(J |m)

}

(4.4)

whereBOS denotes the begin of sentence marker,EOS denotes the end of sentence marker
andtail (x,s) is a function that returns the lastx words of the strings.

Implementation Details

The solution to the dynamic programming problem given by Equation (4.4) can be imple-
mented in many ways. To avoid repeated computations we have to traverse the search graph
in a topological order, that is, before we process a state we have to make sure that we have vis-
ited all predecessor states. Richard Zens [Zen07] proposed a breadth-first algorithm which we
have adapted here to our maximisation problem. Algorithm4.1 shows our proposed search
algorithm. The algorithm works in a similar way as the dynamic programming recursion pre-
sented above does: for every given state, the probabilitiesof the extensions of the predecessor
states arriving to the given state are computed, keeping theextension of highest probability.
The first five loops of the algorithm (lines3, 4, 5, 6 and9) allow to iterate over the predecessor
states(SP − {j′, ..., j′ + l}, ·, ·, ·) that arrive to successor states(SP, ·, ·, ·) by aligning the
source positions{j′, ..., j′+l}. Theforall loop in line10iterates over the set of target phrases
that are contained in the setTj′,j′+l, whereTj′,j′+l is composed of the target phrase transla-
tions for the source phrasef j+l

j that are present in the phrase table. Given a fully determined
predecessor state(SP ′,m′, σ′, j′′), and a target phrasẽe ∈ Tj′,j′+l, we compute the proba-
bility p of the successor state determined by them,(SP ,m′ + |ẽ|, tail(n− 1, σ′ẽ), j′ + l). If
the resulting probabilityp for the successor state is greater than the current best probability,
we update it. In addition to this, we also update the variablesA(·, ·, ·, ·) andB(·, ·, ·, ·), that
for a given state represents the best target phrase arrivingto it and the best predecessor state,
respectively. Once the search process has been completed, these variables allow us to retrieve
the target sentence of highest probability.

It is worth pointing out that the first and the secondfor loops of Algorithm4.1 are in-
troduced to ensure that the search graph is traversed in a topological order. Specifically, the
first loop guarantees that the states corresponding to partial hypotheses with a lower number
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input : fJ
1 , eI1, n (order of then-gram language model),
p(eI1) (n-gram language model),p(fJ

1 |e
I
1) (translation model),

Tj1,j2 , ∀j1, j2|j1 ≤ j2 ∧ j1 ≥ 1 ∧ j2 ≤ J (set of translations for every
phrasef j2

j1
of fJ

1 in phrase table)
output : Q(SP,m, σ, j),

A(SP,m, σ, j) (best target phrase arriving to state),
B(SP,m, σ, j) (backpointer to the best predecessor state)

auxiliar : tail (x,s) (returns lastx words of strings)
begin1

Q(·, ·, ·, ·) := −∞; Q({1, ..., J}, 0,BOS, 0) := 12

for c = J − 1 to 0 do3

// c is the cardinality of SP
for l = 1 to J − c do4

// l is the length of the source phrase
forall SP ′ ⊂ {1, ..., J} ∧ |SP ′| = c+ l do5

forall j′ ∈ {1, ..., J} ∧ {j′, j′ + 1, ..., j′ + l − 1} ⊆ SP ′ do6

j := j′ + l − 17

SP := SP ′ − {j′, j′ + 1, ..., j}8

forall (m′, σ′, j′′) ∈ Q(SP ′, ·, ·, ·) do9

forall ẽ ∈ Tj′,j do10

m := |ẽ|+m′11

σ :=tail (n− 1,σ′ẽ)12

p := Q(SP ′,m′, σ′, j′′)·13
∏m

i=m′+1 p(ei|e
i−1
i−n+1)·14

p(m|m′ + 1) · p(j′ − j′′)·15

p(j − j′ + 1|m,m′ + 1) · p(f j

j′
|ẽ)16

if p > Q(SP,m, σ, j) then17

Q(SP,m, σ, j) := p18

A(SP,m, σ, j) := ẽ19

B(SP,m, σ, j) := (SP ′,m′, σ′, j′′)20

end21

Algorithm 4.1: Pseudocode for thedp search algorithm.

of aligned source positions are visited first. Regarding thesecond loop, it guarantees that the
hypothesis extensions that align a lower number of source positions are visited first.

Regarding the computational complexity of Algorithm4.1, the first four loops (lines3,
4, 5 and6) have a complexity inO(2J · J2), where the exponential term2J comes from the
number of possible subsets ofJ unaligned source words. The loop in line9 has a complexity
in O(M · En−1 · J) whereM is the highest target sentence length that can be obtained
using phrase translations contained in the phrase table andEn−1 is the maximum number
of target language model histories. Finally, the loop in line 10 has a complexity inO(T ),
whereT is the maximum number of phrase translations for a source phrase. In summary, the
computational complexity of the algorithm is inO(2J · J3 ·M · En−1 · T ).
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Hence, the proposed dynamic programming algorithm presents an exponential complex-
ity. This exponential complexity can be avoided by introducing restrictions in the search
space. One example of these restrictions is not to allow reorderings of the target phrases
during the search process. This kind of search is known asmonotonic searchand will be
explained in the following section.

Monotonic Search

The dynamic programming search algorithm proposed above can be easily modified to per-
form monotonic search. The search is monotonic if no reorderings of the phrase translations
are allowed. To avoid reorderings we have to ensure that, fora given partial hypothesis, there
are no unaligned source positions between two aligned source positions.

Algorithm 4.1requires little modifications to perform monotonic search.Specifically, the
loop in line5 is replaced by the assignmentSP ′ = {1, 2, ..., c + l}; and the loop in line6
is replaced by the assignmentj′ = c + 1 (this ensures that there are no unaligned source
positions between two aligned ones). Monotonic search allows to significantly reduce the
computational complexity of the translation process. As was explained above, the complexity
of the non-monotonic search algorithm can be decomposed into three terms: the first four
loops in Algorithm4.1contribute with the term(2J ·J2), the loop in line9contributes with the
term(M ·En−1 · J) and the loop in line10contributes with the termT . If monotonic search
is performed, the first term is now(J2), since the third and the fourth loops has been replaced
by assignments. The second term is now(M · En−1), sincej′′ in line 9 can take only one
possible value. Finally, the third complexity term remainsunchanged. Therefore, the final
complexity of the monotonic dynamic programming algorithmis inO(J2 ·M · En−1 · T ).

It is worth noticing that, when performing monotonic search, the probability of the dis-
tortion submodelp(bk) for each possible extension is1, sincebk is equal to1 in all cases.

4.2.2 Branch-and-Bound Search for PB-SMT

The branch-and-bound search algorithm that we propose is based on the well-knownA⋆

search algorithm. The basicA⋆ search algorithm [HNR68] (or sometimes, stack decoder) is
an iterative algorithm that can be described as follows:

1. initialise the stack with the null hypothesis

2. remove the hypothesis with the highest score from the stack

3. if this hypothesis is a goal hypothesis, output this hypothesis and terminate

4. produce all extensions of this hypothesis and push the extensions into the stack

5. goto step 2

One key aspect of theA⋆ search algorithm is the use of a stack data structure to organise
the search space. The term stack does not imply here a last-in, first-out (LIFO) container.
Instead, this stack data structure stores the hypotheses inascending order of their scores (it
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is actually a priority queue), allowing the best hypothesisgenerated so far to be extended at
each iteration.

A⋆ search uses an additive scoring function of the formq(h) = f(h) + r(h), wheref(h)
is the score to arrive from the null hypothesis to hypothesish, andr(h) gives a heuristic esti-
mation of the rest score fromh to a complete hypothesis. This heuristic estimation function
is calledadmissibleif it never underestimates this score. If the heuristic estimation of the rest
score is admissible, then theA⋆ search algorithm is optimal (see [HNR68] for more details).

The A⋆ search algorithm was introduced in the field of speech recognition by Jelinek
et al. [JMB75], and later imported for its use in SMT with single-word translation models
in [BBD+96, WW97, GJK+01, OUN01]. As far as we know, the application ofA⋆ search
in PB-SMT has not been extensively addressed. Tomás and Casacuberta [TC01] proposed an
A⋆-based search algorithm, but their algorithm does not take advantage of dynamic program-
ming techniques to efficiently implement the search process.

Search Algorithm

We propose to solve the search problem given by Equation4.4 following the A⋆ search
procedure described above. Before introducing the search algorithm, we will explain the
specific representation for the partial hypotheses that we have adopted. A hypothesish
is represented as a vector of elements containing information about each hypothesis ex-
tension. Each individual element consists in a pair of source positions determining the
aligned source phrase plus the target phrase that is chosen as translation of the aligned
source phrase. Thus, according to our proposed representation, a hypothesis has the form:
h ≡ [((j, j′), ẽ), ((j′′, j′′′), ẽ′), ...], where the target sentence is generated from left to right
by concatenating the target phrases(ẽẽ′...) and there are no overlaps in the aligned source
positions (the search path example given in Figure4.1 shows how a complete hypothesis is
built by adding new elements to the above mentioned vector ofhypothesis extensions; in the
figure, the newly added elements are the labels of the arcs).

Algorithm 4.2shows the pseudocode of our branch-and-bound search algorithm for PB-
SMT. The proposed algorithm works by expanding hypotheses until a complete hypothe-
sis is found. A hypothesis is complete if it has not unalignedsource positions, that is, if
SPh = ∅, whereSPh is the set of unaligned source positions for the hypothesish. The
obtain trg sent function returns the partial translation associated to a given hypothesis
and theback function returns the last element of the vector that is used to represent the
hypotheses. The top of the stack is extracted by means of thepop function and hypotheses
are inserted into the stack using thepush function. If the hypothesis in the top of the stack,
h, is not a complete hypothesis, it is expanded by means of theexpand function which is
described below. The results of the expansion are stored in the setH. Each hypothesish′

contained inH is assigned a score which is calculated incrementally from the score of the
predecessor hypothesish and the information about the last extension. It should be noted
that, in the scoring functionq(h) = f(h) + r(h) that we have used,f(h) is given by the
logarithm of the probability ofh (A⋆ search was developed for additive scoring functions),
andr(h) (the rest score function) is zero in all cases. Ther(h) function can be specifically
defined to improve the performance of the search algorithm. We will return on this point in
sections4.2.5and4.2.9.
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input : fJ
1 , n (order of then-gram language model),
p(eI1) (n-gram language model),p(fJ

1 |e
I
1) (translation model),

Tj1,j2 , ∀j1, j2|j1 ≤ j2 ∧ j1 ≥ 1 ∧ j2 ≤ J (set of translations for every
phrasef j2

j1
of fJ

1 in phrase table)

output : êÎ1 (optimal translation)
auxiliar : s (stack),

SPh (set of unaligned source word positions of hypothesish),
H (set of expanded hypotheses)

begin1

h∅ := [ ((0, 0),BOS)]2

push( s,0,h∅)3

end :=false4

while !end do5

(q, h) :=pop (s)6

if SPh = ∅ then7

êÎ1:=obtain trg sent (h)8

end :=true9

else10

H =expand (h,Tj1,j2 )11

em
′

1 :=obtain trg sent (h)12

m′ := |em
′

1 |13

σ′ :=tail (n− 1,BOSem
′

1 )14

((·, j′′), ·) :=back (h)15

forall h′ ∈ H do16

((j′, j), ẽ) :=back (h′)17

m := |ẽ|+m′18

p :=
∏m

i=m′+1 p(ei|e
i−1
i−n+1)·19

p(m|m′ + 1) · p(j′ − j′′)·20

p(j − j′ + 1|m,m′ + 1) · p(f j

j′
|ẽ)21

if SPh′ = ∅ then22

p := p · p(EOS|tail( n− 1, σ′ẽ) )·p(J |m)23

q′ := q + log p24

push (s,q′,h′)25

end26

Algorithm 4.2: Pseudocode for thebb search algorithm.

The expansion algorithm works by aligning source phrase positions, (j1, j2), from
the set PP (SPh), where the functionPP (·), given a set of word positions re-
turns the set of all possible phrase positions that can be obtained using these
word positions. For instance,PP ({1, 3, 4, 5}) would contain the phrase positions:
{(1, 1), (3, 3), (4, 4), (5, 5), (3, 4), (4, 5), (3, 5)}. Given a set of word positions,SP ,
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input : h (hypothesis to be expanded)
Tj1,j2 , ∀j1, j2|j1 ≤ j2 ∧ j1 ≥ 1 ∧ j2 ≤ J (set of translations for every
phrasef j2

j1
of fJ

1 in phrase table)
output : H (set of expanded hypotheses)
auxiliar : SPh (set of unaligned source positions ofh),

PP (SPh) (set of all possible unaligned source phrase positions ofh)
begin1

forall (j1, j2) ∈ PP (SPh) do2

forall ẽ ∈ Tj1,j2 do3

H := H ∪ {append( h, ((j1, j2), ẽ)) }4

end5

Algorithm 4.3: Pseudocode for theexpand algorithm.

PP (SP) can be formally defined as follows:

PP (SP) =
{
(j, j′) | {j, ..., j′} ∈ SP ∧ j ≤ j′

}
(4.5)

Algorithm 4.3 shows the pseudocode of the expansion algorithm. For each unaligned
source phrase position(j1, j2) ∈ PP (SPh), the expansion algorithm generates new ex-
panded hypotheses by adding new elements((j1, j2), ẽ) to the vector representing the hy-
potheses to be expanded. Given(j1, j2), the target phrases̃e are extracted fromTj1,j2 , which
represents the set of translations forf j2

j1
in phrase table. The new elements are added by

means of theappend function, which given a vector representing a hypothesis and a new
element, simply appends the new element at the end of the vector.

Hypothesis Recombination

As was explained in section4.2.1, the search space can be represented as a directed acyclic
graph in which the states represent partial hypothesis and the edges represent extensions of
these partial hypotheses. This search space can be greatly simplified by taking into account
that two partial hypotheses are equivalent if they share thesame state information for the
language and the translation models. Thebb search algorithm described above does not
take advantage of these considerations and thus carries outunnecessary calculations. To solve
this problem, it is crucial to performrecombination of search hypotheses[OUN01]: every two
partial hypotheses that share the same state information ofthe language and the translation
models can be recombined, keeping only the hypothesis with the highest score.

To efficiently implement hypothesis recombination, we replace thepush function in Al-
gorithm4.2by thepush rec function. Hypothesis recombination requires the introduction
of three new data structures, namely, a set of hypothesis states (ST ), a table that stores
the highest score for each hypothesis state (HS∀(SP,m,σ,j)) and another table that for each
hypothesis state stores a pointer to the position of the hypothesis having this state informa-
tion in the stack (PT∀(SP,m,σ,j)). Algorithm 4.4 shows the pseudocode for thepush rec
function. Thepush rec function, given a hypothesish, first obtains its state information,
(SPh,m, σ, j). If (SPh,m, σ, j) is contained in the setST , h is only inserted in the stack
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input : s (stack),
q (score of the hypothesis to be pushed into the stack),
h (hypothesis to be pushed into the stack),
ST (set of hypothesis states),
HS∀(SP,m,σ,j) (Highest score for states),
PT∀(SP,m,σ,j) (Pointer to stack position for states)

output : s,ST ,HS∀(SP,m,σ,j),PT∀(SP,m,σ,j) (updated variables)
auxiliar : SPh (set of unaligned source positions ofh)
begin1

em1 :=obtain trg sent (h)2

m := |em1 |3

σ :=tail (n− 1,BOSem1 )4

((·, j), ·) :=back (h)5

if (SPh,m, σ, j) ∈ ST then6

if q > HS(SPh,m,σ,j) then7

remove( s,PT(SPh,m,σ,j))8

HS(SPh,m,σ,j) := q9

PT(SPh,m,σ,j) :=push( s,q,h)10

else11

HS(SPh,m,σ,j) := q12

PT(SPh,m,σ,j) :=push( s,q,h)13

ST := ST ∪ (SPh,m, σ, j)14

end15

Algorithm 4.4: Pseudocode for thepush rec algorithm.

if its probability is higher than the highest score that has been seen so far:HS(SPh,m,σ,j).
The remove function is used to remove the recombined hypothesis from the stack. The
stack pointer,PT(SPh,m,σ,j), is used to increase the speed of theremove function (we as-
sume that the conventionalpush function returns a pointer to the hypothesis inserted into
the stack). If(SPh,m, σ, j) is not contained inST , then no hypothesis recombination is
required.

Our proposed branch-and-bound algorithm with hypothesis recombination explores the
same search space as the dynamic programming algorithm given in section4.2.1. The main
difference between these two search algorithms is that the branch-and-bound algorithm uses
best-first search to obtain the solution while the dynamic programming algorithm uses breadth-
first search. Therefore, the complexity of the branch-and-bound algorithm with hypothe-
sis recombination is bounded by the complexity of the dynamic programming algorithm:
O(2J · J3 ·M · En−1 · T ).

4.2.3 Monotonic Search

The branch-and-bound search algorithm proposed in the previous section can be easily mod-
ified to perform monotonic search. As was explained in section 4.2.1 for dynamic pro-
gramming search, the search is monotonic if no reorderings of the phrase translations are
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input : h (hypothesis to be expanded)
Tj1,j2 , ∀j1, j2|j1 ≤ j2 ∧ j1 ≥ 1 ∧ j2 ≤ J (set of translations for every
phrasef j2

j1
of fJ

1 in phrase table)
output : H (set of expanded hypotheses)
begin1

((·, j), ·) :=back (h)2

for j′ = j + 1 to J do3

forall ẽ ∈ Tj+1,j′ do4

H := H ∪ {append( h, ((j + 1, j′), ẽ)) }5

end6

Algorithm 4.5: Pseudocode for themon expand algorithm.

allowed. To avoid reorderings, theexpand algorithm given by Algorithm4.3is replaced by
themon expand algorithm given by Algorithm4.5. Themon expand algorithm does not
allow unaligned source positions between two aligned source positions.

The complexity of the monotonic branch-and-bound algorithm with hypothesis recom-
bination is bounded by the complexity of the monotonic dynamic programming algorithm
discussed in section4.2.1: O(J2 ·M · En−1 · T ).

4.2.4 Stack Pruning and Multiple Stacks

The branch-and-bound search algorithm presented above guarantees that the optimal solution
is obtained. Due to the high complexity of the search, we cannot expect to efficiently obtain
this optimal solution. The stack used by our proposed branch-and-bound search algorithm can
be pruned to reduce the computational complexity. Typically, a limitation in the maximum
number of hypotheses that can be stored into the stack is imposed. If this maximum number
of hypotheses is exceeded, then the stack is pruned.

It should be noted that for a given hypothesis, the more aligned source words, the lower
the probability. This constitutes a problem when stack search is applied, since those hypothe-
ses with a higher number of aligned source words will be pruned sooner due to the stack
length limitation. One possible solution to this problem consists in introducing the use of
multiple stacks instead of only one. The key idea of multiple-stack search algorithms con-
sists in assigning hypotheses to stacks such that there is “fair competition” within each stack,
i.e., hypotheses stored in the same stack should align roughly the same number of source
words (and the same words) if possible.

Multiple-stack search algorithms for single-word translation models store those hypothe-
ses with different subsets of aligned source words in different stacks [Ger01]. That is to say,
given an input sentencefJ

1 composed ofJ words, multiple-stack search algorithms employs
2J stacks to translate it. Such an organisation improves the pruning of the hypotheses when
the stack length limitation is exceeded, since only those hypotheses with the same aligned
source positions can compete with each other. However, these multiple-stack algorithms
have the negative property of spending significant amounts of time in selecting the hypothe-
ses to be expanded, since at each iteration, the best hypothesis in a set of2J stacks must be
searched for [OGVC03].
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Additionally, certain PB-SMT systems, e.g. the Moses decoder [KHB+07], use an al-
ternative approach which consists in assigning to the same stack, those hypotheses with the
same number of aligned source words (the Moses decoder is a dynamic programming-based
translation system with beam search, but it also uses stacksto organise the search space).

The required modifications in Algorithm4.2to perform multiple stack search include the
following:

• The single stacks used by the algorithm is replaced by a collection of stacks,s i, that
are created on demand.

• The push function call no longer receives the stacks as input parameter. Instead,
it receivess i. Given a hypothesish, the stack into whichh is stored is given by a
mapping functionµ(h). The mapping functionµ(h) takes the hypothesish as input
and returns the identifieri of the stack into whichh is to be inserted.

• Thepop function now has to find the hypothesis of highest probability at each iteration
among all stackss i.

The key aspect of a multiple-stack search algorithm is the way in which the mapping
functionµ(h) is defined. The mapping function determines a set of equivalence classes for
the partial hypotheses. We note this set of equivalence classes asµ[H], whereH represents
the space of partial hypotheses. The number of stacks used bythe multiple-stack search
algorithm is given by

∣
∣µ[H]

∣
∣.

4.2.5 Breadth-First Search

Let us suppose that we are using a multiple-stack search algorithm with maximum stack
length equal toLs. The stack length limitation guarantees that a stack will never contain
more thanLs hypotheses. However, during the execution of the algorithm, the number of
hypotheses that can be chosen for expansion from a given stack can be greater thanLs. This
is due to the best-first nature of the search: after extracting one or many hypotheses from a
given stack, new hypotheses can be inserted into the same stack in subsequent iterations of
the search algorithm.

The pruning due to the stack length limitation can be more aggressive if we force the
search algorithm to expand first those hypotheses with a lower number of aligned source
positions. That is, if the search algorithm performs a breadth-first exploration of the search
space. Under these circumstances, it is guaranteed that thesearch algorithm will only expand
at mostLs hypotheses from each stack, since after extracting the firsthypothesis from a given
stack, no new hypotheses will be inserted into it.

Our proposed multiple-stack search algorithm can perform abreadth-first search by only
modifying its scoring function:q(h) = f(h)+ r(h). Specifically, the algorithm will perform
a breadth-first search if the following condition is satisfied:

f(h) + r(h) > f(h′) + r(h′) ∀h, h′ | |SPh| = |SPh′ |+ 1

One way to ensure that the previous condition holds is to fix anappropriate value for the
rest score estimation functionr(h), which has to verify the following inequality:

r(h) > f(h′) + r(h′)− f(h) ∀h, h′ | |SPh| = |SPh′ |+ 1
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f(h′) andf(h) can be bounded by the highest and the lowest log-probability, respec-
tively, that can be assigned to a hypothesis:f(h′) ≤ 0 andf(h) > log ǫ, whereǫ is a very
small positive number. Taking into account the previous considerations, a trivial recurrence
relation can be obtained. From this recurrence relation, one valid definition ofr(h) to obtain
a breadth-first search algorithm is:

r(h) = |SPh| · (− log ǫ) (4.6)

It is worth of notice that the previous definition ofr(h) constitutes an admissible heuristic
since it never underestimates the rest score of a hypothesish.

If we perform breadth-first search, thepop function executed at each iteration of the
search no longer needs to explore the whole set of stacks to obtain the best hypotheses.
Instead, thepop function returns the top of the stack containing the hypotheses that are
nearest to the null hypothesis.

To calculate the complexity of our proposed breadth-first multiple-stack algorithm, we
need to calculate the complexity of the expansion algorithm. The complexity of the expansion
depends on the number of unaligned phrases for the hypothesis to be expanded:|PP (SP)|
(see Algorithm4.3). In the worst case, where there are no aligned source positions, we have
to align a total ofJ

2+J
2 phrases (|PP ({1, ..., J})| =

∑J
j=1 j). In addition to this, for each

unaligned phrase position there are at mostT phrase translations. Therefore, the complexity
of the expansion algorithm is inO(J2 · T ).

If the hypotheses are stored inJ stacks, then the breadth-first search algorithm executes a
total ofJ ·Ls expansions, thus obtaining a complexity inO(J3 ·Ls ·T ). It should be noted that
the resulting complexity is no longer exponential inJ due to the combination of stack pruning
techniques and breadth-first search. By contrast, the best-first search algorithm executes a
less aggressive pruning of the stacks and therefore its complexity cannot be bounded by the
complexity of the breadth-first algorithm. However, in certain cases, the time cost of best-
first search may be lower than that of breadth-first search since best-first search complexity
is closely related to the ability of the statistical models to guide the search. More specifically,
the lower the perplexity of the statistical models involvedin the translation process, the lower
the time cost of the search algorithm. This will be empirically demonstrated in section5.2.

4.2.6 Generalised Multiple-Stack Algorithm for Best-First Search

The stack search algorithms for SMT described in the literature typically use1, J or 2J stacks
to perform the search. As was explained in section4.2.4, the use of multiple stacks allows to
improve the stack pruning efficiency but increases the computational cost of thepop function.
By contrast, the single-stack search algorithm executes anefficientpop function but the stack
length limitation tends to prune those hypotheses with a higher number of aligned source
positions.

Here we propose a possible way to make a tradeoff between the advantages of these
algorithms by introducing a new parameter which will be referred to as thegranularityof the
algorithm. The granularity parameter determines the number of stacks that are used during
the decoding process. The generalised multiple-stack algorithm described in this section is
appropriate when we perform a best-first search.
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Selecting the Granularity of the Algorithm

To appropriately define the concept of granularity we first have to define the concept ofalign-
ment vectorfor a hypothesish. The alignment vector,v, for a hypothesish is a binary vector
of J bits: ({0, 1})J , where thej’th bit is set to1 if j /∈ SPh. In addition to this, we also
define theLa parameter, which represents the maximum number of hypotheses than can be
stored by the search algorithm (this differs from the previously definedLs parameter, which
imposes a limitation on the maximum number of hypotheses that can be stored into a given
stack).

The granularity (G) of a generalised multiple-stack algorithm is an integer which takes
values between1 andJ . Given a sentencefJ

1 to be translated, a generalised stack algorithm
with a granularity parameter equal tog, will have the following features:

• The algorithm will use at most2g stacks to perform the translation.

• Each stack will contain hypotheses which may have2J−g different alignment vectors.

• If the algorithm can store at mostLa hypotheses, then, the maximum size of each stack
will be equal toLa

2g .

Mapping Hypotheses to Stacks

The key aspect of a multiple-stack search algorithm is the way in which hypotheses are
mapped to stacks. Here we define a mapping function based on the alignment vector,v,
for a given hypothesis. Given a alignment vector composed ofJ bits, the mapping function,
µ(v), returns a stack identifier composed of onlyg bits:

µ : ({0, 1})J −→ ({0, 1})g (4.7)

The mapping function can be defined in many ways, but there aretwo essential principles
which must be taken into account:

• The mapping function must be efficiently calculated.

• Hypotheses whose alignment vector have a similar number of bits set to one must be
assigned to the same stack.

A possible way to implement the mapping function, namelyµ1(v), consists in simply
shifting the alignment vectorJ − g positions to the right, and then keeping only the firstg
bits. Such a proposal is very easy to calculate, however, it has a poor performance according
to the second principle explained above.

A better alternative to implement the mapping function, namelyµ2(v), can be formulated
as a composition of two functions. A constructive definitionof such an implementation is
detailed next:

1. GivenfJ
1 , we order the set ofJ bit numbers as follows: first the numbers which do not

have any bit equal to one, next, the numbers which have only one bit equal to one, and
so on.
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2. Given the list of numbers described above, we define a function which associates to
each number of the list, the order of the number within this list.

3. Given the alignment vector of a partial hypothesis,v, the stack on which this partial
hypothesis is to be inserted is obtained by a two step process: First, we obtain the
image ofv returned by the function described above. Next, the result is shiftedJ − g
positions to the right, keeping the firstg bits.

Let β be the function that shifts a bit vectorJ − g positions to the right, keeping the first
g bits; and letα be the function that for each alignment vector returns its order:

α : ({0, 1})J −→ ({0, 1})J (4.8)

Then,µ2(v) is expressed as follows:

µ2(v) = β ◦ α(v) (4.9)

Table4.1shows an example of the values which returns theµ1(v) and theµ2(v) functions
when the input sentence has4 words and the granularity of the decoder is equal to2. As it
can be observed,µ2(v) function performs better thanµ1(v) function according to the second
principle described at the beginning of this section.

Table 4.1: Values returned by theµ1 andµ2 function defined as a composition of theα
andβ functions.

v µ1(v) α(v) µ2(v)

0000 00 0000 00
0001 00 0001 00
0010 00 0010 00
0100 01 0011 00
1000 10 0100 01
0011 00 0101 01
0101 01 0110 01
0110 01 0111 01
1001 10 1000 10
1010 10 1001 10
1100 11 1010 10
0111 01 1011 10
1011 10 1100 11
1101 11 1101 11
1110 11 1110 11
1111 11 1111 11

Single and Multiple-Stack Algorithms

The stack search algorithms using1 and2J stacks can be instantiated as particular cases of
the general formalism that has been proposed. Specifically,given the input sentence,fJ

1 , a

DOM-DSIC-UPV 81



Chapter 4. Search for Phrase-Based Statistical Machine Translation

generalised stack decoding algorithm withG = 0 will have the same features as the single-
stack search algorithm. By contrast, ifG = J , the resulting search algorithm will have the
same features as the multiple-stack search algorithm with2J stacks. Values ofG between
these extrema define a new family of multiple-stack search algorithms that allow to make a
tradeoff between the stack pruning efficiency and the computational cost of thepop function.

4.2.7 Generalised Multiple-Stack Algorithm for Breadth-First Search

The use of multiple stacks in breadth-first search can also begeneralised as well as it has been
shown in the previous section for best-first search. The mapping functions used in breadth-
first search have an additional requirement with respect to those used in best-first search.
Specifically, those hypotheses with a different number of aligned source positions have to
be assigned to different stacks. The number of stacks is again determined by the number of
equivalence classes. Since in this case, the computationalcost of thepop function is not
affected by the number of stacks (see section4.2.5), the number of equivalence classes for
the hypotheses can be arbitrarily high.

The most basic multiple-stack algorithm for breadth-first search usesJ stacks, one for
each possible number of aligned source positions. The required mapping function is:

µ(h) = J − SPh (4.10)

Starting from the basic multiple-stack search algorithm defined above, we can propose
new search algorithms by refining the partition determined by the mapping function. For
instance, we can assign hypotheses with non-monotonic alignments to different stacks:

µ(h) = (J − SPh, is mon(h)) (4.11)

where theis mon(h) predicate is evaluated totrue if h contains non-monotonic alignments.
This mapping function can be useful when performing non-monotonic search.

Some additional examples of mapping functions are the following:

µ(h) = (J − SPh, |trg sent (h)|) (4.12)

where|trg sent (h)| returns the number of target words that compose the partial hypothe-
sis.

The history of then-gram language model (or a part of it) can be used to define an
alternative mapping function:

µ(h) = (J − SPh, tail (1, trg sent (h))) (4.13)

wheretail (1, trg sent (h)) is the last target word added to the partial hypothesis.
Finally, we propose another example of mapping function that can be useful when per-

forming non-monotonic search:

µ(h) = (J − SPh, last alig src pos (h)) (4.14)

wherelast alig src pos (h) returns the index of the last source position that was aligned.
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The maximum number of partitions is reached when the mappingfunction returns the
state of the language and the translation models for a given hypothesis. Under these circum-
stances, the search algorithm obtains the optimal solution.

The computational complexity of the search depends on the number of stacks, which
is given by the number of equivalence classes:

∣
∣µ[H]

∣
∣. Specifically, the complexity is in

O(
∣
∣µ[H]

∣
∣ · J2 · Ls · T ). It is worthy of note that the mapping function can be seen as a

possible way to prune the search space.
It is interesting to consider the search algorithms that areobtained when the maximum

stack length,Ls, is set to1. Depending on the mapping function, we can range from an
algorithm withJ stacks and complexity inO(J3 ·T ), to an optimal algorithm with one stack
per each state of the language and the translation models andcomplexity inO(2J · J3 ·M ·
En−1 · T ). In addition to this, this family of algorithms can replace the stack data structure
by a variable storing a single hypothesis.

4.2.8 Additional Pruning Techniques

The only pruning technique that has been introduced so far isthe stack length limitation. In
addition to this, we can also apply the following set of pruning techniques:

• Maximum source phrase length(Lp): during the expansion of a hypothesis, the
source phrases to be aligned,f j2

j1 , cannot exceed a certain length.

• Maximum number of target phrase translations (Tt): the expansion process works
by aligning source phrasesf j2

j1 with target phrases extracted from the setTj1,j2 of

phrase translations forf j2
j1 contained in phrase table. One possible way to restrict

the search consists in considering only a subset of the best target phrase translations
contained inTj1,j2 as candidates to extend a given hypothesis.

• Maximum number of skipped source positions(Ss): during the expansion of a hy-
pothesis, the number of source positions that can be skippedwith respect to the right-
most position of the last aligned source phrase is restricted. In other words, we set
a maximum value for the hidden variablebk used in the specific phrase-based model
derivation presented in section3.5. If the maximum number of skipped source posi-
tions is set to zero, then we obtain a monotonic search algorithm. These reordering
constraints are known as the IBM constraints [BBD+96] and they were originally ap-
plied in SMT systems based on single-word translation models.

The pruning techniques that have been explained above can bestraightforwardly intro-
duced into our proposed search algorithm. Specifically, only the expansion algorithm has to
be appropriately modified.

4.2.9 Rest Score Estimation

The efficiency of our proposed branch-and-bound search algorithm can be improved by defin-
ing appropriate rest score estimation functions. The definition of rest score estimation func-
tions in SMT has been previously studied in [WW97, OUN01] for single-word translation
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models and later extended to the alignment template approach [ON02] and to phrase-based
models [Koe03, Zen07]. Here we define rest score estimation functions for two different
translation submodels, namely, the phrase translation submodel and the distortion submodel.

Regarding the phrase translation submodel, we follow the technique proposed in [Koe03],
which is based on the maximum probability for translating source positions{j, ..., j′}:

p∗(j, j′) = max

{

max
ẽ∈Tj,j′

p(f j′

j |ẽ), max
j≤k<j′

{p∗(j, k) · p∗(k + 1, j′)}

}

(4.15)

wherep∗(j, j′) has to be calculated for the set of phrase positions contained in LP (SP).
Given a set of word positions, the functionLP (·) returns the set of phrase positions deter-
mining the longest phrases that can be obtained using these word positions. For instance,
LP ({1, 3, 4, 5}) would contain the following phrase positions:{(1, 1), (3, 5)}. LP (·) can be
formally defined as follows:

LP (SP) =
{
(j, j′) | {j, ..., j′} ∈ SP ∧ j ≤ j′

∧¬∃{j′′, ..., j′′′} ∈ SP : (j, j′) 6= (j′′, j′′′) ∧ j′′ ≤ j ∧ j′′′ ≥ j′
}

(4.16)

The rest score estimation function for the phrase translation submodel is given by:

rp(SP) =
∑

(j,j′)∈LP (SP)

log p∗(j, ..., j′) (4.17)

Finally, we have defined a very simple rest score estimation function for the distortion
submodel. Specifically, given the set of unaligned source positions of the partial hypothesis,
SP , and the rightmost position of the last aligned source phrase, j, the rest score estimation
is given by the number of skipped source positions with respect to j of highest probability
according to the distortion submodelp(·):

rd(SP, j) = max
j′∈SP

log p(j′ − j) (4.18)

The overall rest score estimation function is obtained as the sum of the two rest score
estimation functions defined above:

r(SP , j) = rp(SP) + rd(SP , j) (4.19)

It should be noted that the rest score estimation functions described above can be com-
bined with that defined in section4.2.5to perform breadth-first search.

4.2.10 Generation of Word Graphs

Our branch-and-bound search algorithm with hypothesis recombination described above can
be used to obtain the best translation according to the statistical models involved in the trans-
lation process. However, there are situations in which we are not only interested in this single
best translation but also in alternative translations. Thelist of theN best translations for a
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given source sentence according to the statistical models receives the name ofN-best list.
These N-best lists can be obtained from a specific data structure calledword graph.

A word graph is a weighted directed acyclic graph in which each node represents a partial
translation hypothesis and each edge is labelled with a word(or group of words) of the target
sentence and is weighted according to the scores given by an SMT model. Word graphs can
be easily generated as a by-product of the translation process. The generation of word-graphs
for SMT is described in [UON02] for the single-word based IBM 4 Model, and in [Koe03,
HZN07] for phrase-based models.

Our branch-and-bound algorithm with hypothesis recombination can be easily modi-
fied to generate word graphs. We define a word graph as a set of quadruples of the form
((SP ,m, σ, j), (SP ′,m′, σ′, j′), ẽ, q); where each quadruple represents an edge from state
(SP ,m, σ, j) to state(SP ′,m′, σ′, j′). This edge is labelled with the words̃e and has the
scoreq. After the execution of the expansion algorithm for a given hypothesish, the word
graph is extended with a new quadruple for each hypothesish′ contained in the setH of
expanded hypotheses. Specifically, the new quadruple is composed of the state information
for h andh′, the newly added target phraseẽ (where((·, ·), ẽ) = back (h′)) and the scoreq,
which is calculated as the difference of the scores ofh′ andh: q = q(h′)− q(h).

A word graph can be seen as a compact representation of an N-best list. A single trans-
lation is given by a path from the initial state to a state representing a complete hypothesis
in the word graph. The information stored in word graphs allows us to retrieve not only
the translations associated to the best states of the language and the translation models, but
also those translations associated to recombined hypotheses. Different algorithms have been
proposed in the literature to obtain N-best lists from word-graphs [Epp99, UON02, JM03].

In this thesis we use word graphs as a key component in IMT systems, as will be shown
in section6.3.

4.3 Efficient Decoding with Very Large Phrase-Based Mod-
els

The great size of the phrase tables used in PB-SMT is a source of problems not only during
the training process as explained in the previous chapter (see section3.4), but also during the
decoding process, since the whole phrase table is to be stored in memory.

A simple solution to this problem is to extract the subset of the phrase table that is needed
to translate a test set and to store it in memory. This solution is incorporated in translation
systems like the Pharaoh decoder, but it is not a general and realistic solution since the test
set must be previously known.

An approach that has been more successful consists in the useof data structures with very
low memory requirements [CBBS05, ZV05]. However, these techniques may not be suitable
for very large corpora unless there are machines with great memory sizes (2 GBytes or more).

We propose an alternative way to solve this problem which is strongly inspired by a clas-
sic concept of computer architecture:cache memory. Our proposed solution also uses a
specific data structure to represent phrase tables which is different to previously defined data
structures with the same purpose. The proposed techniques involve accessing model param-
eters from disk and have points in common with those described in [ZN07] and in [FC07].
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Zens et al. [ZN07] propose efficient techniques to access phrase-based modelprobabilities
using a prefix-tree structure for the source phrases. Federico et al. [FC07] apply different
techniques, including caching of probabilities, to efficiently access the parameters of n-gram
language models.

4.3.1 Cache Memory Architecture

Cache memory is based on theprinciple of localityof references: if one location is read by a
program, then nearby locations are likely to be read soon afterward. In the case of machine
translation, this principle manifests itself in two different ways:

1. The majority of the phrase pairs contained in a phrase model have a very low frequency.
Therefore, we can predict that these phrase pairs will probably not be required during
the decoding process.

2. When translating a sentence, only a small number of the entries that compose the phrase
model are accessed. Additionally, each entry will be accessed many times because of
the iterative nature of the decoding process. Therefore, wecan identify both temporal
and spatial locality principles.

The locality principle explained above leads us to propose amemory hierarchy composed
of two levels. The first level stores the bilingual pairs thatare accessed during the translation
of each sentence. This level is local to the sentence to be translated, and will be erased
whenever the translation process of a new sentence is started.

The second level contains a certain percentage of the most frequent phrase pairs stored
within the phrase model. This level is kept in memory during the whole translation process.

Finally, the whole phrase table is stored on the hard disk andis structured to allow the
retrieval of the probability of the bilingual pairs. This isdone with logarithmic complexity
by means of binary search.

It is important to point out that the basic information element that is handled within the
memory hierarchy consists of a single source phrasef̃ with all its target translations. This is
done to favour spatial locality.

Thus, when the decoder needs to retrieve the probability of aphrase pair(f̃ , ẽ), it searches
for the pair in the first level cache. If it is present, its probability is returned. Otherwise, the
translations off̃ are searched for in the second level cache. If these translations exist, they
are copied in the first level cache and the probability of the phrase pair is returned if̃e has
been stored as a possible translation off̃ . If there is no translation for̃f in the second level
cache, then the hard disk is accessed.

When the translations of̃f are searched for in the hard disk, they may or may not exist.
In either case, the result of the search is copied in the first level cache, and the probability of
the phrase pair is returned.

When the translation process of each sentence has finished, the first level cache is erased,
and the decoder only keeps in memory the selected percentageof the model. The percentage
of phrase pairs that are stored in the second level cache willbe referred to as theα parameter.
According to the first locality principle explained above, the phrase pairs stored in the second
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Hard Disk

Level 1 cache-table

Level 2 cache-table

Main memory

-->The whole phrase table is stored on the hard disk
-->The entries are retrieved using binary search

-->The second level cache table 
     stores a percentage of the most 
     frequently used entries of the 
     phrase table

-->The first level cache table stores those entries of 
     the phrase table that are required during the 
     translation of an input sentence

model

Figure 4.2: Cache memory architecture.

level will be those with higher frequency. Figure4.2shows a diagram of the above described
cache memory architecture.

In the experiments we have carried out,α takes values between0 and100. Both these
values are particular cases with interesting features:

α=0 : the second-level cache will be empty. Therefore, there is no phrase pair permanently
stored in memory. This will increase the amount of cache misses. However, it allows
us to translate without having to store the model in memory.

α=100 : the whole model will be stored in the second-level cache (i.e. the whole model is
allocated in memory and the retrievals are cached). This allows us to translate without
any cache misses and can be viewed as the baseline that is implemented by common
decoders such as the Pharaoh decoder.

4.3.2 Selecting a Suitable Data Structure for Phrase Pairs

Because of the huge size of the phrase tables, it is crucial tofind a data structure with low
memory requirements to represent the phrase pairs.

For the training process described in section3.4, the choice of the representation for the
phrase pairs is not an important problem, since it is possible to reduce the memory require-
ments by simply reducing the fragment size.
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However, the data structures must be carefully chosen for the case of the decoding pro-
cess. Specifically, it is important to use a fast data structure to represent the first-level cache
table, and to use a low complexity data structure in terms of space to represent the second-
level cache table.

In our work, we have used the same representation for the first- and the second-level
cache memory. Such a representation makes a tradeoff between time and space complexity
and consists in anasymmetrical double trielike the one shown in Fig.4.3, where there is
a trie associated to the source language (left) and another associated to the target language
(right). In the upper part of the figure, a small set of English-Spanish phrases is shown. In
the lower part of the figure a depiction is given of how these phrase pairs are stored by the
proposed data structure.

the

green

house

red

house

la

la casa roja - the red flat

la casa verde - the green house

la casa roja - the red house

flat

casa

roja verde

Figure 4.3: An example of the double-trie data structure for the storage of bilingual
pairs. The trie at the left stores the source phrases and the one at the right stores the
target phrases.

In order to retrieve the probabilityp(f̃ |ẽ) of a phrase pair(f̃ , ẽ), first, the target phrasẽe
is to be searched in the target trie. As a result of the search,a pointer that represents the target
phrase and the count of the target phrasec(ẽ) are obtained. Second, the source phrasef̃ is to
be searched in the source trie. Once the search is done, we have to find the pointer tõe that
was obtained in the previous step. This final step allows us toretrievec(f̃ , ẽ). Once the two
counts are retrieved, the probability of the phrase pair is given byc(f̃ , ẽ)/c(ẽ).

The number of comparisons that are to be done in order to retrieve the probability of the
phrase pair(f̃ , ẽ) is given by the following expression:

log(s) + log(t) + n , (4.20)

wheres andt are the number of source words and target words respectively, that are stored
by the data structure, andn is the number of source phrases that translates the target phraseẽ.
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Given thats ≈ t andn ≪ s (see Table3.3), we can conclude that the retrieval has a logarith-
mic complexity.

The proposed data structure also allows us to obtain the set of translations of a given
source phrasẽf , which is a basic operation performed by standard decoding algorithms. For
this purpose, the source phrasef̃ is to be searched in the source trie. As a result of the search,
the set of pointers which represents all possible translations of f̃ are obtained. The target
phrases that are represented by each pointer can be obtainedby means of the pointers to the
father nodes stored in the target trie.

With regard to the space complexity, if we implement tries asbinary trees (as proposed
in [Knu73]), and assuming that an integer number is represented with one word from the
processor, the number of integers required to store the whole statistical dictionary of phrase
pairs using the data structure we have defined is given by the following expression:

s× cs × 3 + t× ct × 5 + pp× 2

wheres and t are the total number of source and target words, respectively, stored in the
phrase table;cs andct are factors between0 and1 whose meaning will be described below;
andpp is the number of pairs which compose the phrase table.

Each trie node requires3 integers, one integer to store the word it contains, and another
two as pointers to child and brother nodes. The target trie requires an additional integer in
each node to store the pointer to its father node, and one moreto store the count of the phrase
it represents. Finally, each alignment between bilingual pairs requires one integer and the
count of the phrase pair one integer more.

With regard to the factorscs andct, they represent the compression ratio obtained by the
use of the trie data structure for the source and the target languages, respectively. Specifically,
the tries will compress all those phrases that share the sameprefix (see Fig.4.3). Such a
compression is represented in the expression shown above with factors between0 and1. The
value of these factors depends on the features of the corpus.For instance, for the Europarl
corpus these compression factors are not greater than0.3 for both the source and the target
tries.

Our proposed data structure not only allows the retrieval ofinverse probabilitiesp(f̃ |ẽ),
but also the retrieval of direct probabilitiesp(ẽ|f̃). Sincep(ẽ|f̃) is given byc(f̃ , ẽ)/c(f̃), now
we need to retrieve the values of the countsc(f̃ , ẽ) andc(f̃). Regarding the value ofc(f̃ , ẽ),
it is obtained in the same way as it was shown for the retrievalof inverse probabilities. With
respect to the value ofc(f̃), sincec(f̃) =

∑

ẽ′ c(f̃ , ẽ
′), we only have to search for the phrase

f̃ in the source trie and sum the joint countsc(f̃ , ·) for all its translations, obtaining the value
of c(f̃). It is worth pointing out that this data structure can be usedin combination with the
training procedure described in section3.4.2, allowing direct and inverse probabilities to be
accessed after executing the training process in only one translation direction. Specifically,
the training procedure generates the countsc(f̃ , ẽ) andc(ẽ) for each phrase pair, and our pro-
posed data structure uses these counts to efficiently generate direct and inverse probabilities
for each phrase pair.

In addition to the above commented features, the use of counts allows the proposed data
structure to be dynamically modified (i.e. new phrase pairs can be added or the counts of
existing ones can be modified). Such capability will be exploited to implement an incremental
phrase-based model, as it will be shown in chapter7.
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In spite of the low space complexity of the data structure presented in this work, more ef-
ficient implementations have been proposed, such as the suffix-arrays described in [CBBS05,
ZV05]. However, suffix-arrays are not able to efficiently obtain exact probabilities for the
phrase pairs; instead, the probabilities are approximatedso as to reduce the retrieval costs.
By contrast, as it has been shown, our proposed data structure allows to obtain exact proba-
bilities with logarithmic time complexity.

4.4 Phrase-Level Alignment Generation

In this section we study the problem of generating alignments at phrase level between a sen-
tence pair. As is discussed below, the generation of phrase-level alignments is not a trivial
task due to problems with unseen events, which may cause thata given sentence pair can-
not be adequately aligned. The phrase-level alignment generation techniques proposed here
allows us to solve this problem and can be useful in a range of applications, including multi-
source SMT [ON01], Viterbi-like estimation of phrase-based models [WMN10], discrimina-
tive training [LBCKT06], training of phrase segmentation models [SDAS08], etc. Moreover,
in Chapter6 of this thesis, we show how the problem of generating phrase-level alignments
can be modified for its application in IMT (see section6.2).

The problem of finding the best alignment at phrase level has not been extensively ad-
dressed in the literature. A first attempt can be found in [GVON+05], where different tech-
niques to obtain alignments at phrase level are proposed. However, the proposed techniques
heavily rely on word alignment models or on word alignment matrices.

As was explained in section1.4.3, the concept of bisegmentation and the concept of
phrase-based alignment for a sentence pair are interchangeable. A bisegmentation or phrase-
based alignment of lengthK of a sentence pair(fJ

1 , e
I
1), Ã(f

J
1 , e

I
1), is defined as a triple:

Ã(fJ
1 , e

I
1) ≡ (f̃K

1 , ẽK1 , ãK1 ), wheref̃K
1 ≡ fJ

1 , ẽK1 ≡ eI1 and ãK1 is a specific one-to-one
mapping between theK segments/phrases of both sentences(1 ≤ K ≤ min(I, J)).

Then, given a pair of sentences(fJ
1 , e

I
1) and a phrase model, we are interested in the best

phrase-alignment (or Viterbi phrase-alignment),ÃV (f
J
1 , e

I
1), between them.̃AV (f

J
1 , e

I
1) can

be computed asa:
ÃV (f

J
1 , e

I
1) = argmax

f̃K
1 ,ẽK1 ,ãK

1

{
Pr(f̃K

1 , ãK1 |ẽK1 )
}

(4.21)

where, following the assumptions given in [Tom03], Pr(f̃K
1 , ãK1 |ẽK1 ) can be approximated

as:

p(f̃K
1 , ãK1 |ẽK1 ) =

K∏

k=1

p(ãk|ã
k−1
1 ) · p(f̃k|ẽãk

) (4.22)

On the basis of Equation (4.22), a very straightforward technique can be proposed for
finding the best phrase-alignment of a sentence pair(fJ

1 , e
I
1). This can be conceived as a sort

of constrainedtranslation. In this way, the search process only requires the use of a regular
SMT system which filters its phrase table in order to obtain those translations offJ

1 that are
compatible witheI1.

aIt should be noted thatPr(ãK1 |f̃K
1 , ẽK1 ) = Pr(f̃K

1 , ãK1 |ẽK1 )/Pr(f̃K
1 |ẽK1 ).
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In spite of its simplicity, this technique has no practical interest when applied on regular
tasks. Specifically, the technique is not applicable when the alignments cannot be generated
due to coverage problems of the phrase-based alignment model (i.e. one or more phrase pairs
required to compose a given alignment have not been seen during the training process). This
problem cannot be easily solved, since standard estimationtools such as THOT and Moses do
not guarantee the complete coverage of sentence pairs even if they are included in the training
set; this is due to the great number of heuristic decisions involved in the estimation process.
In addition to this, certain search space pruning techniques may also introduce coverage
problems, such as the reordering constraints (see section4.2.8).

One possible way to overcome the above-mentioned coverage problems requires the def-
inition of an alternative technique that is able to considerevery source phrase offJ

1 as a
possible translation of every target phrase ofeI1. Such a technique requires the following two
elements:

1. A search algorithm that enables efficient exploration of the set of possible phrase-
alignments for a sentence pair.

2. A general mechanism to assign probabilities to phrase pairs, no matter if they are con-
tained in the phrase table or not.

In the following sections we describe the details of the technique used to obtain phrase
alignments, focusing our attention on the two key elements that have been mentioned above.
Specifically, the search algorithm used to explore the set ofpossible alignments is described
in section4.4.1, and the mechanism to assign probabilities to phrase pairs is described in
sections4.4.2and4.4.3.

4.4.1 Search Algorithm

Regarding the search algorithm to be used, we propose the useof a modified version of
the branch and bound search algorithm for PB-SMT described in section4.2. Except for
the scoring function (which will be studied in sections4.4.2and4.4.3), only the expansion
algorithm has to be appropriately modified to allow the exploration of the set of possible
phrase-alignments.

The expansion process consists in appending target phrasesas translation of previ-
ously unaligned source phrases of a given hypothesis. Let ussuppose that we want to ob-
tain a phrase alignment between the sentencesfJ

1 ≡ “Para ver la lista de recursos”, and
eI1 ≡ “To view a list of resources”. Figure4.4 shows an example of the results obtained by
the expansion algorithm that we propose for a given hypothesis h.

The hypothesish has aligned the source phrase “Para”, appending the target phrase “To”.
The setSPh contains the set of unaligned source positions ofh, SPh = {2, 3, 4, 5, 6}.
The expansion algorithm works by aligning source phrase positions,u = (j1, j2), from the
setPP (SPh), where the functionPP (·), given a set of word positions returns the set of all
possible phrase positions that can be obtained using these word positions (thePP (·) function
is formally defined by Equation (4.5)).

Let eIi′ ≡ “view a list of resources” be the remaining words that are to be appended toh
to complete the target sentenceeI1. Under these circumstances, we have to take into account
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eI1: To view a list of resources

h

h1

h2

h3

h4

h5

u = (2, 6)

u = (2, 5)

u = . . .

fJ
1 :Paraver la lista de recursos
eI1:To

fJ
1 :Paraver la lista de recursos
eI1:To view a list of resources

︸ ︷︷ ︸

ei
′′

i′ ≡ eIi′

fJ
1 :Paraver la lista derecursos
eI1:To view a list of

︸ ︷︷ ︸

ei
′′

i′ ∈ PeIi′
− {eIi′}

fJ
1 :Paraver la lista derecursos
eI1:To view a list

︸ ︷︷ ︸

ei
′′

i′ ∈ PeIi′
− {eIi′}

fJ
1 :Paraver la lista derecursos
eI1:To view a

︸ ︷︷ ︸

ei
′′

i′ ∈ PeIi′
− {eIi′}

fJ
1 :Paraver la lista derecursos
eI1:To view

︸ ︷︷ ︸

ei
′′

i′ ∈ PeIi′
− {eIi′}

Figure 4.4: Example of the expansion of the hypothesish givenfJ
1 ≡ “Para ver la lista

de recursos” and the target sentenceeI1 ≡ “To view a list of resources”.

whether we are aligning the last source phrase positions or not. For example, let us suppose
that we align the source phrase determined by positionsu = (2, 6) ∈ PP (SPh) (f6

2 ≡ “ver
la lista de recursos”). Since those are the last source positions to be aligned, we have to ensure
that the whole target sentenceeI1 is generated. For this purpose, we appendeIi′ to h, resulting
in the hypothesish1.

By contrast, if we are not aligning the last source positionsof h, we can also append
strings,ei

′′

i′ , from the setPeI
i′

of sub-prefixes ofeIi′ , with the exception ofeIi′ itself, to the
newly generated hypotheses. Before appending a string to a hypothesis, we have to ensure
that after aligning a source phrase, there are enough remaining target words to be aligned with
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input : eI1 (reference target sentence),h (hypothesis to be expanded)
output : H (set of expanded hypotheses)
auxiliar : SPh (set of unaligned source word positions ofh),

PP (SPh) (set of all possible unaligned source phrase positions ofh),
LP (SPh) (set of phrase positions of the longest unaligned phrases),
eIi′ (remaining target sentence to be aligned at phrase level),
PeI

i′
(set of sub-prefixes ofeIi′ )

begin1

forall (j1, j2) ∈ PP (SPh) do2

eIi′ =get remaining trg sent (h,eI1);3

if SPh − {j1, ..., j2} 6= ∅ then4

forall ei
′′

i′ ∈ PeI
i′
− {eIi′} do5

if (|eIi′ | − |ei
′′

i′ |) ≥ |LP (SPh − {j1, ..., j2})| then6

H := H ∪ {append( h, ((j1, j2),ei
′′

i′ )) }7

else8

H := H ∪ {append( h, ((j1, j2), e
I
i′)) }9

end10

Algorithm 4.6: Pseudocode for thephralig expand algorithm.

unaligned source phrases. The number of remaining target words is given by:(|eIi′ | − |ei
′′

i′ |).
Given the current set of unaligned positions,SPh, and the next source phrase to be aligned,
determined by the positions(j1, j2), we have to align at least|LP (SPh−{j1, ..., j2})| source
phrases, where the functionLP (·), given a set of word positions, returns the set of phrase
positions determining the longest phrases that can be obtained using these word positions
(LP (·) was formally defined by Equation (4.16)). Thus, we have to ensure that the following
condition holds:(|eIi′ | − |ei

′′

i′ |) ≥ |LP (SPh − {j1, ..., j2})|. These restrictions allow the
translation system to complete the target sentenceeI1 in subsequent expansion processes.

As an example of the previous considerations, let us supposethat we align the source
phrase determined by positionsu = (2, 5) ∈ PP (SPh) (f5

2 ≡ “ver la lista de”). In this
case we can append the string “view a list of”, resulting in the hypothesish2. Alternatively,
the subprefix ofeIi′ , “view a list”, can be appended, resulting in the hypothesish3. Finally,
we can also append the strings “view a” and “view” resulting in the hypothesesh4 andh5,
respectively. In all cases the above explained restrictions were satisfied, since|LP (SPh −
{2, 3, 4, 5}| is equal to1 and(|eIi′ | − |ei

′′

i′ |) was greater or equal to1 for the appended strings.
Algorithm 4.6 shows the expansion algorithm that we propose for its application in the

generation of phrase alignments. The algorithm is a formalisation of the ideas depicted in
Figure4.4. This expansion algorithm permits phrase reorderings, butit can be easily modified
to only obtain monotonic alignments.

The time cost of thephralig expand algorithm can be reduced by the introduction of
pruning techniques. In this case, the only pruning technique that we propose to apply con-
sists in restricting the maximum number of target phrases that can be linked to an unaligned
source phrase during the expansion process. Specifically, in those cases whereeI1 has not
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already been generated, only a subset of the strings contained in the setPeI
i′

are considered
as candidates for the expansion process. One possible criterion to choose the substrings is
based on the length of the source phrasef j2

j1
to be aligned determined byu. Only those target

substrings with lengths similar to the length off j2
j1

are considered.
Regarding the complexity of the search algorithm, it depends on the selected configura-

tion of the branch-and-bound algorithm. Let us assume that we use a breadth-first multiple
stack algorithm withJ stacks (see section4.2.5). Under these circumstances, the search algo-
rithm has to expandLs hypothesis fromJ stacks. The complexity of thephralig expand
algorithm is inO(J2 ·I). Therefore, the complexity of the search algorithm is inO(J3 ·Ls ·I).

4.4.2 Smoothing Techniques

During the generation of phrase alignments using the searchalgorithm that has been described
above, it is necessary to assign scores to the phrase pairs that are appended to the newly
generated hypothesis. Since these appended phrase pairs are not necessarily extracted from
the phrase table (in principle, given a sentence pair, each target phrase can be considered
as translation of a given source phrase), a general scoring mechanism is required to assign
probabilities to phrase pairs, no matter if they are contained in the phrase table or not.

To solve this problem, we propose the application of smoothing techniques over the
phrase table. Although smoothing is an important issue in language modelling and other areas
of statistical NLP (see for example [MS01] for more details), it has not received much atten-
tion from the SMT community. However, most of the well-knownlanguage model smoothing
techniques can be imported to the SMT field and specifically tothe PB-SMT framework, as
it is shown in [FKJ06].

In spite of the fact that PB-SMT and the generation of phrase-alignments are similar
tasks, it should be noted that the two problems differ in a keyaspect. While in PB-SMT
the probabilities of unseen events are not important (sincethe decoder only proposes phrase
translations that are contained in the model, see [FKJ06]), in the generation of phrase align-
ments, assigning probabilities to unseen events is one of the most important problems that
has to be solved.

In the rest of this section, we describe the smoothing techniques that we have imple-
mented. They are similar to those proposed in [FKJ06], although in our case we have strongly
focused on the appropriate treatment of unseen events.

Phrase-based Model Statistical Estimators

Training data can be exploited in different ways to estimatestatistical models. Regarding the
phrase-based models, the standard estimation technique isbased on the relative frequencies
of the phrase pairs (see section3.2). Taking this standard estimation technique as a starting
point, a number of alternative estimation techniques can bederived.

In this thesis we propose the application of the following estimation techniques for phrase-
based models:

• Maximum-likelihood estimation

• Good-Turing estimation
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• Absolute-discount estimation

• Kneser-Ney smoothing

• Simple discount

As was mentioned above, ML estimation uses the concept of relative frequency as a
probability estimate. Once the counts of the phrase pairs have been obtained, different well-
known estimation techniques can be applied. In this thesis we propose the application of
Good-Turing, Absolute-discount, Kneser-Ney and Simple discount estimation.

The well-known Good-Turing smoothing technique [CG91] works by replacing observed
counts,c, by modified counts,cg:

cg = (c+ 1) ·
nc+1

nc

(4.23)

wherecg is a modified count value used to replacec in subsequent relative-frequency esti-
mates, andnc is the number of events having countc.

It follows from Equation (4.23) that the total count mass assigned to unseen phrase pairs
is 0gn0 = n1. This mass is distributed among contextsẽ in proportion toc(ẽ), giving the
Good-Turing estimator:

p(f̃ |ẽ) =
cg(f̃ , ẽ)

∑

f̃ cg(f̃ , ẽ) + p(ẽ) · n1

(4.24)

wherep(ẽ) = c(ẽ)/
∑

ẽ c(ẽ).
Absolute-discounting and Kneser-Ney smoothing subtract afixed discount from all non-

zero counts [KN95]. The general probability distribution for these smoothing techniques was
originally defined as a backoff combination by Kneser and Ney[KN95] and later reframed
as an interpolation by Chen and Goodman [CG96]. Here we adopt the interpolated version:

p(f̃ |ẽ) =
c(f̃ , ẽ)−D
∑

f̃ c(f̃ , ẽ)
+ α(ẽ) · pb(f̃ |ẽ) (4.25)

whereD is the subtracted fixed discount,α(ẽ) is the normalisation factor andpb(f̃ |ẽ) is
the smoothing distribution. Following the formulae given in [NEK94], the fixed discount is
calculated asD = n1/(n1 + 2n2). The normalisation factorα(ẽ) is defined as follows:

α(ẽ) =
D

∑

f̃ c(f̃ , ẽ)
·N1+(•, ẽ) (4.26)

whereN1+(•, ẽ) is the number of source phrasesf̃ for which c(f̃ , ẽ) > 0.
Regarding the smoothing distribution,pb(f̃ |ẽ), we define two different versions. For the

sake of simplicity, in these two versions, the distributiondependency oñe is removed. The
first version is given byp(f̃) = c(f̃)/

∑

f̃ c(f̃), and the second one is the Kneser-Ney lower
order distribution:

pb(f̃) = N1+(f̃ , •)/
∑

f̃

N1+(f̃ , •) (4.27)
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whereN1+(f̃ , •) is defined analogously toN1+(•, ẽ).
Finally, we propose the use of an alternative discount whichwe have called Simple dis-

count, where a fixed probability mass is discounted from seenevents instead of a fixed count:

p(f̃ |ẽ) = (1− δ) ·
c(f̃ , ẽ)

∑

f̃ c(f̃ , ẽ)
(4.28)

whereδ is the discounted probability mass assigned to unseen phrase pairs.

Lexical Distributions

A good way to tackle the problem of unseen events is the use of probability distributions that
decompose phrases into words. Two different techniques arementioned in [FKJ06] for this
purpose: the noisy-or and an alternative technique which isbased on alignment matrices.

In this thesis we have applied another technique which is based on the IBM 1 Model
probability as defined in [BDDM93]:

p(fJ
1 |e

I
1) =

ǫ

(I + 1)J
·

J∏

j=1

I∑

i=1

p(fj |ei) (4.29)

We use the IBM 1 model to assign probabilities to phrase pairsinstead of sentence pairs,
i.e. we obtain probabilities for individual phrasesf̃ andẽ instead of for the sentencesfJ

1 and
eI1.

Combining Estimators

The statistical estimators described above can be combinedin the hope of producing better
models. We have chosen three different well-known techniques for combining estimators:

• Linear interpolation

• Backing-off

• Log-linear interpolation

The linear interpolation technique consists of making a linear combination of different
estimators, ensuring that the weights of such combination determine a probability function.
The general form of the interpolation schemes proposed hereis as follows:

pLI(f̃ |ẽ) = λf̃ ,ẽ · pPB(f̃ |ẽ) + (1− λf̃ ,ẽ) · pLEX(f̃ |ẽ) (4.30)

wherepPB is a phrase-based statistical estimator andpLEX is the lexical distribution de-
scribed above.

The backing-off combination technique consults differentmodels in order depending on
their specificity. The general form of the proposed backoff schemes is as follows:

pBO(f̃ |ẽ) =

{

α(f̃ |ẽ) if c(f̃ , ẽ) > 0

γ(ẽ) · pLEX(f̃ |ẽ) if c(f̃ , ẽ) = 0
(4.31)
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whereα(f̃ |ẽ) is a modified version ofpPB(f̃ |ẽ) that reserves some probability mass for
unseen events, the scale factorγ(ẽ) is introduced to make the conditional distribution sum up
to one andpLEX(f̃ |ẽ) is the lexical distribution described above.

Phrase-based model estimators and lower order distributions can also be combined by
means of log-linear interpolation. In this case, the procedure consists in adding a phrase
based statistical estimator and a lexical distribution as scoring components of a log-linear
model.

In all cases, the main goal of the different combinations of statistical estimators is to
achieve good treatment of unseen events. However, each combination technique has its own
properties.

The key difference between interpolation and backing off isthat the latter only uses infor-
mation from the smoothing distribution (the lexical distribution) for low frequency or unseen
events. Since for phrase alignment generation, better prediction of unseen events has a great
impact, backing-off seems a especially suitable approach.

Finally, the main difference between linear and log-linearcombination is that the for-
mer moderates extreme probability values and preserves intermediate values, whereas the
latter preserves extreme values and makes intermediate values more extreme. When assign-
ing probabilities to unseen events, the phrase-based modelstatistical estimators will produce
very low or zero probabilities that will be moderated by linear combination (using the LEX
distribution), and preserved by log-linear combination. Because of this, we expect linear
combination to work better than log-linear combination.

4.4.3 A loglinear Approach to Phrase-to-Phrase Alignments

As was explained above, the score of a given alignment can be calculated according to Equa-
tion (4.22). This scoring function can be refined to take into account some basic aspects of a
phrase alignment, such as the lengths of the source and target phrases, and the reorderings of
phrase alignments. For this purpose, we follow the specific phrase-based model decomposi-
tion presented in section3.5, where the alignment variablẽaK1 is replaced by our own set of
hidden variables(K, aK1 , bK1 , cK1 ). In this set of alignment variables,K represents the length
of the bisegmentation,aK1 is a vector of ending positions of theK target phrases,bK1 is a
vector with the number of skipped source positions with respect to the ending position of the
previously aligned source phrase andcK1 represents a vector containing the lengths of theK
source phrases.

The new scoring function given by our proposed phrase-basedmodel decomposition is as
follows:

p(fJ
1 ,K, aK1 , bK1 , cK1 |eI1) = p(J |I) · p(K|I, J) ·

K∏

k=1

[

p(ak|ak−1) ·

p(bk) · p(ck|ak, ak−1) · p(f
βk
αk

|eak

ak−1+1)

]

(4.32)

where the following submodels are included: a source sentence length submodel,p(J |I), a
bisegmentation length submodel,p(K|I, J), a target phrase length submodel,p(ak|ak−1), a
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reordering submodel,p(bk), a source phrase length submodel,p(ck|ak, ak−1) and an inverse
phrase translation submodel,p(fβk

αk
|eak

ak−1+1); theα andβ variables are defined as follows:

αk = βk − ck + 1

βk = βk−1 + bk + ck

β0 = 0

It should be noted that the source sentence length submodel always assigns the same prob-
ability to each possible phrase alignment betweenfJ

1 andeI1, since in all cases the sentence
lengths remain unchanged. Additionally, according to the phrase model derivation presented
in section3.5, the bisegmentation length submodel is assumed to be uniform. Thus, the
calculation of the probability for a given phrase alignmentgiven by Equation (4.32) can be
simplified by dropping the termsp(J |I) andp(K|I, J).

In a similar way as it was described in section3.5.3for the case of standard PB-SMT, we
can introduce the submodels that are present in Equation (4.32) as components of a log-linear
model (except the source sentence length and the bisegmentation length submodels). This
log-linear model can also be complemented with additional score components. The genera-
tion of the Viterbi phrase alignment using this log-linear model can be formally expressed as
follows:

ÃV (f
J
1 , e

I
1) = argmax

K,aK
1 ,bK1 ,cK1

{ M∑

m=1

λm · hm(fJ
1 ,K, aK1 , bK1 , cK1 , eI1)

}

(4.33)

We propose the use of a specific instantiation of the previousgeneral log-linear model
given by Equation (4.33). Specifically, this log-linear model instantiation is composed of
a total of five score components or feature functions (fromh1 to h5): inverse and direct
phrase-based models (h1 andh2 respectively), a target phrase-length model (h3), a source
phrase-length model (h4), and a distortion model (h5). The details for each feature function
are listed below:

• inverse phrase-based model (h1)
h1(e

I
1,K, aK1 , bK1 , cK1 , fJ

1 ) = log(
∏K

k=1 p(f
βk
αk

|eak

ak−1+1))

• direct phrase-based model (h2)
h2(e

I
1,K, aK1 , bK1 , cK1 , fJ

1 ) = log(
∏K

k=1 p(e
ak

ak−1+1|f
βk
αk

))

• target phrase-length model (h3)
h3(K, aK1 ) = log(

∏K
k=1 p(ak|ak−1))

• source phrase-length model (h4)
h4(K, aK1 , cK1 ) = log(

∏K
k=1 p(ck|ak, ak−1))

• distortion model (h5)
h5(K, bK1 ) = log(

∏K
k=1 p(bk))

To implement the above described score components we use thesame probability models
that were proposed in section3.5.2for its use in standard PB-SMT. Specifically, we use in-
verse and direct phrase models to implementh1 andh2 respectively;h3 can be implemented
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by means of a geometric probability distribution (penalises long target phrases) or a uniform
probability distribution (penalises the length of the bisegmentation); a geometric, a uniform
or a Poisson probability distribution can be used to implementh4 (geometric and Poisson dis-
tributions penalise the difference between the length of the source and target phrases and the
uniform distribution penalises the length of the bisegmentation); finally,h5 is implemented
by means of a geometric probability distribution.

It is worth noticing that the inverse and the direct phrase models used to implement the
scoring functionsh1 andh2, respectively, can be smoothed using the techniques that were
described in section4.4.2.

Regarding the weights of the log-linear combination,λm, m ∈ {1, 2, 3, 4, 5}, they can be
computed by means of the MERT algorithm [Och03].

4.5 Summary

In this chapter we have studied different issues regarding the search problem in PB-SMT. We
have proposed a branch-and-bound search algorithm for PB-SMT. The computational com-
plexity of the proposed algorithm is bounded by the complexity of the well-known dynamic
programming algorithm defined in [Zen07]. We have provided both single- and multiple-
stack versions of the basic search algorithm. Our proposed algorithm performs a best-first
search by default, but it can also perform a breadth-first search by only appropriately mod-
ifying its scoring function. We have studied the problem of mapping hypotheses to stacks
when multiple-stack search algorithms are used, proposingspecific mapping techniques for
its application in best-first or breadth-first search algorithms. Finally, we have also described
different techniques to prune the search space and to estimate the score of completing a partial
hypothesis.

Additionally, we have proposed techniques to deal with large phrase-based models during
the search process. These techniques include the use of a cache-memory architecture and a
specific data structure to represent phrase tables.

Finally, we have formally described the problem of generating statistical phrase-to-phrase
alignments between the source and the target sentences, modifying our proposed PB-SMT
search algorithm for its use in this task. The proposed modifications include a new expansion
algorithm, the application of smoothing techniques and thedefinition of a log-linear model
composed of a specific set of components.
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CHAPTER 5

PB-SMT EVALUATION

In this chapter we show the results of the experiments that wecarried out to test the SMT
techniques proposed in chapters3 and 4. Specifically, the results obtained by the tech-
niques to estimate phrase-based models from large corpora are shown in section5.1, best-
and breadth-first search techniques for SMT are compared in section5.2, our proposed gen-
eralised multiple stack search algorithms are evaluated insection5.3, the log-linear model
for SMT is evaluated in section5.4, the bisegmentation-based RF estimation technique is
tested in section5.5, the results obtained by the decoding techniques for large corpora are
shown in section5.6and finally, the proposed phrase-based alignment generation techniques
are evaluated in section5.7.

5.1 Phrase Model Estimation from Very Large Corpora

We carried out experiments to compare thefrag by frag training algorithm pro-
posed in section3.4.2 with respect to the conventional estimation technique. The
frag by frag training training algorithm is designed to train phrase-based models
from very large corpora. For this purpose, the estimation isdone in afragment-by-fragment
fashion. The experiments measure both the spatial and temporal costs of the estimation pro-
cess. This is done in order to quantify the amount of memory which is saved by means of the
frag by frag training algorithm and the overhead introduced by its use.

Table5.1 shows the spatial cost in GBytes and the temporal cost in seconds that have
both the estimation from the whole corpus and the fragment-by-fragment estimation. In all
cases, the phrase-based models were obtained by means of theTHOT toolkit presented in Ap-
pendixB of this thesis. All the experiments presented in this section have been executed on
a PC with a 2.60 Ghz Intel Pentium 4 processor with 2GBytes of memory. The experiments
were executed on the English-Spanish Europarl corpus (see section1.10.2for a detailed de-
scription), ranging from a maximum phrase size of2 to 8. The experimentation was not
extended to additional language pairs because in this case,the language pair under consider-
ation does not qualitatively affect the results (the time and spatial costs for both estimation
techniques only depend on the number of phrase pairs that compose the model and we did
not observe significant differences in this aspect for the different language pairs).
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Table 5.1: Statistics of both conventional estimation and fragment-by-fragment esti-
mation for the English-Spanish Europarl corpus and different valuesof the maximum
phrase size. The statistics include the time in seconds and the main memory size in
GBytes required by the estimation process.

Conventional estimation Fragment-by-fragment estimation
m Time (s) Size (GB) Time (s) Size (GB)
2 2 266 0.11 2 336 0.12
4 6 034 0.66 5 848 0.12
6 10 757 1.47 10 234 0.12
8 - >2 17 089 0.12

As can be seen in Table5.1, the memory requirements of the conventional estimation
are higher than 2 GBytes when the maximum phrase size is equalto 8. Because of this,
such an estimation may not be feasible in32-bits machines depending on which operating
system is used. In contrast, fragment-by-fragment estimation has a fixed cost that is equal to
0.12 GBytes. This value is the maximum amount of memory that is assigned to the sorting
algorithm and can be decreased at the expense of an increase in the time needed to perform
the sort.

With regard to the time cost of the algorithms, it should be noted that fragment-by-
fragment estimation can be even faster than conventional estimation for great values of the
maximum phrase length. As explained in section3.4.2, fragment-by-fragment estimation in-
troduces time overhead because of the necessity of sorting the phrase counts. However, the
time needed to store and update the counts of each phrase pairdepends on the size of the
model. This size is smaller if the estimation is carried out for small fragments of the corpus.

5.2 Best- versus Breadth-First Search

We carried out experiments to compare the performance of thebest-first search algorithm for
SMT described in section4.2.2with that of the breadth-first search algorithm presented in
section4.2.5. The results were obtained using three different corpora ofincreasing complex-
ity, including the EuTrans-I, Xerox and Europarl corpora (see section1.10for more details).
In all the experiments, we obtained translations from Spanish to English (experiments using
additional language pairs were executed, yielding very similar results).

Both the best- and the breadth-first search algorithms used the mapping function given by
Equation (4.10) to assign hypotheses to stacks (which usesJ stacks, one for each possible
number of aligned source positions). The log-linear model was instantiated as follows: a
standard backoff language model estimated by means of the SRILM toolkit was used to
implementh1; the source sentence length model,h2, was implemented by means of a set of
normal distributions; inverse and direct standard phrase-based models generated by means of
the THOT toolkit were used to implementh3 andh4, respectively (maximum phrase length
was set to7 words); the target phrase length model,h5, was implemented by means of a
uniform distribution and finally, the source phrase length and the distortion models,h6 and
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h7, respectively, were implemented using geometric distributions. Table5.2summarises the
information of the log-linear model described above. We used default values for the weights
of the log-linear model.

Table 5.2: Description of the log-linear model used in the experiments.

Feature Model Implementation
h1 Language model Standard backoff language model (SRILM)
h2 Source sentence length modelSet of normal distributions
h3 Inverse phrase model Standard phrase model (THOT)
h4 Direct phrase model Standard phrase model (THOT)
h5 Target phrase length model Uniform distribution
h6 Source phrase length model Geometric distribution
h7 Distortion model Geometric distribution

All the experiments presented in this section were executedon a PC with a 2.40 Ghz Intel
Xeon processor with 1GB of memory.

5.2.1 Assessment Criteria

The evaluation of the techniques presented in this section was carried out measuring the time
cost per sentence and the average score per sentence. The average score per sentence for a test
corpus is obtained by dividing the score of the log-linear model assigned to each translation
hypothesis by the total number of sentences that compose thetest corpus. The time cost per
sentence and the average cost per sentence were measured ranging the value of the maximum
stack size parameter from1 to 100.

We have chosen the average score per sentence as an evaluation criterion because we
are interested in comparing the effectiveness of two decoding algorithms that share the same
scoring function (both the best- and the breadth-first search algorithms use a log-linear model
with the same components and the same weights for each component). Since the goal of the
decoding process is to obtain the translation hypothesis ofhighest score for each source sen-
tence, we can tell that one decoding algorithm is better thananother for a given test corpus if
it obtains a higher average score per sentence. In addition to this, the time cost that is required
to achieve a certain value of the average score is also important to judge the effectiveness of
the search process.

In the following sections, we will not report the BLEU measure obtained by the search
algorithms. This is because the BLEU measure does not alwayscorrelate with the average
score per sentence. In addition to this, obtaining translation quality results requires to tune the
weights of the log-linear models by means of the MERT algorithm. The main disadvantage
of performing weight adjustment in our experimentation setting is that the average score per
sentence is no longer comparable for the two search algorithms (since MERT will return a
different set of weights for each one). As it will be shown below, comparing the average score
per sentence allows us to achieve a better understanding of the advantages and disadvantages
of each of the search algorithms. In any case, in the experiments that we carried out (without
weight adjustment), the two search algorithms produced very similar BLEU results for a
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given value of the average score per sentence. We will show translation quality results in
section5.4.

5.2.2 EuTrans-I Experiments

We carried out experiments to compare the best- and breadth-first search algorithms using the
EuTrans-I test corpus. Figures5.1aand5.1bshows the obtained results for monotonic and
non-monotonic search, respectively. For each figure, average translation time per sentence
(left) and average score per sentence (right) as a function of the maximum stack size are
shown.
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Figure 5.1: Best- versus breadth-first search comparison executed on the EuTrans-I test
corpus. Plots show average translation time per sentence (left) and average score per
sentence (right) as a function of the maximum stack size when performingmonotonic
and non-monotonic translation.

According to the figures, best-first search has a lower time cost than breadth-first search
for both monotonic and non-monotonic search. As was stated in Chapter4, the complexity of
the best-first search algorithm cannot be bounded by the complexity of the breadth-first search
algorithm. However, if the statistical models involved in the translation process have a low
perplexity, they can accurately guide the search, reducingthe time cost of the algorithm with
respect to that of the breadth-first search algorithm (see sections4.2.4and4.2.5for a more
detailed explanation). Since the EuTrans-I corpus has a very low complexity, the behaviour
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of the time cost is exactly what we expected. It is also worth noticing that the time cost of the
best-first algorithm remains constant when we increase the value of the maximum stack size
parameter. By contrast, and according to the complexity expression given in section4.2.5,
the time cost of the breadth-first search algorithm grows linearly with respect to maximum
stack size.

Regarding the average score per sentence, there are no significant differences between
the two search algorithms. It should be noted that the average score per sentence reaches its
maximum value for small values of the maximum stack size parameter. In addition to this,
non-monotonic search allows to obtain higher average scoreper sentence than monotonic
search.

5.2.3 Xerox Experiments

We repeated the experiments presented in the previous section using the English-Spanish test
set of the Xerox corpus. Figure5.2ashows the results for monotonic search and Figure5.2b
shows those for non-monotonic search. Again, average translation time per sentence (left)
and average score per sentence (right) as a function of the maximum stack size are shown for
each figure.
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Figure 5.2: Best- versus breadth-first search comparison executed on the English-
Spanish test set of the Xerox corpus. Plots show average translation timeper sentence
(left) and average score per sentence (right) as a function of the maximum stack size
when performing monotonic and non-monotonic translation.
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According to the results presented in the figures, the time cost of best-first search is lower
than that of the breadth-first search only for monotonic search. These results contrasts with
the results obtained for the EuTrans-I corpus. As was explained above, the time complexity of
the best-first search algorithm depends on the complexity ofthe translation task. The Xerox
corpus is more complex than the EuTrans-I task, and non-monotonic search significantly
increases the size of the search space.

Regarding the average score per sentence, it is very similarfor both search algorithms
when performing monotonic search. By contrast, non-monotonic best-first search obtains
higher average score than non-monotonic breadth-first search. This is due to the more ag-
gressive pruning of the stacks executed by the breadth-firstsearch algorithm. In addition to
this, it should be noted that in this case, non-monotonic search requires higher values of the
maximum stack size parameter to obtain the same average score as monotonic search, due to
the greater size of the search space.

5.2.4 Europarl Experiments

Finally, we compared best- and breadth-first search using the Spanish-English test set of the
Europarl corpus. Figure5.3ashows the monotonic results and Figure5.3bshows the non-
monotonic results. Each figure represents average translation time per sentence (left) and
average score per sentence (right) as a function of the maximum stack size.

As can be seen in the figures, the time cost per sentence of the best-first search algorithm
is significantly higher than that of the breadth-first searchalgorithm. Again, this was the
expected behaviour, since the Europarl corpus is by far the most complex task of the three
tasks used to carry out these experiments.

The behaviour of the average score per sentence is the same asthat observed for the Xerox
corpus: on the one hand, best-first search obtains higher average scores than breadth-first
search for non-monotonic translation; on the other hand, non-monotonic translation requires
higher values of the maximum stack size parameter to obtain the same score as monotonic
translation.

5.3 Generalised Multiple-Stack Search

In this section we report results to evaluate the performance of the generalised best- and
breadth-first multiple-stack algorithms described in Chapter 4. The experiments were exe-
cuted on the same corpora used in section5.2: the EuTrans-I, Xerox and Europarl corpora.
The log-linear model used in the experiments was instantiated following the configuration
given in Table5.2.

All the experiments presented in this section were executedon a PC with a 2.40 Ghz Intel
Xeon processor with 1GB of memory.

5.3.1 Best-First Search Experiments

We carried out experiments to test the generalised best-first multiple stack algorithms de-
scribed in section4.2.6. For this purpose, we measured the time cost per sentence andthe
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Figure 5.3: Best- versus breadth-first search comparison executed on the Spanish-
English test set of the Europarl corpus. Plots show average translationtime per sentence
(left) and average score per sentence (right) as a function of the maximum stack size
when performing monotonic and non-monotonic translation.

average score per sentence as a function of the granularity (G) parameter (the granularity
parameter determines the number of stacks and the maximum stack size used by the search
algorithm). The experiments were obtained varying the value of G (ranging from 0 to 10)
and the maximum number of hypotheses,La, that the algorithm is allowed to store for all
used stacks (ranging from28 to 211). This is basically the same assessment criteria described
in section5.2.1for comparing best- and breadth-first search (the only difference is that the
maximum stack size limitation is replaced by the granularity parameter).

EuTrans-I Experiments

Figure5.4 shows the results of the experiments that we carried out for the EuTrans-I test
corpus. Specifically, two plots are shown in the figure: the average time per sentence (left)
and the average score (right) as a function of the granularity parameter. As can be seen, the
bigger the value ofG the lower the average time per sentence. For values ofG greater than
6 (keeping fixed the value ofLa) the average time per sentence decreases very slightly. This
is due to the fact that the number of stacks determined byG is very high and the search
algorithm starts to spend more time to decide which hypothesis is to be expanded.
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With respect to the average score, the maximum value is obtained forG = 4. Values of
theG parameter above or below4 decreased the average score. Low values ofG decrease
the number of stacks used by the search algorithm. This reduces the accuracy of the stack
pruning, since hypotheses having very different alignmentvectors are stored into the same
stack. By contrast, high values ofG increase the number of stacks used by the algorithm.
Taking into account that the value ofLa is fixed, then the maximum stack size can take very
low values and thus the “optimal” hypothesis can easily be pruned.

Finally, it is worthy of note that the best obtained score using the proposed generalised
best-first search algorithms was worse than that obtained with the standard best-first search
algorithm (see Figure5.1). This suggests that the generalised best-first search algorithms
execute a less efficient stack pruning than the standard algorithm. It should be noted that the
algorithm may assign hypotheses with a different number of aligned words to the same stack
(see Table4.1 for an example). By contrast, the standard best-first searchalgorithm always
assigns hypotheses with a different number of aligned wordsto different stacks. We think
that this can be one of the underlying reasons that explain the obtained results.
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Figure 5.4: Generalised multiple-stack search experiments executed on the EuTrans-
I test corpus. Plots show average translation time (left) and average score (right) per
sentence as a function of the granularity (G) parameter. Each curve was obtained using
different values of the maximum number of hypotheses stored by the search algorithm
(La).

Xerox Experiments

We also carried out experiments using the English-Spanish test set of the Xerox corpus. The
obtained results are shown in Figure5.5. Again, the plots represent the average time per
sentence (left) and the average score (right) as a function of theG parameter.

According to the figure, the behaviour of the time cost was similar to that observed for
the EuTrans-I corpus. Specifically, values of theG parameter below or equal to6 allowed
us to significantly reduce the time cost per sentence. By contrast, very slight improvements
were obtained for values of theG parameter above6.

Regarding the average score per sentence, its maximum valuewas obtained for values of
G between6 and8. The results were different to those obtained for the EuTrans-I corpus,
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Figure 5.5: Generalised multiple-stack search experiments executed on the English-
Spanish test set of the Xerox corpus. Plots show average translation time(left) and
average score (right) per sentence as a function of the granularity (G)parameter. Each
curve was obtained using different values of the maximum number of hypotheses stored
by the search algorithm (La).

since the average score forG = 0 was higher than those obtained for values ofG between
1 and4. In addition to this, increases in the maximum number of hypotheses (La) did not
always produce better average scores (specifically forLa = 2048). This suggests that the ef-
ficiency of the mapping function is negatively influenced by the complexity of the translation
task. One difference between the EuTrans-I and the Xerox corpora is that the Xerox corpora
has a greater average sentence length. Generalised best-first search uses the same limitation
for the maximum number of hypotheses that can be stored without taking into account the
length of the sentence to be translated. This circumstance may be negatively affecting the
average score.

Again, the best obtained score using the proposed generalised best-first search algorithms
was not better than that obtained with the standard best-first search algorithm (see Figure5.2).
This confirms our previous intuition that generalised best-first search performs a less efficient
stack pruning.

Europarl Experiments

We repeated the experiments presented above using the Spanish-English test set of the Eu-
roparl corpus. The obtained results are shown in Figure5.6.

Regarding the time cost of the algorithm, the results were very similar to those obtained
for the EuTrans-I and the Xerox corpora (with the exception of the result obtained forG = 2
andLa = 2048). Again, significant improvements in the time cost were observed for values
of theG parameter below6.

With respect to the average score per sentence, the obtainedresults were even poorer than
those obtained for the Xerox corpus. The best average score was obtained forG = 0 in all
cases. In addition to this, increases in theLa parameter did not produce better average scores.
According to these observations, we can conclude that generalised best-first search does not
scale well with complex corpora.
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Finally, the best obtained score using generalised best-first search was again lower than
that of standard best-first search.
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Figure 5.6: Generalised multiple-stack search experiments executed on the Spanish-
English test set of the Europarl corpus. Plots show average translationtime (left) and
average score (right) per sentence as a function of the granularity (G)parameter. Each
curve was obtained using different values of the maximum number of hypotheses stored
by the search algorithm (La).

5.3.2 Breadth-First Search Experiments

We carried out experiments to test the generalised breadth-first multiple stack algorithms de-
scribed in section4.2.6. For this purpose we evaluated the performance of differentfunctions
to map hypotheses to stacks. Again, we are interested in the time cost of the translation as
well as in the average score per sentence. More specifically,we will represent the time cost
per sentence as a function of the average score. This slightly differs from the assessment cri-
teria defined in previous sections, where the x axis was defined as the value of the maximum
stack size parameter or as the granularity parameter. In this case, two search algorithms with
the same value of the maximum stack size parameter and different mapping functions are not
directly comparable, since they will use a different numberof stacks. To solve this problem,
given a specific mapping function, we obtained the time cost and the average score per sen-
tence for different values of the maximum stack size parameter. Once all this measures were
obtained for the different mapping functions, we represented the time cost as a function of
the average score per sentence in order to compare them.

Here is a list of the mapping functions that were evaluated:

• baseline : this function assigns to different stacks those hypotheses with a different
number of aligned words and can be formally defined by means ofEquation (4.10).
This function constitutes the baseline of our experiments.

• ncj01 : the same as thebaseline function, but those hypotheses containing non-
monotonic alignments are stored in different stacks. This function is formally defined
by Equation (4.11).
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• nctl : the baseline function is redefined to take into account the target length of
the partial hypothesis. see Equation (4.12) for a more formal definition.

• ncltw : thebaseline function is modified to also include the last target word added
to a given hypothesis. This function is formally defined by Equation (4.13).

• nclspc : this function refines thebaseline function by taking into account the last
aligned source position, see Equation (4.14) for a more formal definition.

EuTrans-I Experiments

Figure5.7 shows the empirical results that were obtained for the EuTrans-I test corpus. As
can be seen in the figure, there were no significant differences in terms of average score
per sentence between the baseline function (baseline ) and the rest of the mapping func-
tions for both monotonic and non-monotonic search. It should be noted thatncj01 and
nclspc are specifically defined for its application in non-monotonic search. By contrast,
such mapping functions cannot be distinguished from thebaseline function when per-
forming monotonic search. As was explained in section4.2.4, a given mapping function,
µ(h), defines a set of equivalence classes for the partial hypotheses. The number of stacks
used by the generalised breadth-first search algorithm and thus its computational complexity
are determined by the number of equivalence classes. Therefore, the time cost per sentence
gives an idea of the size of the set of equivalence classes of the mapping function. According
to the results shown in the figure, thenctl mapping function was the most time consuming
one, followed byncltw , nclspc , ncj01 andbaseline .
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Figure 5.7: Breadth-first search comparison executed on the EuTrans-I test corpus.
Plots show the time cost per sentence in seconds as a function of the average score per
sentence using monotonic (left) and non-monotonic (right) translation. Five different
functions for mapping hypotheses to stacks were tested.
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Xerox Experiments

We also carried out experiments using the English-Spanish test set of the Xerox corpus. Fig-
ure5.8 shows the obtained results. Regarding the average score persentence, no significant
differences were observed between the different mapping functions when performing mono-
tonic search. In contrast to this, the results using non-monotonic search show that the baseline
function (baseline ) is outperformed by the other four mapping functions. Regarding the
time cost that is required to obtain a given average score persentence, again, the most time
consuming function wasncltw , followed bynclspc , nctl , ncj01 andbaseline . The
ncj01 mapping function showed the best behaviour with respect to the other functions both
in terms of time cost and average score per sentence.
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Figure 5.8: Breadth-first search comparison executed on the English-Spanish test set
of the Xerox corpus. Plots show the time cost per sentence in seconds asa function
of the average score per sentence using monotonic (left) and non-monotonic (right)
translation. Five different mapping functions were compared.

Europarl Experiments

In addition to the previous experiments, we also obtained results using the Spanish-English
test set of the Europarl corpus. The results are shown in Figure5.9. Again, the differences be-
tween the five mapping functions in terms of average score persentence were not significant
when performing monotonic search. By contrast, the averagescore per sentence obtained by
the baseline function (baseline ) was outperformed by thenclspc , nctl andncj01
functions (thenctl function obtained the worst average score). Regarding the time cost
per sentence, the results were similar to those obtained with the Xerox corpus: the most
time consuming function was thencltw function, followed bynclspc , nctl , ncj01 and
baseline . Finally, thencj01 mapping function showed again the best behaviour both in
terms of time cost and average score per sentence.

112 DOM-DSIC-UPV



5.4. Log-linear Model Performance

 0

 1

 2

 3

 4

 5

 6

 7

-230.5 -230 -229.5 -229 -228.5 -228 -227.5 -227

T
im

e

Average score

e

ncj01
nclspc
ncltw

nctl

baseline

(a) Monotonic search

 0

 20

 40

 60

 80

 100

 120

 140

 160

-233 -232 -231 -230 -229 -228 -227

T
im

e

Average score

ncj01
nclspc
ncltw

nctl

baseline

(b) Non-monotonic search

Figure 5.9: Breadth-first search comparison executed on the Spanish-English test set
of the Europarl corpus. Plots show the time cost per sentence in seconds as a function
of the average score per sentence using monotonic (left) and non-monotonic (right)
translation. Five different mapping functions were tested.

5.4 Log-linear Model Performance

We carried out experiments to test the performance of the log-linear model that was de-
scribed in section3.5.3. Specifically, we measured the impact of each feature function of the
log-linear model in the translation quality. The experiments were executed on the Europarl
corpus, which is the standard corpus used in the literature to report SMT results. In addition
to this, we also carried out experiments on two different corpora described in section1.10:
the Xerox corpus and the EU corpus. These corpora have been extensively used to report
IMT results. The translation quality was measured in terms of the BLEU score described in
section1.9.1.

5.4.1 Decoder Configuration

To obtain the results of the experiments we used a configuration of the decoding algorithm
which is based on the experiments that we carried out in the previous sections. Specifically,
we used a generalised breadth-first multiple-stack algorithm. This algorithm uses the map-
ping function given by Equation (4.11) to assign hypotheses to stacks (which is specifically
designed for its use with non-monotonic search algorithms). This configuration showed a
good behaviour in terms of time cost and average score per sentence. The log-linear model
used by the search algorithms was instantiated following the configuration given in Table5.2.
Finally, the weights of the log-linear combination were tuned using the development sets of
each corpus by means of the MERT algorithm.
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5.4.2 Europarl Experiments

We carried out translation quality experiments using the Europarl test corpora, for the three
language pairs, namely, Spanish-English, French-Englishand German-English. The decoder
configuration used in the experiments was described in section 5.4.1. Table5.3 shows the
influence of the different log-linear model components in the translation quality, which was
measured using the BLEU score. The experiment started with alog-linear model composed
of only two components: a4-gram language model and an inverse phrase-based model, and
then, the rest of the components were incrementally added. To save computation time, non-
monotonic search was applied only when the distortion modelwas incorporated into the log-
linear model. The results were obtained using the Spanish-English test set of the Europarl
corpus. As was explained in section1.10.2, the Europarl test corpora used in this thesis
are composed of in-domain and out-domain subsets. BLEU scores were obtained for such
subsets and also for the whole test corpus.

Table 5.3: Influence of different models on the translation quality measured in terms
of BLEU. The results were obtained using the Spanish-English Europarltest corpus
(In+Out) and its in-domain (In) and out-domain (Out) subsets. A breadth-first multiple-
stack algorithm was used to generate the translations. MERT was used to adjust the
weights of the log-linear model.

Search Models In Out In+Out
monotone 4-gram LM + inverse phrase model 24.0 21.3 23.3

+ sent. length model 28.0 21.9 26.3
+ direct phrase model 29.7 24.0 28.0
+ source phrase length model 30.1 24.4 28.3
+ target phrase length model 30.9 25.2 29.1

non-monotone + distortion model 31.0 25.4 29.2

According to the results presented in Table5.3, the incrementally added models allowed
us to improve the translation quality for the Spanish-English Europarl test set and its in- and
out-domain subsets. The sentence length model and the direct phrase-based model caused
the greatest impact on translation quality. By contrast, non-monotonic search resulted in a
very slight improvement of the BLEU score.

Table5.4summarises the translation quality results in terms of BLEUthat were obtained
when translating the Europarl test corpora from Spanish, French and German to English. The
table includes monotone and non-monotone results. We used the same decoder configuration
that was used in the previous experiment. Monotone results correspond to an SMT system
that includes in the log-linear model all the log-linear components that were mentioned above
with the exception of the distortion model (h7).

As can be seen in Table5.4, the best results were obtained for the Spanish to English
translation direction, followed by the French-English andGerman-English language pairs.
Again, the use of non-monotonic search allowed us to obtain very slight improvements with
respect to monotonic search.

Finally, we carried out experiments to compare the translation quality obtained by our
proposed translation system with that obtained by the well known Moses decoder [KHB+07].
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Table 5.4: BLEU results obtained with the Europarl test corpora when translating from
Spanish, French and German to the English language. The translations were generated
by means of a breadth-first multiple-stack algorithm. Monotonic and non-monotonic
search were used. The weights of the log-linear combination were tuned via MERT.

Search Spa-Eng Fre-Eng Ger-Eng
monotone 29.1±0.8 27.3±0.8 22.6±0.7
non-monotone 29.2±0.8 27.4±0.8 22.6±0.7

To obtain translation quality results with Moses, we downloaded its latest version and created
an appropriate experimental setup to allow a fair comparison between the two decoders. Ta-
ble5.5shows the BLEU results that are obtained when the Europarl test corpora is translated.
Specifically, we translated from Spanish, French and Germanto English.

Table 5.5: Comparison of translation quality (measured according to BLEU) between
Moses and our proposed translation system (BB-ALG) when translating the Europarl
test corpora. 95% confidence intervals are shown.

Search Spa-Eng Fre-Eng Ger-Eng
Moses 30.8±0.7 28.1±0.7 23.4±0.7
BB-ALG 29.2±0.8 27.4±0.8 22.6±0.7

As can be seen in Table5.5, Moses significantly outperformed the results obtained by our
proposed decoder for the Spanish to English translation direction. By contrast, both decoders
obtained very similar BLEU results for the other two language pairs.

One possible cause for the observed differences in the results obtained by the two SMT
systems could be in the statistical models used by each one. According to the Moses doc-
umentationa, the Moses decoder uses a log-linear model composed of7 feature functions,
including a language model, inverse and direct phrase-based models, phrase and word penal-
ties, a distortion model and inverse and direct lexical components. The set of feature functions
used by our proposed decoder does not include any component that is equivalent to the lexical
components used by the Moses decoder. The lexical components constitute one way to vali-
date the quality of the translation pairs that compose the phrase tables and they are estimated
using the so-called lexical weighting technique [KOM03]. To assess the influence of the lex-
ical components in the translation quality obtained by Moses, we carried out experiments in
which such components were removed. The results are shown inTable5.6.

As can be seen in Table5.6, the results obtained by the Moses decoder without its lexical
components were very similar to those obtained by our proposed decoder. The differences
were not statistically significant in all cases and our proposed decoder was able to slightly
improve the Moses results for the German-English language pair. Therefore, the obtained
results confirm our intuition that the lexical components used by Moses strongly contribute
to the differences in translation quality observed in Table5.5.

ahttp://www.statmt.org/moses/
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Table 5.6: Comparison of translation quality (measured according to BLEU) between
Moses and our proposed translation system (BB-ALG) when translating the Europarl
test corpora. The log-linear model used by Moses did not include lexical components.
95% confidence intervals are shown.

Search Spa-Eng Fre-Eng Ger-Eng
Moses-NoLex 29.7±0.7 27.7±0.7 22.5±0.7
BB-ALG 29.2±0.8 27.4±0.8 22.6±0.7

5.4.3 Additional Experiments

In addition to the previously presented results, we also carried out experiments with two
additional corpora, namely, the Xerox corpus and the EU corpus. These corpora have been
extensively used to report IMT results in the literature. Here we report translation quality
measures to get an overall idea of the difficulty of these tasks (IMT results will be reported in
Chapter8). Again, we used the SMT system configuration described in section5.4.1.

Table5.7 shows the translation quality results measured in terms of BLEU when trans-
lating the Xerox test corpora from English to Spanish, French and German. The table shows
results for both monotone and non-monotone search (monotonic results were obtained by
means of a log-linear model including the whole set of feature functions except the distortion
model,h7). As can be seen, the Xerox English-Spanish language pair isthe one for which the
best translations can be produced. In addition to this, non-monotonic search outperformed
monotonic search for the three language pairs.

Table 5.7: BLEU results when translating the Xerox test corpora from English to
Spanish, French and German. Translations were generated by meansof a breadth-first
multiple-stack algorithm. MERT was used to tune the weights of the log-linear model.

Search Eng-Spa Eng-Fre Eng-Ger
monotone 60.2±2.5 31.9±2.0 20.9±1.8
non-monotone 60.4±2.5 32.3±2.0 21.0±1.8

Additionally, we also carried out experiments to compare the translation quality obtained
by our translation system with that of the Moses decoder. Table 5.8shows the obtained results
in terms of BLEU for the three test sets of the Xerox corpora. As can be seen in this table,
both SMT systems obtained very similar results and the differences between them were not
statistically significant. It should be noted that these results differ from those obtained for the
Europarl corpus. In that situation, our proposed system obtained worse results than Moses
when its lexical components were included in the log-linearmodel (see Tables5.5and5.6).
By contrast, when translating the Xerox corpora, the lexical components used by Moses did
not allow it to outperform the results obtained by our proposed system.

The BLEU results that were obtained when translating the EU test corpora from Span-
ish, French and German to the English language are shown in Table 5.9. The table includes
monotonic and non-monotonic results. In this case, the bestresults were obtained for the
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Table 5.8: Comparison of translation quality (measured according to BLEU) between
Moses and our proposed translation system (BB-ALG) when translating the Xerox test
corpora. 95% confidence intervals are shown.

Search Eng-Spa Eng-Fre Eng-Ger
Moses 59.6±2.4 33.7±2.0 19.3±1.6
BB-ALG 60.4±2.5 32.3±2.0 21.0±1.8

Spanish-English and the French-English language pairs. Again, non-monotonic search al-
lowed us to obtain better results with respect to monotonic search, although the obtained
improvements were smaller than those obtained for the Xeroxtest corpora.

Table 5.9: Translation quality results measured in terms of BLEU when translating the
EU test corpora from Spanish, French and German to the English language. A breadth-
first multiple-stack algorithm was used to generate the translations. The weights of the
log-linear combination were adjusted via the MERT algorithm.

Search Spa-Eng Fre-Eng Ger-Eng
monotone 44.3±1.9 47.3±2.0 37.6±1.9
non-monotone 44.5±1.9 47.5±1.9 37.6±1.9

We also performed translation quality experiments to compare our proposed translation
system with the Moses decoder. The BLEU results are shown in Table 5.10. Again, the
differences between the two decoders were not statistically significant.

Table 5.10: Comparison of translation quality (measured according to BLEU) between
Moses and our proposed translation system (BB-ALG) when translating the EU test
corpora. 95% confidence intervals are shown.

Search Spa-Eng Fre-Eng Ger-Eng
Moses 44.1±1.9 46.6±1.8 37.9±2.0
BB-ALG 44.5±1.9 47.5±1.9 37.6±1.9

5.5 Bisegmentation-based RF Estimation

In this section we show the results of the experiments we carried out to evaluate the BRF
(bisegmentation-based relative frequency) estimation technique for phrase-based models. This
alternative estimation technique was described in section3.3.

We evaluated our alternative estimation technique using three different corpora of ascend-
ing complexity, namely, the EuTrans-I, Xerox and Europarl corpora. To evaluate our alter-
native estimation technique, we measured the estimation time in seconds and the translation
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quality in terms of BLEU. The obtained results were comparedwith those of the standard RF
estimation technique. The translation quality experiments were carried out using the decoder
configuration described in section5.4.1.

Table5.11shows the time cost in seconds of both RF and BRF estimation for the EuTrans-
I, Xerox and Europarl corpora. As can be seen in the table, BRFestimation required more
time to be executed in all cases. Nevertheless, the time costof BRF estimation was affordable
even for medium or large size corpora (the Xerox and Europarlcorpora were trained in 0.6
and 18 hours, respectively). It is also worthy of note that noadditional constraints were
necessary to successfully complete the training process. This contrasts with other related
proposals such as the one presented in [DGZK06], where the performance of a generative
phrase-based model trained by means of the EM algorithm is compared with that of the
standard estimation method. In that work, the training process is constrained such that only
those bisegmentations that can be obtained using consistent phrase pairs are considered. This
is exactly the key aspect of BRF estimation. According to theauthors of the work presented
in [DGZK06], a maximum phrase length of three words was imposed during the training. In
addition to this, different factors caused their estimation algorithm to rule out approximately
54% of the training set. The proposal presented here does nothave such disadvantages.

Table 5.11: Comparison of estimation time cost in seconds using RF and BRF estima-
tion when translating from English to Spanish with the EuTrans-I, Xerox andEuroparl
corpora.

Estimation EuTrans-I Xerox Europarl
RF 8 243 9 780
BRF 16 2 089 64 868

Table5.12shows the BLEU scores that were obtained when using RF and BRFestima-
tion. The experiments were carried out using the EuTrans-I,Xerox and Europarl corpora.
As can be seen in the table, RF estimation obtained slightly better results than BRF estima-
tion in all cases. However, the differences between the two estimation techniques were not
statistically significant.

As was mentioned above, our estimation proposal is stronglyrelated to the one presented
in [DGZK06]. The results obtained by their alternative estimation technique also underper-
formed the results obtained by the standard estimation technique. In spite of this, their tech-
nique yielded higher likelihood values than the conventional estimation technique. According
to the authors, the observed increases in the data likelihoods are obtained by determinising
phrase translation probabilities, i.e. the estimation algorithm obtains sharply peaked con-
ditional distributions, overfitting the training data. We think that the conclusions explained
in [DGZK06] are also appliable here due to the similarities of the two proposed estimation
techniques. In our case, we also observed higher data likelihoods for BRF estimation with
respect to RF estimation, but the translation quality results were worse.

According to the presented results, we have empirically demonstrated that BRF estima-
tion can be efficiently used to estimate phrase models from large corpora. Unfortunately,
the proposed estimation technique did not allow us to improve the results with respect to the
standard estimation technique. In spite of this, we think that the acceptable time cost of BRF
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Table 5.12: Comparison of translation quality (measured according to BLEU) using
RF and BRF estimation when translating from English to Spanish with the EuTrans-I,
Xerox and Europarl corpora. 95% confidence intervals are shown.

Estimation EuTrans-I Xerox Europarl
RF 93.3±0.4 60.4±2.5 29.2±0.8
BRF 93.2±0.4 60.2±2.5 28.7±0.8

estimation makes it interesting as a starting point to implement more sophisticated estimation
techniques, as was explained in section3.3.4.

5.6 Efficient Decoding with Large Phrase-Based Models

To evaluate the performance of the decoding technique for large phrase-based models de-
scribed in section4.3, we carried out a series of experiments using the Europarl corpus. For
this purpose, we have estimated a phrase model imposing a maximum phrase size of7 words.

The access to the model parameters during the decoding process can be viewed as a
two-stage process that is repeated for each sentence to be translated. First, the target phrase
translations for each phrase of the source sentence are retrieved. Second, the translation
probabilities for the bilingual pairs are accessed.

The efficiency of the cache-inspired proposed architecturedepends on the number of disk
accesses (or cache misses) occurred during the first stage ofthe translation process of each
sentence. Once the first stage of the translation has concluded, no more disk accesses will be
necessary since all the required entries of the model will bestored in the main memory. The
number of cache misses allows us to compute the rate of cache misses as the number of cache
misses divided by the total number of accesses to the model during the whole translation
process. In order to determine the efficiency of the proposedarchitecture it is also interesting
to measure the time cost per translation and the time cost permodel query, which are closely
related to the rate of cache-misses.

Table 5.13 shows the time in seconds required to retrieve the translations for all the
phrases that compose the Spanish-English Europarl test setfor different values of theα pa-
rameter described in section4.3.1. All the experiments presented in this section have been
executed on a PC with a 2.60 Ghz Intel Pentium 4 processor with2GBytes of memory. The
table also shows the number of phrase pairs stored in memory,the number of disk accesses
and the time overhead caused by these accesses. As can be observed, the retrieval of the trans-
lations from disk introduces significant overhead; however, this overhead can be reduced by
increasing the value of theα parameter. It is worth noticing that a great decrease in the rate
of cache misses can be achieved for small values ofα.

In order to quantify the total locating time, we have translated the Spanish-English Eu-
roparl test set by means of a decoding algorithm. Again, suchdecoding algorithm was in-
stantiated following the SMT system configuration given in section5.4.1. Since translation
quality was not important in our experiments and the MERT algorithm is time consuming,
we used default values for the weights of the log-linear combination.
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Table 5.13: Number of phrases, disk accesses, total time (in secs), and disk overhead
required to retrieve the translations for the phrases of the Spanish-English Europarl test
set, ranging over the value ofα.

Phrases DiskAccesses Time DiskOvh
α = 100 (Baseline) 31 227 305 0 / 0.0% 8.6 0
α = 0 0 559 336 / 100.0% 651.2 649.7
α = 1 312 244 462 277 / 82.6% 633.7 625.1
α = 10 3 122 708 370 419 / 66.2% 545.6 535.4
α = 20 6 245 443 349 727 / 62.5% 525.7 515.4
α = 40 12 490 908 288 282 / 51.5% 368.8 358.2
α = 60 18 736 374 219 763 / 39.2% 272.4 262.3
α = 80 24 981 839 146 141 / 26.1% 175.2 170.2
α = 99 30 915 031 71 885 / 12.8% 96.4 86.8

In the experiment, cache models withα equal to100 (our baseline) and withα equal to
10 were used. Table5.14shows the number of queries to the model, the percentage of cache
misses, the total locating time, the locating time per sentence, the locating time per query and
the translation quality measured in terms of BLEU.

As can be observed, the proposed system needs 0.2 seconds to translate a sentence (five
translated sentences per second). Although the time requirements are higher than those of
the baseline system, we think that they are acceptable for regular translator users. In addi-
tion to this, it could be interesting to compare the time costper query for the two systems.
The latency of modern hard drives is measured in milliseconds, whereas the latency of main
memory is measured in microseconds or tenths of microseconds [HP03]. As it is shown, the
low rate of cache misses makes possible that the average timecost per query of our system
becomes close to the latency of main memory.

It should be noted that the reported results corresponds to amonotonic search algorithm.
If non-monotonic search is performed, then even better results can be expected, since the
number of possible phrase translations to be retrieved for each source sentence remains the
same while the number of queries to the model during the translation significantly increases.
This increase of model queries is due to the greater complexity of the non-monotonic expan-
sion algorithm with respect to that of the monotonic one (seesections4.2.2and4.2.3).

Regarding the space requirements, the proposed system onlyneeds one tenth of the mem-
ory required by the baseline system to translate the test corpus.

5.7 Phrase-Level Alignment Generation

We carried out experiments to test the phrase-level alignment generation techniques described
in section4.4. The experiments consisted in obtaining phrase-to-phrasealignments between
pairs of sentences following a set of different smoothing techniques. The test set was taken
from the shared tasks in word alignments developed in HLT/NAACL 2003 [MP03]. This
shared task involved four different language pairs, but we only used English-French in our
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Table 5.14: Number of queries, % of cache misses, total, per sentence and per query
locating time (in secs.) required by all model queries when translating the Spanish-
English Europarl test set (α = 100 constitutes the baseline system). A breadth-first
multiple-stack algorithm was used to generate the translations. Such algorithmimple-
mented monotonic search. Default log-linear weights were used.

Queries %CMisses Time Time/sent Time/query BLEU
α = 100 227 694 848 0 94.6 0.03 4.1e-07 26.8
α = 10 227 694 848 0.16 636.4 0.2 2.8e-06 26.8

experiments. A subset of the Canadian Hansards corpus was used in the English-French task.
The exact details of the corpus used in the experimentation were described in section1.10.3.

5.7.1 Aligner Configuration

The results were obtained by means of a breadth-first multiple-stack algorithm. Such al-
gorithm used non-monotonic search and the mapping functiongiven by Equation (4.11) to
assign hypotheses to stacks. Inverse and direct standard phrase-based models generated by
means of the THOT toolkit were used to implementh1 andh2. With respect to the probability
distribution used to model feature functionsh3 (target phrase length model) andh4 (source
phrase length model), we show the results corresponding to the use of a uniform distribution
for h3 and a geometric distribution forh4, since such choices led to better results. As was
mentioned in section6.2.2, the use of a uniform distribution forh3 penalises the length of
the segmentation and the use of a geometric distribution forh4 makes it possible to establish
a relationship between the length of source and target phrases (the use of a Poisson distribu-
tion also worked well). Finally, the distortion model,h5, was implemented by means of a
geometric distribution.

5.7.2 Assessment Criteria

We were interested in evaluating the quality of the phrase-to-phrase alignments obtained with
the different phrase alignment smoothing techniques that we proposed. Unfortunately, there
does not exist a gold standard for phrase alignments, so we needed to refine the obtained
phrase alignments to word alignments in order to compare them with other existing word
alignment techniques.

Taking these considerations into account, we proceeded as follows: Given a pair of sen-
tences to be aligned, we first aligned them at phrase level, obtaining a phrase-to-phrase align-
ment. Afterwards, we obtained a word-to-word IBM1 alignment for each pair of aligned
phrases. Finally, these “intra-phrase” word alignments were joined, resulting in a word level
alignment for the whole sentence. We could thus make a fair comparison of the proposed
smoothing techniques with the ones presented in the HLT/NAACL 2003 shared task.

To evaluate the quality of the obtained final alignments, different measures were taken
into account: precision, recall, F-measure, and alignmenterror rate. Given an alignmentA
and a reference alignmentG (bothA andG can be split into two subsetsAS ,AP andGS ,GP ,
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respectively representingSureandProbablealignments) precision (PS ,PP ), recall (RS ,RP ),
F-measure (FS ,FP ) and alignment error rate (AER) were computed (see section1.9.2for a
detailed description of these measures).

The above described evaluation measures were applied to twodifferent sets of evaluation
depending on whether the alignments with the null word were removed or not (see [MP03]
for more details):

• NULL alignments: given a word alignmentaJ1 for a pair of sentences(fJ
1 , e

I
1), if a

word fj (j ∈ {1 . . . J}) is not aligned with anyei (i ∈ {1 . . . I}), or viceversa, that
word is aligned with the null word.

• NO-NULL alignments: null alignments are removed, from the test set and from the
obtained alignments.

5.7.3 Alignment Quality Results

In Table5.15, the alignment quality results using different phrase-to-phrase alignment smooth-
ing techniques are presented, for NO-NULL and NULL alignments. It is worth mentioning
that the figures forSurealignments are identical for NO-NULL and NULL alignments. In the
table the first row shows the baseline, which consists of the results obtained using a maximum
likelihood estimation (ML) without smoothing. The rest of the rows corresponds to differ-
ent estimation techniques combined with linear interpolation (LI), backoff (BO) or log-linear
interpolation (LL).

For the NO-NULL alignment experiment, significant improvements in all alignment qual-
ity measures were obtained for all the smoothing techniquescompared with the baseline. The
baseline system results were worse due to the great number oftimes in which the segmenta-
tion of a sentence pair could not be completed due to coverageproblems (in our experiments,
86.5% of the test pairs presented this problem); in such situations, the baseline system aligned
all the source words of the source sentence with all the target words of the target sentence.
Finally, it is worth pointing out that the use of the LEX distribution produced improvements
in the alignment quality with respect to those situations inwhich such distribution was not
used. These better results are obtained due to improved assignment of probabilities to un-
seen events. In addition to this, linear interpolation and backing-off obtained better results
than log-linear interpolation. This is precisely the expected behaviour, as was explained in
section4.4.2. In addition to this, we observed that ML, GT and SD estimation worked better
than AD and KN estimation in some cases, e.g. when those estimators were combined with
the LEX distribution via linear interpolation. More research is needed to determine the exact
cause of the observed differences.

It is also worth mentioning that despite the fact that the phrase alignment techniques
proposed here are not specifically designed to obtain word alignments, all the results are
competitive with those presented in [MP03]. In the table, the best results for each column are
highlighted showing that GT+LEXBO obtained the best results.

Regarding the results for the NULL alignment experiment, there were small relative im-
provements in 9 out of 16 smoothing techniques compared withthe baseline. The differences
between these results and those for NO-NULL alignment experiment are due to the fact that
the baseline generated a lot of alignments in which all wordswere aligned with all words due
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Table 5.15: Comparative alignment quality results (in %) using different smooth-
ing techniques for NO-NULL and NULL alignments. A breadth-first multiple-stack
algorithm was used to generate the alignments. Such algorithm implemented non-
monotonic search. Default log-linear weights were used. Best results are shown in
bold.

NO-NULL & NULL NO-NULL NULL
Smooth. PS RS FS PP RP FP AER PP RP FP AER

ML 64.4 76.6 70.0 77.5 28.3 41.5 20.0 55.1 29.4 38.3 36.4
GT 71.6 79.6 75.4 87.8 27.0 41.3 14.8 52.4 28.8 37.2 39.1
AD 69.1 77.6 73.1 84.0 26.6 40.4 17.1 51.1 28.1 36.3 40.2
KN 68.6 77.9 74.0 83.7 26.7 40.4 17.2 51.5 28.2 36.4 39.9
SD 71.7 79.1 75.2 87.7 27.0 41.2 15.1 52.3 28.8 37.1 39.4
ML+LEX LI 72.2 86.4 78.0 91.3 29.9 45.1 9.7 59.5 31.5 41.2 31.8
GT+LEXLI 71.0 86.3 77.9 91.2 29.9 45.0 9.8 59.5 31.5 41.2 31.9
AD+LEXLI 71.5 81.5 76.2 89.4 27.9 42.6 12.9 54.4 29.6 38.4 37.0
KN+LEXLI 71.6 82.1 76.4 89.5 28.1 42.9 12.5 54.9 29.8 38.6 36.4
SD+LEXLI 71.0 86.1 77.8 91.2 29.9 45.0 9.9 59.4 31.5 41.1 32.0
GT+LEXBO 71.0 86.4 77.9 91.2 30.0 45.2 9.6 59.8 31.7 41.4 31.5
SD+LEXBO 71.1 86.3 78.0 91.1 30.0 45.0 9.8 59.5 31.5 41.2 31.8
ML+LEX LL 64.4 76.6 70.0 77.4 28.3 41.5 20.0 55.1 29.4 38.3 36.4
GT+LEXLL 71.3 86.8 78.3 90.3 29.8 44.8 10.1 59.2 31.4 41.0 31.9
AD+LEXLL 67.8 80.9 73.8 82.7 28.4 42.2 16.2 55.5 29.7 38.7 35.7
KN+LEXLL 68.0 81.4 74.1 82.7 28.5 42.4 16.0 55.8 29.8 38.8 35.4
SD+LEXLL 71.2 86.7 78.2 90.3 29.8 44.8 10.0 59.1 31.3 41.0 32.0

to coverage problems. In those situations, the IBM 1 alignment model tended to align less
words with the null word than when it was applied over intra-phrase alignments derived from
successful segmentations of sentence pairs. If we compare columnPP of both experiments,
a significant reduction in terms of precision is obtained in the case of the NULL alignment
experiment. This makes our results less competitive than those presented in [MP03] for the
NULL alignment experiment.

Finally, we also carried out alignment quality experimentsfor the GT+LEXBO smoothing
technique using MERT to tune the weights of the log-linear combination. The objective
function to be minimised via MERT was the AER measure for boththe NULL and the NO-
NULL alignments (specifically, we computed the sum of the two). The results are shown in
Table5.16. As can be seen in the table, the tuning of the log-linear weights produced very
similar results than those obtained by the system with default weights. We think that this is
because the small size of the development set of the Hansardscorpus (it is composed of only
37 sentence pairs according to the corpus statistics presented in section1.10.3).

Table 5.16: Alignment quality results (in %) using GT+LEXBO smoothing for NO-
NULL and NULL alignments. A breadth-first multiple-stack algorithm was used to
generate the alignments. The search algorithm implemented non-monotonicsearch.
Log-linear weights were tuned using MERT.

NO-NULL & NULL NO-NULL NULL
Smooth. PS RS FS PP RP FP AER PP RP FP AER

GT+LEXBO 71.6 86.3 78.2 91.7 29.8 45.0 9.5 59.2 31.5 41.1 32.1

DOM-DSIC-UPV 123



Chapter 5. PB-SMT Evaluation

5.8 Summary

In this chapter we have tested the different training and decoding techniques for SMT that
were proposed in chapters3 and4.

The techniques to train phrase-based models from very largecorpora described in sec-
tion 3.4were tested by means of a series of experiments. The results show that the proposed
techniques can be used to train phrase models for corpora of an arbitrary size without intro-
ducing a significant time overhead.

We carried out experiments to compare the performance of thebest-first search algorithm
for SMT described in section4.2.2with that of the breadth-first search algorithm presented
in section4.2.5. The obtained results show that the time cost of best-first search is lower
when translating simple corpora. Moreover, best-first search obtained higher average score
per sentence for a given test corpus than breadth-first search due to its less aggressive pruning
of the search space. By contrast, best-first search was significantly more time consuming than
breadth-first search when translating complex corpora.

Additionally, we evaluated the performance of the generalised best- and breadth-first
multiple-stack algorithms described in sections4.2.6 and 4.2.7, respectively. Generalised
best-first search algorithms did not outperform the conventional best-first search algorithm.
One possible reason for these results may be that the proposed algorithms store hypothe-
ses with different number of aligned words in the same stack.By contrast, empirical results
showed that generalised breadth-first search algorithms outperform conventional breadth-first
search algorithms in terms of average score and time cost persentence.

We compared the performance in terms of translation qualityof the Moses decoder with
that of a generalised breadth-first search decoder. The obtained results were similar when
translating the test sets of the Xerox and EU corpora. By contrast, Moses outperformed the
results obtained by our proposed system when translating the Europarl corpus. Nevertheless,
if the lexical log-linear components of the Moses decoder were removed (our decoder does
not include them), then we did not observe significant differences between the two decoders.

We also performed experiments to test our alternative BRF estimation technique for
phrase-based models described in section3.3. We empirically demonstrated by means of
a series of experiments that the time cost of the estimation is affordable for corpora of differ-
ent complexity. Additionally, translation quality experiments were obtained to compare BRF
estimation with the standard estimation technique. Our proposed technique slightly underper-
formed the standard technique, but the differences were notstatistically significant. Despite
this, BRF estimation obtained higher likelihood values than the standard estimation technique
for corpora of different complexity. One possible explanation for the observed results may
be that our estimation technique overfits the training data.

Additionally, we carried out experiments to test the techniques to efficiently handle the
phrase-based model parameters estimated from very large corpora proposed in section4.3.
Such techniques are based on a classic concept of computer architecture: cache memory. The
results of the experiments show that the proposed cache memory architecture has a extremely
low rate of cache misses, allowing a very efficient access to phrase-based model parameters.

Finally, we performed experiments to test the phrase-basedalignment generation tech-
niques proposed in section4.4. Experimental results for a well-known shared task on word
alignment evaluation have been reported. The results show the great impact of the smoothing
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techniques on alignment quality. Such smoothing techniques consisted of different statistical
phrase-based model estimators and a lexical distribution which can be combined by means of
backoff techniques, linear interpolation or log-linear interpolation. As we expected, backing-
off and linear interpolation worked better than log-linearinterpolation.
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CHAPTER 6

I NTERACTIVE PHRASE-BASED

M ACHINE TRANSLATION

6.1 Introduction

As was already introduced in section1.8, the IMT framework constitutes an alternative to
fully automatic MT systems in which the MT system and its usercollaborate to generate cor-
rect translations. These correct translations are generated in a series of interactions between
the IMT system and its user. Specifically, at each interaction of the IMT process, the IMT
system generates a translation of the source sentence whichcan be partially or completely
accepted and corrected by the user of the IMT system. Each partially corrected text segment,
or prefix, is then used by the SMT system as additional information to generate better trans-
lation suggestions. An example of a typical IMT session was shown in Figure1.3. For the
reader’s convenience, we briefly present again the statistical formalisation of IMT (the full
details can be found in section1.8).

In the IMT scenario we have to find the suffix,es, that best completes the user validated
prefix,ep (Equation (1.34)):

ês = argmax
es

{
p(es | f

J
1 , ep)

}
(6.1)

Applying the Bayes rule, we arrive at the following expression (Equation (1.35)):

ês = argmax
es

{
p(es | ep) · p(f

J
1 | ep, es)

}
(6.2)

where the termp(ep) has been dropped since it does not depend ones.
Due to the similarities between the MT and the IMT frameworks, we only need to appro-

priately modify the search procedures of regular SMT systems to obtain the suffixes required
in IMT (note thatepes ≡ eI1).

One common implementation for IMT systems is based on the generation of word
graphs (word graphs were introduced in section4.2.10). During the interactive translation
process of a given source sentence, the system makes use of the word graph generated for
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that sentence in order to complete the prefixes accepted by the human translator. Specifically,
the system finds the best path in the word graph which is compatible with the user prefix.

The main advantages of word graph-based IMT systems is theirefficiency in terms of the
time cost per each interaction. This is due to the fact that the word graph is generated only
once at the beginning of the interactive translation process of a given source sentence, and the
suffixes required in IMT can be obtained by incrementally processing this word graph. The
use of word graphs generated at the beginning of the IMT process is also the main limitation
of this kind of IMT systems, since the word graph does not get automatically adapted to the
new information provided by the user prefix.

Several IMT systems have been proposed in the literature. For example, in [FLL02] a
maximum entropy version of IBM 2 model is used as word-based translation model. The
alignment template approach to IMT is proposed in [OZN03]. In that work, a pre-computed
word graph is used in order to achieve fast response times. This approach is compared with
the use of a direct translation modelling [BHV+05]. An IMT approach based on stochastic
finite-state transducers is presented in [CVC+04]. In that work, word graphs are also used to
resolve real-time constraints. A phrase-based approach ispresented in [TC06], in contrast to
other existing techniques, their proposal does not use wordgraphs.

Recently, in [BBC+09] the IMT approach to CAT is proposed, establishing the state-of-
the-art in this discipline. In this work the last three approaches mentioned above are com-
pared.

A common problem in IMT arises when the user sets a prefix whichcannot be explained
by the statistical models. Under these circumstances, the suffix cannot be appropriately gen-
erated, since the system is unable to generate translationsthat are compatible with the user
prefix. In those IMT systems that use word graphs to generate the suffixes, the common
procedure to face this problem is to perform a tolerant search in the word graph. This toler-
ant search uses the well known concept of Levenshtein distance in order to obtain the most
similar string for the given prefix (see [OZN03] for more details).

In this chapter, two novel phrase-based IMT techniques are presented. First, an IMT tech-
nique based on the generation of partial phrase-based alignments is proposed in section6.2.
This technique is inspired by the techniques to generate phrase-based alignments presented
in the previous chapter and does not rely on word graphs to generate the suffixes required
in IMT. Second, an alternative IMT technique based on stochastic error-correction models is
proposed in section6.3. This technique relies on word graphs or N-best lists to generate the
suffixes required in IMT. To end the chapter, a brief summary of it is provided in section6.4.

To complement the above mentioned content, AppendixC describes the main features of
an IMT prototype that have been implemented using the techniques proposed in this chapter.

6.2 IMT based on Partial Phrase-Based Alignments

We present a new IMT technique which is based on the generation of partial alignmentsat
phrase-level. In the proposed IMT technique, the suffix is generated following a two-stage
process: first the prefixep is aligned with only a part of the source sentencefJ

1 , and second,
the unaligned portion offJ

1 (if any) is translated, giving the desired suffixes. The generation
of such partial alignments is driven by statistical phrase-based models. The problem of gener-
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ating the suffix in IMT using partial phrase-based alignments is very similar to the problem of
finding the best alignment between a pair of sentences described in section4.4. Specifically,
the generation of the suffixes requires the definition of a specific search algorithm as well
as the application of smoothing techniques over the phrase models to appropriately assign
probabilities to unseen events.

The proposed IMT system is similar to those presented in [BHV+05] and [TC06]. These
two techniques do not use word graphs to generate the suffixesrequired in IMT, as well as our
proposal. The key difference between the so-calledinteractive generationstrategy proposed
in [BHV+05] and the technique proposed here is that they use error-correcting techniques
instead of smoothing techniques to assign probabilities tounseen events. Specifically, the
error correcting costs are introduced as an additional weight in their log-linear model. We
think that our approach is better motivated from a theoretical point of view, as it has been
deeply studied and demonstrated in the field of language modelling.

The work presented in [TC06] is based on filtering the phrase table to obtain translations
that are compatible with the user prefix. Since this approachseems too restrictive (phrase
models always present coverage problems in complex tasks),we guess that also any sort of
smoothing is taken into account, but as far as we know the exact technique that is used is not
explained. Because of this, we think that the work presentedin [TC06] can benefit from the
techniques presented here.

The remaining part of this section is structured as follows:first, the specific search algo-
rithm to be used in the generation of the suffixes required in IMT is described in section6.2.1;
and second, the scoring function used to assign scores to partial hypotheses is described in
section6.2.2.

6.2.1 Search Algorithm

Regarding the search algorithm to be used, we propose the useof a modified version of the
generalised branch and bound search algorithm for PB-SMT described in section4.2. Except
for the scoring function (which will be studied in section6.2.2), only the expansion algorithm
has to be appropriately modified to allow the generation of partial phrase-based alignments.

The expansion process consists of appending target phrasesas translation of previously
unaligned source phrases of a given hypothesis. Let us suppose that we are translating the
sentencefJ

1 ≡ “Para ver la lista de recursos”, and that the user has validated the prefix
ep ≡ “To view a” (interaction1 of the IMT session given in Figure1.3). Figure6.1shows an
example of the results obtained by the expansion algorithm that we propose for two hypothe-
sesh1 andh2.

Hypothesish1 has aligned the source phrase “Para ver la” (aligned phrasesare noted
with underlined words in Figure6.1), appending the target phrase “To view a” to the final
translation. Since forh1, the user prefixep has already been generated, the expansion process
works in the same way as the one executed in a regular translator. Let us suppose that we are
aligning the source phrasẽf ≡“lista de recursos” given by the source positionsu = (4, 6).
The new hypothesesh3 andh4 are generated by appending target phrasesẽ from the setT4,6
of translations forf6

4 contained in the phrase table.

DOM-DSIC-UPV 131



Chapter 6. Interactive Phrase-Based Machine Translation

. . .

. . .

. . .

ep: To view a

h1

h2

h3

h4

h5

h6

h7

h8

u = (4, 6)

u = . . .

u = (2, 6)

u = (2, 2)

u = . . .

fJ
1 :Para ver lalista de recursos
eI1:To view a

fJ
1 :Para ver lalista de recursos
eI1:To view alist of resources

︸ ︷︷ ︸

ẽ ∈ T
f̃

fJ
1 :Para ver lalista de recursos
eI1:To view alisting of resources

︸ ︷︷ ︸

ẽ ∈ T
f̃

fJ
1 :Paraver la lista de recursos
eI1:To

fJ
1 :Paraver la lista de recursos
eI1:To view a

︸ ︷︷ ︸

ẽ ≡ er

fJ
1 :Paraver la lista de recursos
eI1:To view a list of resources

︸ ︷︷ ︸

ẽ ∈ T
f̃
, is prefix(er, ẽ)

fJ
1 :Paraver la lista de recursos
eI1:To view

︸ ︷︷ ︸

ẽ ∈ Per − {er}

fJ
1 :Paraver la lista de recursos
eI1:To view a

︸ ︷︷ ︸

ẽ ≡ er

Figure 6.1: Example of the expansion of two hypothesesh1 andh2 givenfJ
1 ≡ “Para

ver la lista de recursos” and the user prefixep ≡ “To view a”.
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Regarding the hypothesish2, it has aligned the source phrase “Para”, appending the target
phrase “To”. In this case, the prefixep has not been completely generated. Leter ≡ “view
a” be the remaining words that are to be appended toh2 to complete the user prefix. Under
these circumstances, we have to take into account if the subsequent hypothesis extension
yields a complete hypothesis or not. For example, let us suppose that we align the phrase
positionsu = (2, 6) (f̃ ≡ “ver la lista de recursos”). Since this hypothesis extension produce
a complete hypothesis, we have to ensure that the whole prefixep is generated. For this
purpose, we appender to h2, resulting in the hypothesish5. In addition to this, we can
append phrases̃e contained in the setT2,6 having er as prefix (if any). This allows the
generation of hypotheses likeh6, that takes advantage of the information contained in the
phrase table.

In contrast, if the next extension ofh2 do not produce a complete hypothesis, we can also
append strings from the setPer

, of prefixes ofer, to the newly generated hypotheses, allow-
ing the translation system to complete the whole prefixep in subsequent expansion processes.
For example, let us suppose that we align the phrase positionsu = (2, 2) (f̃ ≡ “ver”). In this
case we can append the phrase “view” which is a subprefix ofer, resulting in the hypothesis
h7. In addition to this, we can also appender itself, resulting in the hypothesish8. Finally,
appending phrases fromT2,2 havinger as prefix (if any) can also be considered, although
this situation has not been depicted in Figure6.1.

Algorithm 6.1shows the expansion algorithm that we propose for its application in IMT.
The algorithm is a formalisation of the ideas depicted in Figure6.1. This expansion algorithm
permits phrase reorderings, but it can be easily modified to only obtain monotonic alignments.

The time cost of the IMT expansion algorithm can be reduced bythe introduction of
pruning techniques. Such pruning techniques include hypotheses recombination, stack length
limitation and restrictions on the maximum number of targetphrases that can be linked to an
unaligned source phrase during the expansion process. Specifically, in those cases where
ep has not already been generated, only a subset of the strings contained in the setPer

are
considered as candidates for the expansion process. One possible criterion to choose the
substrings is based on the length of the phrasef̃ to be translated determined byu. Only
those substrings with lengths similar to the length off̃ are considered. In addition, the set of
expanded hypotheses that is returned by the algorithm can besorted by score, keeping only
the best ones.

Regarding the complexity of the search algorithm, it depends on the selected configura-
tion of the generalised branch-and-bound algorithm. Let usassume that a breadth-first multi-
ple stack algorithm withJ stacks is used (see section4.2.5). Under these circumstances, the
search algorithm has to expandLs hypotheses fromJ stacks, whereLs is the maximum stack
length. The complexity of theimt expand algorithm is inO(J2 ·max{I, T}), whereI is
the length of the source sentence andT is the maximum number of phrase translations for a
source phrase. Therefore, the complexity of the search algorithm is inO(J3 ·Ls ·max{I, T}).

6.2.2 Scoring Function

The scoring function used in the branch-and-bound search algorithm for PB-SMT described
in section4.2can also be used here. This is due to the fact that the search problem in IMT is
equivalent to the problem of finding the best translation of the source sentencefJ

1 where the
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input : ep (user validated prefix),h (hypothesis to be expanded)
Tj1,j2 (set of translations forf j2

j1
in phrase table)

output : H (set of expanded hypotheses)
auxiliar : SPh (set of unaligned source positions ofh),

PP (SPh) (set of all possible unaligned source phrase positions ofh),
er (remaining prefix words for a given hypothesis),
Per (set of prefixes ofer)

begin1

er =get remaining prefix (h,ep);2

if |er| 6= 0 then3

forall (j1, j2) ∈ PP (SPh) do4

if SPh − {j1, ..., j2} 6= ∅ then5

forall ẽ ∈ Per − {er} do6

H := H ∪ {append( h, (j1, j2), ẽ) }7

H := H ∪ {append( h, (j1, j2), er) }8

forall ẽ ∈ Tj1,j2 do9

if is prefix( er,ẽ) and er 6= ẽ then10

H := H ∪ {append( h, (j1, j2), ẽ) }11

else12

forall (j1, j2) ∈ PP (SPh) do13

forall ẽ ∈ Tj1,j2 do14

H := H ∪ {append( h, (j1, j2), ẽ) }15

end16

Algorithm 6.1: Pseudocode for theimt expand algorithm.

target translationseI1 are restricted to containep as prefix (see section1.8). Since the phrase
models used during the translation process may not be able toexplain the prefix given by
the user (i.e. the phrase models may present coverage problems), smoothing techniques are
needed to robustly generate the suffixes required in IMT. Thesmoothing techniques used in
the generation of phrase-based alignments that were described in section4.4.2can be applied
here without any modification.

As was stated in section4.2, the branch-and-bound search algorithm for PB-SMT can
be straightforwardly extended for its use with the log-linear model defined in section3.5.3.
We will use this log-linear model to assign scores to hypotheses in our IMT system based on
partial phrase-based alignments.

6.3 IMT based on Stochastic Error-Correction Models

As has been already mentioned, a common problem in IMT ariseswhen the user sets a prefix
which cannot be explained by the statistical models. This problem requires the introduction
of specific techniques in the IMT systems to guarantee that the suffixes can be generated.
The vast majority of the IMT systems described in the literature (with the exception of the
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work presented in [TC06]) apply error-correcting techniques based on the concept of edit
distance to solve the coverage problems. These error-correcting techniques, although they
are not included in the statistical formulation of the IMT process, are crucial to ensure that
the suffixes completing the prefixes given by the user can be generated.

In this section an alternative formalisation of the IMT framework which includes stochas-
tic error-correction models in its statistical formulation is proposed. The remaining part of
this section is organised as follows: first, probabilistic finite-state machines (PFSMs) are
adapted for its use as stochastic error-correction models in section6.3.1. Second, the details
of the proposed alternative formalisation of the IMT framework are described in section6.3.2.
Finally, the proposed formalisation of IMT is generalised for its use in other pattern recogni-
tion applications in section6.3.3.

6.3.1 PFSMs as Stochastic Error-Correction Models

To the best of our knowledge, the first stochastic interpretation of edit distance was described
in [BJ75]. In that work, PFSMs were used to model the transformationsproduced by a noisy
channel in a given text string.

PFSMs

A PFSM (see [VTdlH+05a, VTdlH+05b] for a detailed description) is a tupleA =
〈QA,Σ, δA, IA, FA, PA〉, where:

• QA is a finite set of states;

• Σ is the alphabet;

• δA ⊆ QA × Σ ∪ {λ} ×QA is a set of transitions;

• IA : QA → R
+ (initial-state probabilities);

• PA : δA → R
+ (transition probabilities);

• FA : QA → R
+ (final-state probabilities).

IA, PA andFA are functions such that:
∑

q∈QA

IA(q) = 1

and
∀q ∈ QA, FA(q) +

∑

a∈Σ,q′∈QA

PA(q, a, q
′) = 1

In what follows, we will useq without subindex to denote a generic state ofQ, the specific
states ofQ will be denoted asq0, q1..., q|Q|−1, and a sequence of states of lengthj will be
denoted as(s0, s1, ..., sj) wheresi ∈ Q for 1 ≤ i ≤ j.

PFSMs are stochastic machines that generate probabilitiesfor a set of finite strings con-
tained inΣ∗. The generation of a string is a process that has two steps:
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• Initialisation: Choose, with respect to a probability distribution I, one stateq0 ∈ Q as
the initial state. Defineq0 as the current state.

• Generation: Letq be the current state. Decide whether to stop, with probability F (q),
or to produce a transition(q, a, q′) with probabilityP (q, a, q′), wherea ∈ Σ∪{λ} and
q ∈ Q (λ is the empty string). Outputa and set the current state toq′.

One relevant question to be solved regarding PFSMs is how to calculate the probability
assigned by a PFSM,A, to a given stringx ∈ Σ∗. To deal with this problem, letθ =
(s0, x

′
1, s1), (s1, x

′
2, s2), ..., (sk−1, x

′
k, sk) be apathfor x in A; i.e. a sequence of transitions

so thatx = x′
1x

′
2...x

′
k (note that, in general,|x| ≤ k because some symbolsx′

j may beλ).
The probability assigned to the pathθ is given by the following expression:

pA(θ) = IA(s0) ·





k∏

j=1

PA(sj−1, x
′
j , sj)



 · FA(sk) (6.3)

In general, a given stringx can be generated byA through multiple valid paths. Let
ΘA(x) be the set of all the valid paths forx in A. The probability of generatingx with A is
given by:

pA(x) =
∑

θ∈ΘA(x)

pA(θ) (6.4)

If
∑

x pA(x) = 1, thenA defines a probability distributionD in Σ∗. This is guaranteed
if A is consistent. A PFSMA is consistent if all its states appears in at least one valid path of
ΘA [VTdlH+05a].

We will finish this brief introduction on PFSMs describing the concept of best patĥθ for
a stringx in a given PFSMA. The best path is given by the following expression:

θ̂ = argmax
θ∈ΘA(x)

{pA(θ)} (6.5)

PFSMs as Error-Correction Models

PFSMs can be used as stochastic error-correction models. Stochastic error-correction models
based on the well-known concept of edit distance [Lev66] are implemented by means of PF-
SMs in [BJ75]. Specifically, these PFSMs are built by concatenating error-correction models
based on PFSMs for individual symbols.

Figure6.2shows an example of PFSM that works as an stochastic error-correction model
for a given symbola contained in the alphabetΣ. We will note such a PFSM asAa. As can
be observed, the figure shows transitions for the different edit distance operations, namely,
insertions, substitutions and deletions. The edge associated to the emission ofλ (the empty
string) is represented with a dashed line.

Figure6.3shows the result of concatenating three PFSMs at symbol-level, so as to obtain
an stochastic error-correction model for a text stringx ∈ Σ∗, wherex = x1x2x3. The
resulting PFSM can be minimised (see [BJ75]), giving the PFSM that is shown in Figure6.4.
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q0 q1

Insertion
{Σ} ;PAa (q0, {Σ}, q0) Substitution

{Σ} ;PAa (q0, {Σ}, q1)

Deletion

λ ;PAa (q0, λ, q1)

Figure 6.2: Error-correction model for symbola ∈ Σ, Aa.

Ax1
Ax2 Ax3

q0 q1 q2 q3 q4 q5

Figure 6.3: Error-correction model for stringx = x1x2x3, Ax. The model has been
obtained by concatenatingAx1 , Ax2 andAx3 .

Parameter Estimation

The problem of estimating the parameters of stochastic error-correction models based on the
concept of edit distance has been studied in [RY97], where the use of the EM algorithm is
proposed. Due to the great simplicity of the parameters to beestimated, one alternative to the
application of the EM algorithm consists in the use of the so-calledad-hocstochastic error-
correction models [MDM91]. This technique was initially proposed for its use in the field
of optical character recognition (OCR) and consists in reserving a probability mass for the
substitution of one symbol by itself and distributing the rest of the probability mass among
the different edit operations between strings.

We also propose the application of an ad-hoc stochastic error-correction model. One
possible way of defining it consists in assigning a fixed probability mass to the substitution
of one symbol by itselfp = 1− ǫ, and uniformly distributing the remaining probability mass
among the rest of possible transitions:

p′ =
ǫ

2|Σ|
(6.6)

where2|Σ| represents the number of transitions that have been defined for each state (with
the exception of the substitution of one symbol by itself).

Prepr

q0 q1 q2 q3

Figure 6.4: Reduced version ofAx.
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Alternatively, the model described above can be refined by assigning different probabili-
ties depending on the type of edit operation that is applied (insertion, substitution or deletion).
For this purpose, we introduce three factors,fi, fs andfd, that are used to assign weights
to the probabilities assigned to insertions, substitutions and deletions, respectively. Given
the value ofǫ and the values for the weighting factors, the auxiliary quantity c is defined as
follows:

c =
ǫ

(fi|Σ|) + (fs(|Σ| − 1)) + fd
(6.7)

The probabilities for the insertion, substitution and deletion operations:pi, ps andpd,
respectively, can be expressed in terms of the quantityc and the weighting factorsfi, fs and
fd:

pi = fi × c (6.8)

ps = fs × c (6.9)

pd = fd × c (6.10)

Once we have defined the task in which the stochastic error-correction models will be
applied, the values of the weighting factorsfi, fs andfd can be established by means of a
development data set and the MERT algorithm.

Finding the Best Sequence of Edit Operations

We will end this section about stochastic error-correctionmodels based on PFSMs discussing
some issues regarding the problem of finding the best sequence of edit operations for a given
string.

Given an error-correction model for the stringx ∈ Σ∗, Ax, and a string with errors,x′,
we will be interested in finding the best sequence of edit operations that are needed to change
x into x′. This problem is equivalent to the problem of finding the bestpath inAx. For this
purpose, the well-knownViterbi algorithm(see for example [VTdlH+05a] for more details)
can be used.

Additionally, the problem of finding the best sequence of edit operations has been stud-
ied in a more general setting, where a PFSM and a stochastic error-correction model are
given [AV98]. In such setting, the PFSM accounts for the set of differentstrings belonging to
a given language, while the error-correction model accounts for the typical variations that the
strings tend to exhibit with respect to their standard form as represented by the PFSM. Under
these circumstances, Amengual and Vidal [AV98] propose simple extensions of the Viterbi
algorithm that efficiently solve the problem of finding the best sequence of edit operations.

6.3.2 Alternative IMT Formalisation

We propose an alternative formalisation of the IMT paradigmin which the user prefix and
the target sentence constitute separated entities. This allows us to introduce stochastic error-
correction models in the statistical formulation of the IMTprocess.
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Translating with User Prefix

The starting point of our alternative IMT formalisation consists in solving the problem of
finding the sentenceeI1 in the target language that, at the same time, better explains the source
sentencefJ

1 and the prefix given by the userep. This problem can be formally stated as
follows:

êÎ1 = argmax
I,eI1

{Pr(eI1|f
J
1 , ep)} (6.11)

Using the Bayes rule we can write:

Pr(eI1|f
J
1 , ep) =

Pr(eI1) · Pr(fJ
1 , ep|e

I
1)

Pr(fJ
1 , ep)

Since the denominator here is independent ofeI1, the sentencêeÎ1 can be found by max-
imising the expressionPr(eI1)Pr(fJ

1 , ep|e
I
1). We arrive then at the following equation:

êÎ1 = argmax
I,eI1

{Pr(eI1) · Pr(fJ
1 , ep|e

I
1)} (6.12)

Now we make the following naive Bayes assumption: given the hypothesised target string
eI1, the stringsfJ

1 andep are considered statistically independent. Thus, we obtainthe fol-
lowing expression:

êÎ1 = argmax
I,eI1

{Pr(eI1) · Pr(fJ
1 |e

I
1) · Pr(ep|e

I
1)} (6.13)

In the previous equation the following terms can be found:

• Pr(eI1): measures the well-formedness ofeI1 as a sentence of the target language. This
distribution can be approximated by means of a statistical language model.

• Pr(fJ
1 |e

I
1): measures the appropriateness of the sentencefJ

1 as a possible translation
of eI1. This distribution can be approximated by means of a statistical translation model.

• Pr(ep|e
I
1): measures the compatibility ofeI1 with the user prefixep. This distribution

can be approximated by stochastic error-correction modelsthat are adequately modified
for its use in IMT.

It should be noted that the result of the maximisation given by Equation (6.13), êÎ1, may
not contain the prefixep given by the user, since every possible target sentenceeI1 is compat-
ible with the user prefix with a certain probability. Becauseof this, the problem defined by
Equation (6.13) is not equivalent to the problem of finding the best suffix in IMT.

To solve this problem, an additional assumption over the stochastic error-correction mod-
els is imposed. Specifically, they must be able to determine an alignmentbetween a part
of the target sentenceeI1 and the user prefixep. The set of unaligned words ofeI1, UeI1

, in
an appropriate order constitute the suffix required in IMT. To simplify things, we can also
assume that we monotonically align a prefix ofeI1 with ep. This implies that the reordering
problem is left to the language and translation models (i.e.the stochastic error-correction
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he reservado una habitación sencilla

I have made a reservation for

a single room

I have booked a single room

{a, single, room}

fJ
1

ep

êÎ1

UeI1

es

Figure 6.5: Example of how the IMT suffix is determined in our alternative IMT for-
malisation.

model is used to determine monotonic alignments between theuser prefix and a prefix of the
non-monotonic target translations of the source sentence). Under these circumstances, the
suffix required in IMT is also a suffix ofeI1.

The probability given by stochastic error-correction models can be expressed in terms of
a hidden alignment variable,p, as follows:

Pr(ep|e
I
1) =

∑

p

Pr(ep,p|e
I
1) (6.14)

According to Equation (6.14) and following a maximum-approximation, we can modify
the problem stated in Equation (6.13) so as to obtain not only the sentenceêÎ1, but also the
alignment variable,̂p, which maximises the probability:

(
êÎ1, p̂

)
= argmax

I,eI1,p

{Pr(eI1) · Pr(fJ
1 |e

I
1) · Pr(ep,p|e

I
1)} (6.15)

Figure6.5shows how the IMT suffix is determined in our alternative IMT formalisation.
The IMT system receives the source sentence,fJ

1 , and the user prefix,ep, as input, and

generates the best translationêÎ1 along with an alignment between a prefix ofeI1 andep. The
suffix es is obtained from the setUeI1

of words ofeI1 that are not aligned withep.
It is noteworthy that the IMT technique proposed here has onepoint in common with the

IMT technique based on partial phrase-based alignments described in section6.2. Specifi-
cally, both IMT techniques require finding alignments for the user prefix: the IMT technique
based on partial phrase-based alignments aligns the user prefix with the source sentence,
while the IMT technique based on stochastic error-correction models aligns the user prefix
with the target sentences generated as translation of the source sentence.

The stochastic error-correction models used in the proposed IMT formalisation can be
defined in many ways. In this thesis, error-correction models based on PFSMs will be used.
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. . .

. . .

e0 e1 e2 eI

Figure 6.6: Error-correction model based on PFSMs for IMT given the sentenceeI1:
BeI1

. The states of the PFSM are labelled with the words of the target sentenceeI1.

It is worthy of note that the stochastic error-correction models can be seen as explicit models
of the users of the IMT system.

Error-Correction Models based on PFSMs for IMT

Error-correction models based on PFSMs described in section 6.3.1require some modifica-
tions for its use in IMT, since we want to model the probability distributionPr(ep|e

I
1), where

ep is a prefix instead of a complete sentence.
As a starting point, a stochastic error-correction model based on PFSMs,AeI1

, is defined
(see Figure6.4for an example of this kind of stochastic error-correction models); whereAeI1
has been obtained as the concatenation of the error-correction models for each one of the
words ofeI1.

To allow this error-correction model to be used in the IMT framework, we only have to
introduce one simple modification inAeI1

. Specifically, we assume thatFA(q) is a non-null
fixed quantity for each possible stateq contained inQA. We will note the resulting PFSM as
BeI1

. Figure6.6shows how the error-correction model is defined, the states of the PFSM are

labelled with the words of the target sentenceeI1.
Let θ = (s0, x

′
1, s1), (s1, x

′
2, s2), ..., (sk−1, x

′
k, sk) be a valid path forep in BeI1

, where
si are states contained inQB

eI1

= {e0, ..., eI} andx′
i are words ofep or the empty stringλ.

Each transition of the path is associated to an insertion, a substitution or a deletion operation.
The pathθ determines a monotonic alignment between a prefix of the target sentenceeI1 and
the user prefixep. The alignment decisions depend on the edit operation that is applied:

• Insertions: correspond to transitions of the form(ei, x′, ei), wherex′ is a word ofep.
When these transitions are added toθ, the wordx′ of ep is not aligned with any word
of eI1.

• Substitutions: correspond to transitions of the form(ei, x′, ei+1), wherex′ is a word
of ep. These transitions align the wordei+1 of eI1 with the wordx′ of ep.

• Deletions: correspond to transitions of the form(ei, λ, ei+1). When these transitions
are added toθ, the wordei+1 of eI1 is aligned with the empty string.

The final statesk of the pathθ will be associated to the positioni of the last word ofeI1
which accounts for the user prefixep (this last word and the previous words will be aligned
with words ofep or with the empty string). Therefore, the suffixes required in IMT will be
determined byeIi+1.
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Among all the valid paths for the stringep in BeI1
, ΘB

eI1

(ep), we will be interested in that

of the maximum probabilitŷθ, where:

θ̂ = argmax
θ∈ΘB

eI1

(ep)

{pB
eI1

(θ)} (6.16)

Hence, the best patĥθ for ep in BeI1
not only allows us to approximate the probability

distributionPr(ep|e
I
1), but also to determine the part ofeI1 that constitutes the suffixes

required in IMT.
It is worth noticing that the error-correction model for IMTdefined here works at word

level, but it could have been defined to work at character level instead. A character-level
error-correction model would allow us to assign higher probabilities to the substitution of
one word by another similar word. This advantage would be obtained at the cost of a higher
time complexity. Alternatively, the proposed ad-hoc word-level error-correction model can
also be replaced by a more complex word-level model which defines specific substitution
probabilities.

Instantiation of the Alternative IMT Formalism

To instantiate our proposed alternative IMT formalism, themodels that approximate the prob-
ability distributions that are present in Equation6.15have to be appropriately chosen.Pr(eI1)
andPr(fJ

1 |e
I
1) can be approximated by a language model and a translation model, respec-

tively. Regarding the probability distributionPr(ep,p|e
I
1), it has to be approximated by an

error-correction model that is able to determine an alignment between the target sentenceeI1
and the user prefixep.

The stochastic error-correction models based on PFSMs for IMT described above can be
used to determine the required alignment betweeneI1 andep. Specifically, this alignment is
given by a pathθ in the PFSM. The final state ofθ determines the positioni of the last word
of eI1 that accounts for the user prefix. Therefore, the suffixes is given byeIi+1.

Given the previous considerations, a particular instantiation of the proposed alternative
IMT formalism can be defined as:

(
êÎ1, θ̂

)
= argmax

I,eI1,θ

{p(eI1) · p(f
J
1 |e

I
1) · pBeI1

(θ)} (6.17)

whereθ is contained in the set of all possible paths for the stringep in BeI1
, ΘB

eI1

(ep).

It should be noted that the IMT formalism based on the Bayes rule given by the previous
equation can be replaced by another one based on the log-linear approach. The resulting log-
linear model would be composed of the standard components used in fully-automatic PB-
SMT, plus one more component corresponding to the log-probability given by the stochastic
error-correction model.

The search procedure formalised by Equation (6.17) can be implemented as a process
with two steps:

1. Generate a word graph for the source sentencefJ
1 . The word graph is generated only

once at the first interaction of the IMT process.
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2. Apply the stochastic error-correction model over the target sentences contained in the
word graph so as to obtain the pair

(
êÎ1, θ̂

)
of maximum probability.

The word graph that is required at Step1 of the search procedure can be obtained as a
by-product of the translation offJ

1 . This translation process can be carried out by means of
the branch-and-bound search algorithm proposed in this thesis. The time complexity of the
translation depends on how the search algorithm is configured. For example, if a breadth-first
multiple stack algorithm withJ stacks is used (see section4.2.5), then the time complexity of
the algorithm is inO(J3 ·Ls ·T ), whereLs is the maximum stack size andT is the maximum
number of phrase translations for a source phrase.

Regarding the computation of the pair
(
êÎ1, θ̂

)
at Step2 of the search procedure, it can be

performed by means of a straightforward extension of the Viterbi algorithm. Such algorithm
extension can be executed efficiently if the nodes of the wordgraph are visited in a topological
order [AV98]. Given the user prefixep and a word graph with average branching factorB
and|Q| states, the asymptotic cost of the resulting algorithm isO(|ep| · |Q| ·B).

6.3.3 Generalisation

The equations used in our alternative IMT formalisation canbe generalised for their use in
other pattern recognition applications. Letx andy be the source and the target patterns,
respectively, and letd be adistortedversion of the target patterny. Equation (6.13) can be
rewritten as follows:

ŷ = argmax
y

{Pr(y) · Pr(x|y) · Pr(d|y)} (6.18)

If an alignment between the patternsy andd can be defined, then Equation (6.15) can be
rewritten analogously.

Different pattern recognition applications can be derivedfrom the previous equations
depending on how the patternsx, y andd are defined. Below we show a list of some possible
instantiations of our generalised formalism:

• Multi-source translation

If x is a sentence in a source language,y is its corresponding translation in the target
language andd is a translation ofx in another language different to the target language,
then the probability distributionPr(d|y) is approximated by a translation model in-
stead of an stochastic error-correction model. Under thesecircumstances, the system
would take advantage of the information provided byd to obtain the best target trans-
lation ŷ. We will refer to this application as multi-source SMT (MS-SMT). MS-SMT
was first described in [ON01] and formalised in the same way as here.

• Computer-assisted speech transcription

The goal of computer-assisted speech transcription (CAST)[RCV07] is to interactively
obtain the transcription of an acoustic signal representing a sequence of words. In this
case,x is an acoustic signal,y is a transcription ofx proposed by the system andd is
a prefix ofy given by the user. The probability distributionPr(x|y) is approximated
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by an acoustic model andPr(d|y) is approximated by an stochastic error-correction
model. The standard CAST formalisation given in [RCV07] is similar to the one pro-
posed here, but it does not include a stochastic error-correction model.

• Multimodal computer-assisted translation

In multimodal computer-assisted translation (MCAT), a human translator dictates the
translation of a given source sentence. Given the source sentence and the target lan-
guage acoustic sequence, the system should search for the most likely decoding of the
acoustic sequence. In our formalisation,x is the source text to be translated,y is the
target text, andd is an acoustic signal. The probability distributionPr(x|y) is approx-
imated by a translation model andPr(d|y) is approximated by an acoustic model.

• Computer-assisted transcription of text images

In computer-assisted transcription of text images (CATTI)[TVRV07], the input pattern
x is a sequence of feature vectors describing a text image along its horizontal axis,
and the system generates transcribed wordsy given a prefixd validated by the user.
The probability distributionPr(x|y) is approximated by morphological word models
andPr(d|y) is approximated by a stochastic error-correction model. The standard
formalisation of the CATTI framework given in [TVRV07] is similar but not equal to
the one proposed here.

Summary of Applications

To end this section, the main features of the pattern recognition applications that were de-
scribed above will be summarised.

Table 6.1 shows, for each pattern recognition application (including IMT, MS-SMT,
CAST, MCAT and CATTI), how the patternsx, y andd are defined; the models used to
approximate the probability distributionsa; and the output of the system.

Table 6.1: Summary of applications of the generalised formalisation.

Appl. x y d Pr(x|y) Pr(d|y) Output
IMT text text text(pref.) trans. model e.c. model

(

ŷ, p̂
)

MS-SMT text text text trans. model trans. model ŷ

CAST acoust. signal text text(pref.) acoust. model e.c. model
(

ŷ, p̂
)

MCAT text text acoust. signal trans. model acoust. model ŷ

CATTI text image text text morph. model e.c. model
(

ŷ, p̂
)

In the pattern recognition systems given in Table6.1, two different sub-systems can be
identified:

• Automatic sub-system: the automatic sub-system is related to the probability distri-
butionsPr(y) andPr(x|y). These distributions do not depend ond.

aThe distributionPr(y) is not included in the table because it has the same meaning for all the applications.
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• User sub-system: the user sub-system is related to the probability distributionPr(d|y),
which depends ond.

It is worthy of note that a given sub-system can be reused in different pattern recognition
applications if the involved probability distributions remain unchanged. For example, the
same user sub-system can be used in the IMT, CAST and CATTI frameworks.

6.4 Summary

In this chapter, two novel IMT techniques have been presented: an IMT technique based on
partial phrase-based alignments and an IMT technique basedon stochastic error-correction
models.

The IMT technique based on partial phrase-based alignmentsconceives the generation of
the suffixes as a two step process: first, the user prefix is aligned with a part of the source
sentence; second, the suffix is obtained as the translation of the unaligned portion of the
source sentence. The generation of the partial phrase-based alignments is driven by statis-
tical phrase-based models and relies on the application of smoothing techniques to assign
probabilities to unseen events.

The IMT technique based on stochastic error-correction models follows an alternative for-
malisation of the IMT framework in which the user prefix and the target sentence generated
by the system constitute separated entities. This alternative formalisation introduces stochas-
tic error-correction models in the statistical formulation of the IMT process. This contrasts
with existing IMT systems in which error correction is applied but not formally justified. The
proposed IMT technique generates the suffixes required in IMT by partially aligning a prefix
of the target hypotheses with the user prefix. Once the partial alignment is determined, the
suffix is given by the unaligned portion of the target sentence. It is worth pointing out that
stochastic error-correction models can be seen as explicitmodels of the user of the IMT sys-
tem. Finally, the proposed alternative formalisation of the IMT framework can be generalised
for its use in different pattern recognition applications.
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CHAPTER 7

ONLINE L EARNING FOR

I NTERACTIVE PHRASE-BASED

M ACHINE TRANSLATION

7.1 Introduction

The vast majority of the existing work on IMT makes use of the well-knownbatch learning
paradigm. In the batch learning paradigm, the training of the IMT system and the interactive
translation process are carried out in separate stages. This paradigm is not able to take ad-
vantage of the new knowledge produced by the user of the IMT system. In this chapter, an
application of theonline learningparadigm to the IMT framework is presented. In the online
learning paradigm, the training and prediction stages are no longer separated. This feature is
particularly useful in IMT since it allows the user feedbackto be taken into account.

The online learning techniques proposed here allow the statistical models involved in the
translation process to be updated given the target translations validated by the user. Figure7.1
shows a schematic view of these ideas, which contrasts with the diagram of a conventional
IMT system shown in Figure1.4. Here,fJ

1 is the input sentence andeI1 is the output derived
by the IMT system fromfJ

1 . By observingfJ
1 andeI1, the user interacts with the IMT system,

validating prefixes and/or pressing keys (k) correspondingto the next correct character, until
the desired output̂eÎ1 is produced. The input sentencefJ

1 and its desired translation̂eÎ1 can
be used to refine the models used by the system. In general, themodel is initially obtained
through a classical batch training process from a previously given training sequence of pairs
(f1, e1),...,(fn, en) from the task being considered. Now, the models can be extended with the
use of valuable user feedback by means of online learning techniques.

The online learning paradigm has been previously applied totrain discriminative models
in SMT [LBCKT06, AK07, WSTI07, CMR08]. These works differ from the one presented
here in that we apply online learning techniques to train generative models instead of dis-
criminative models.

More recently, Levenberg et al. [LCBO10] introduced an online training regime for
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Figure 7.1: An Online Interactive SMT system.

phrase-based models which is applied in a fully-automatic statistical machine translation
system. Such training regime is based on the application of the so-called stepwise EM al-
gorithm [CM09]. Our work differs from the work of Levenberg et al. [LCBO10] in that we
use the incremental version of the EM algorithm [NH98] instead of the stepwise version (the
details of our proposal will be described below). Additionally, our proposed techniques can
be applied to incrementally train all of the different models used by an IMT system.

In [NLLF04], dynamic adaptation of an IMT system via cache-based modelextensions to
language and translation models is proposed. The work by Nepveu et al. [NLLF04] consti-
tutes a domain adaptation technique and not an online learning technique, since the proposed
cache components require pre-existent models estimated inbatch mode. In addition to this,
their IMT system does not use state-of-the-art models.

To our knowledge, the only previous work on online learning for IMT is [CBRS08],
where a very constrained version of online learning is presented. This constrained version
of online learning is not able to extend the translation models due to technical problems
with the efficiency of the learning process. By contrast, we present a purely statistical IMT
system which is able to incrementally update the parametersof all of the different models that
are used in the system, including the translation model, breaking with the above mentioned
constraints. What is more, our system is able to learn from scratch, that is, without any
preexisting model stored in the system.

The remaining part of this chapter is structured as follows:batch and online learning
paradigms are described in section7.2. Incremental learning is discussed as one possible way
to implement online learning in section7.3. The basic IMT system that is used to implement
our IMT system with online learning is described in section7.4. The techniques that are
required to incrementally update the proposed basic IMT system are explained in section7.5.
Finally, a summary of this chapter is given in section7.6.
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7.2 Batch Learning versus Online Learning

In the IMT system proposed in this chapter, the batch learning paradigm is replaced by the
online learning paradigm. The goal in online learning (as inother learning paradigms) is
to predict labels from instances. The key aspect of online learning is that soon after the
prediction is made, the true label of the instance is presented to the learning algorithm. This
information can then be used to refine subsequent predictions.

Online learning algorithms proceed in a sequence of trials.Each trial can be decomposed
into three steps:

1. The learning algorithm receives an instance.

2. The learning algorithm predicts a label for the instance.

3. The true label of the instance is presented to the learningalgorithm.

After the true label of the instance has been discovered, thelearning algorithm uses it
to minimise a pre-determined performance criterion. Typically, this pre-determined criterion
is based on the amount of error in the label predicted at Step2, compared to the true label
given at Step3. Two well-known examples of online learning algorithms arethePerceptron
algorithm [Ros58] and theWinnowalgorithm [Lit88].

The online learning setting described above contrasts withthe batch learning setting, in
which all the training patterns are presented to the learnerbefore learning takes place and the
learner is no longer updated after the learning stage has concluded.

Batch learning algorithms are appropriate for their use in stationary environments. In a
stationary environment, all instances are drawn from the same underlying probability dis-
tribution. By contrast, since the online learning algorithms continually receive prediction
feedback, they can be used in non-stationary environments.

7.3 Online Learning as Incremental Learning

One possible way to implement online learning consists in the use of incremental learning
algorithms.

Incremental learning is appropriate in those learning tasks in which learning must take
place over time in a kind of continuous fashion rather than from a training data set available
a priori. A review on incremental learning can be found in [GC00].

According to [GC00], the main characteristics of an incremental learning taskare the
following:

• Examples are not available a priori but become available over time, usually one at a
time.

• Learning may need to go on indefinitely.

A learning algorithm is incremental if for any sequence of training samplesx1, ...,xN ,
produces a sequence of parameters:Θ(0),Θ(1), ...,Θ(N), such that the algorithm parameters
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at instantt, Θ(t), depends only on the previous parameters,Θ(t−1), and the current sample
xt.

The main features of an incremental learning algorithm are the following:

• No re-processing of previous samples is required.

• Since the knowledge is incrementally acquired, the learnercan, at any time, produce
an answer to a query and the quality of its answers improves over time.

Incremental learning algorithms are also called memoryless online algo-
rithms (see [AB92]) since they constitute online learning algorithms that discard each
new training sample after updating the learner.

It is interesting to consider some issues raised in the design of incremental learning algo-
rithms:

• Ordering effects: Chronology, or the order in which knowledge is acquired, isan
inherent aspect of incrementality.

• Learning curve: An incremental system may start from scratch and gain knowledge
from examples given one at a time over time. As a result, the system experiences a sort
of learning curve, where the quality of its predictions improves over time.

• Open-world assumption: All the data relevant to the problem at hand is not available
a priori. Then the world cannot be assumed to be closed. As a consequence of this,
there is a need for special learning mechanisms that invalidate portions of knowledge,
while not affecting the rest of it.

If the incremental learning algorithm is based on statistical models, then we need to main-
tain a set ofsufficient statisticsfor these models that can be incrementally updated. A suf-
ficient statistic for a statistical model is a statistic thatcaptures all the information that is
relevant to estimate this model. If the estimation of the statistical model does not require the
use of the EM algorithm (e.g.n-gram language models), then it is generally easy to incre-
mentally extend the model given a new training sample. By contrast, if the EM algorithm is
required (e.g. word alignment models), the estimation procedure has to be modified, since
the conventional EM algorithm is designed for its use in batch learning scenarios. To solve
this problem, an incremental version of the EM algorithm is required.

7.3.1 Incremental View of the EM Algorithm

Neal and Hinton [NH98] proposed an alternative view of the EM algorithm in which itis seen
as maximising a joint function of the parameters and of the distribution over the unobserved
variables. The E step maximises this function with respect to the distribution over unobserved
variables and the M step with respect to the parameters.

As a starting point, Neal and Hinton [NH98] formulate the EM algorithm in a slightly
non-standard fashion as follows:

E step: Compute a distribution over the hidden data,q(t), such
thatq(t)(y) = p(y|x,Θ(t−1))

M step: SetΘ(t) to be theΘ that maximisesEq(t) [log p(x,y|Θ)]






(7.1)
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wherex is the observed variable,y is the hidden variable,Θ(t) are the model parameters at
instantt andEq(t) [·] denotes expectation with respect to the distribution over the range ofy
given byq(t).

The E step of the algorithm can be seen as representing the unknown value fory by
a distribution of values, and the M step as then performing maximum-likelihood estima-
tion for the joint data by combiningx andy. As shown by Dempster et al. [DLR77], each
EM iteration improves the log-likelihood of the observed data L(Θ,x) = log p(x|Θ) or
leaves it unchanged. Such monotonic improvement inL(Θ,x) is guaranteed by the gener-
alised EM (GEM) algorithm [DLR77], in which only a partial maximisation is performed
in the EM step, withΘ(t) set to some valueEq(t) [log p(x,y|Θ

(t))] such that is greater than
Eq(t) [log p(x,y|Θ

(t−1))].
An alternative view of the EM algorithm can be proposed in which both the E and the M

steps are seen as maximising, or at least increasing the samefunction,F (q,Θ), allowing us
to also partially performing the E step.

The functionF (q,Θ) is defined as follows:

F (q,Θ) = Eq[log p(x,y|Θ)] +H(q) (7.2)

whereH(q) is the entropy of the distributionq:

H(q) = −Eq[log q(y)] (7.3)

The following two lemmas state properties of the functionF (see [NH98]):

Lemma 1 For a fixed value ofΘ, there is a unique distribution,qΘ that maximisesF (q,Θ)
given byqΘ(y) = p(y|x,Θ). Furthermore, thisqΘ varies continuously withΘ.

Lemma 2 If q(y) = p(y|x,Θ) = qΘ(y) thenF (q,Θ) = log p(x|Θ) = L(Θ,x).

The EM algorithm can be formulated in terms of the functionF (q,Θ) as follows:

E step: Setq(t) to theq that maximisesF (q,Θ(t−1))
M step: SetΘ(t) to theΘ that maximisesF (q(t),Θ)

}

(7.4)

The EM iterations given by (7.1) and (7.4) are equivalent. That the E steps of the iterations
are equivalent, follows directly from Lemma1. That the M steps are equivalent follows from
the fact that the entropy term in the definition ofF in Equation (7.2) does not depend onΘ.

Once the EM iteration has been expressed in the form given by (7.4), it is clear that the
algorithm converges to valuesq∗ andΘ∗ that locally maximiseF (q,Θ). In general, finding
a local maximum forF (q,Θ) will also yield a local maximum forL(Θ,x), justifying not
only the EM algorithm given by (7.4), but variants of it in which the E and M steps are
performed partially. This can be formally stated by means ofthe following theorem, which
is theoretically demonstrated using Lemmas (1) and (2) in [NH98]:

Theorem 1 If F (q,Θ) has a local maximum atq∗ andΘ∗, thenL(Θ,x) has a local maxi-
mum atΘ∗ as well. Similarly, ifF has a global maximum atq∗ andΘ∗, thenL has a global
maximum atΘ∗.
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An incremental variant of the EM algorithm can be justified onthe basis of Theorem1
in those cases in which the maximum-likelihood parameter estimates are obtained from in-
dependent data items. Specifically, the observed variable,x, is decomposed as(x1, ...,xN ),
and the hidden variabley is decomposed as(y1, ...,yN ), allowing us to decompose the joint
probability distribution asp(x,y|Θ) =

∏

n p(xn,yn|Θ).
Using the above mentioned decomposition of the hidden variable y, the search for a

maximum ofF can be restricted to distributionsq that factor asq(y) =
∏

n qn(yn). This
allows us to writeF asF (q,Θ) =

∑

n Fn(qn,Θ), whereFn(qn,Θ) is given by the following
expression:

Fn(qn,Θ) = Eqn [log p(xn,yn|Θ)] +H(qn) (7.5)

The following incremental EM iteration can be used to find a maximum ofF and hence
L(Θ,x), starting from some guess at the parameters,Θ(0), and some guess at the distribution,
q
(0)
n , which may or may not be consistent withΘ(0):

E step: Choose some data item,n to be updated.

Setq(t)m = q
(t−1)
m for m 6= n.

Setq(t)n to theqn that maximisesFn(qn,Θ
(t−1)),

given byq(t)n = p(yn|xn,Θ
(t−1)).

M step: SetΘ(t) to theΘ that maximisesF (q(t),Θ), or,
equivalently, that maximisesEq(t) [log p(x,y|Θ)]







(7.6)

In the previous EM iteration, the E step process one data itemat a time, while the M step,
as written, looks like if it requires looking at all components of q. This can be avoided in
those cases in which the inferential import of the complete data can be summarised by means
of a vector of sufficient statistics that are incrementally updateable.

Letting this vector of sufficient statistics bes(x,y) =
∑

n sn(xn,yn), the standard EM
iteration of (7.1) can be reformulated as follows:

E step: Sets̃(t) = Eq[s(x,y)], whereq(y) = p(y|x,Θ(t−1)).

(In detail, set̃s(t) =
∑

n s̃
(t)
n , with s̃

(t)
n = Eq[sn(xn,yn)],

whereqn(yn) = p(yn|xn,Θ
(t−1))).

M step: SetΘ(t) to theΘ with maximum likelihood giveñs(t)







(7.7)

Similarly, the iteration of (7.6), can be implemented using sufficient statistics that are
incrementally updated, starting with an initial guesss̃(0), which may or may not be consistent
with Θ(0):

E step: Choose some data item,n to be updated.

Sets̃(t)m = s
(t−1)
m for m 6= n.

Sets̃(t)n = Eqn [sn(xn,yn)], for qn(yn) = p(yn|xn,Θ
(t−1)).

Sets̃(t) = s̃(t−1) − s̃
(t−1)
n + s̃

(t)
n .

M step: SetΘ(t) to theΘ with maximum likelihood giveñs(t)







(7.8)

In iteration (7.8), both the E and the M steps take constant time, independent of the
number of data items. It is worthy of note that the incremental EM algorithm is expected to
converge faster than the conventional EM algorithm, since the model parameters are updated
for each data item instead of for the whole training data set.
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7.4 Basic IMT System

In this section we describe the basic IMT system that is used as the basis of our online IMT
system. Specifically, we propose the use of the IMT system based on PSPBAs that was de-
scribed in section6.2.2. Such an IMT system uses a log-linear model composed of sevenfea-
ture functions (fromh1 to h7) to generate its translations. This log-linear model is based on
a specific set of hidden variables used to determine the phrase alignments:(K, aK1 , bK1 , cK1 ).
The meaning of each hidden variable is the following:K represents the length of the biseg-
mentation,aK1 is a vector of ending positions of theK target phrases,bK1 is a vector with
the number of skipped source positions with respect to the ending position of the previously
aligned source phrase andcK1 represents a vector containing the lengths of theK source
phrases.

A specific instantiation of the log-linear model presented in section3.5.3 have been
adopted here. This specific instantiation includes ann-gram language model with inter-
polated Kneser-Ney smoothing and phrase-based models (estimated in both translation di-
rections) combined with an HMM-based alignment model by means of linear interpolation.
These models have been chosen because they are competitive with the state of the art in SMT
and, at the same time, they can be incrementally updated by using efficient algorithms, as
will be shown in section7.5.

Below we give the details of the instantiation of each log-linear model component. This
detailed description is required to later introduce the incremental update rules for the compo-
nents.

• n-gram language model (h1)
h1(e

I
1) = log(

∏I+1
i=1 p(ei|e

i−1
i−n+1)), wherep(ei|e

i−1
i−n+1) is defined as follows:

p(ei|e
i−1
i−n+1) =

max{cX(eii−n+1)−Dn, 0}

cX(ei−1
i−n+1)

+

Dn

cX(ei−1
i−n+1)

·N1+(e
i−1
i−n+1•) · p(ei|e

i−1
i−n+2) (7.9)

whereDn =
cn,1

cn,1+2cn,2
is a fixed discount (cn,1 and cn,2 are the number ofn-grams

with one and two counts respectively),N1+(e
i−1
i−n+1•) is the number of unique words that

follows the historyei−1
i−n+1 andcX(eii−n+1) is the count of then-grameii−n+1, wherecX(·)

can represent true counts,cT (·), or modified counts,cM (·). True counts are used for the
higher ordern-grams and modified counts for the lower ordern-grams. Given a certainn-
gram, its modified count consists in the number of different words that precede thisn-gram
in the training corpus.

Equation (7.9) corresponds to the probability given by ann-gram language model with an
interpolated version of the Kneser-Ney smoothing [CG96].

• source sentence-length model (h2)
h2(e

I
1, f

J
1 ) = log(p(J | I)) = log(φI(J + 0.5) − φI(J − 0.5)), whereφI(·) denotes the

cumulative distribution function (cdf) for the normal distribution (the cdf is used here to
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integrate the normal density function over an interval of length1). A specific normal dis-
tribution with meanµI and standard deviationσI is used for each possible target sentence
lengthI.

• inverse and direct phrase-based models (h3, h4)
h3(e

I
1,K, aK1 , bK1 , cK1 , fJ

1 ) = log(
∏K

k=1 pLI(f
βk
αk

|eak

ak−1+1)) wherepLI(f
βk
αk

|eak

ak−1+1) is
defined as follows:

pLI(f
βk
αk

|eak

ak−1+1) = λ · p(fβk
αk

|eak

ak−1+1) +

(1− λ).phmm(fβk
αk

|eak

ak−1+1) (7.10)

In Equation (7.10), p(fβk
αk

|eak

ak−1+1) denotes the probability given by a statistical phrase-
based dictionary used in regular phrase-based models, where:

αk = βk − ck + 1

βk = βk−1 + bk + ck

β0 = 0

phmm(fβk
αk

|eak

ak−1+1) is the probability given by an HMM-based (intra-phrase) alignment
model:

phmm(f̃ |ẽ) = ǫ
∑

a
|f̃|
1

|f̃ |
∏

j=1

p(f̃j |ẽaj
) · p(aj |aj−1, |ẽ|) (7.11)

The HMM-based alignment model probability is used here for smoothing.

Analogouslyh4 is defined as:
h4(e

I
1,K, aK1 , bK1 , cK1 , fJ

1 ) = log(
∏K

k=1 pLI(e
ak

ak−1+1|f
βk
αk

))

• target phrase-length model (h5)
h5(K, aK1 ) = log(

∏K
k=1 p(ak|ak−1),

wherep(ak|ak−1) = p(ak − ak−1) = δ(1 − δ)ak−ak−1 . h5 implements a target phrase-
length model by means of a geometric distribution with probability of successδ on each
trial. The use of a geometric distribution penalises the length of target phrases.

• source phrase-length model (h6)
h6(K, aK1 , cK1 ) = log(

∏K
k=1 p(ck|ak, ak−1)),

wherep(ck|ak, ak−1) =
1

1+τ
δ(1 − δ)abs(ck−(ak−ak−1)), τ =

∑ak−ak−1−1
i=1 δ(1− δ)i and

abs(·) is the absolute value function. A modified geometric distribution with probability of
successδ on each trial is used to model this feature. The scaling factor 1

1+τ
is introduced to

make the distribution sum to one because the termck−(ak−ak−1) takes integer values (ck
and(ak − ak−1) are greater than zero). This distribution penalises the difference between
the source and target phrase lengths.

• distortion model (h7)
h7(K, bK1 ) = log(

∏K
k=1 p(bk)),
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wherep(bk) = 1
2−δ

δ(1 − δ)abs(bk). A modified geometric distribution with probability
of successδ on each trial is used to assign probabilities to the number ofskipped source
words. The scaling factor12−δ

is introduced to make the distribution sum to one (bk takes
integer values). The use of a geometric distribution penalises the reorderings.

The log-linear model, which includes the above described feature functions, is used to
generate the suffixes given the user-validated prefixep. Specifically, the IMT system gener-
ates a partial phrase-based alignment between the user prefix ep and a portion of the source
sentencefJ

1 , and returns the suffixes as the translation of the remaining portion offJ
1 .

7.5 Online IMT System

After translating a source sentencefJ
1 , a new sentence pair(fJ

1 , e
I
1) is available to feed the

IMT system (see Figure1.3). To do this, a set of sufficient statistics that can be incrementally
updated is maintained for the statistical models that implement each feature functionhi(·).

In the following sections, we show how the set of sufficient statistics is defined for each
model. Regarding the weights of the log-linear combination, they are not modified due to the
presentation of a new sentence pair to the system. These weights can be adjusted off-line by
means of a development corpus and well-known optimisation techniques.

7.5.1 Language Model (h1)

Feature functionh1 implements a language model. According to Equation (7.9), the fol-
lowing data is to be maintained:ck,1 and ck,2 given any orderk, N1+(·), andcX(·) (see
section7.4for the meaning of each symbol).

Given a new sentenceeI1, and for eachk-grameii−k+1 of eI1, where1 ≤ k ≤ n and
1 ≤ i ≤ I + 1, the set of sufficient statistics is modified as it is shown in Algorithm 7.1.
The algorithm checks the changes in the counts of thek-grams to update the set of sufficient
statistics. For a givenk-gram,eii−k+1, its true count and the corresponding normaliser are
updated at lines13 and14, respectively. The modified count of the(k − 1)-gram and its
normaliser are updated at lines7 and8, respectively, only when thek-grameii−k+1 appears
for the first time (condition checked at line2). The value of theN1+(·) statistic forei−1

i−k+1

andei−1
i−k+2 is updated at lines10and6, respectively, only if the wordei has been seen for the

first time following these contexts. Finally, sufficient statistics forDk are updated at lines12
(for higher ordern-grams) and4 (for lower ordern-grams), following the auxiliary procedure
shown in Algorithm7.2.

7.5.2 Sentence Length Model (h2)

Feature functionh2 implements a sentence length model.h2 requires the incremental cal-
culation of the meanµI and the standard deviationσI of the normal distribution associated
to a target sentence lengthI. For this purpose, the procedure described in [Knu81] can be
used. In this procedure, two quantities are maintained for each normal distribution:µI and
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input : n (higher order),eii−k+1 (k-gram),
S = {∀j(cj,1, cj,2), N1+(·), cX(·)} (current set of sufficient statistics)

output : S (updated set of sufficient statistics)
begin1

if cT (eii−k+1) = 0 then2

if k − 1 ≥ 1 then3

updD( S,k-1,cM (eii−k+2),cM (eii−k+2) + 1)4

if cM (eii−k+2) = 0 then5

N1+(e
i−1
i−k+2) := N1+(e

i−1
i−k+2) + 16

cM (eii−k+2) := cM (eii−k+2) + 17

cM (ei−1
i−k+2) := cM (ei−1

i−k+2) + 18

if k = n then9

N1+(e
i−1
i−k+1) := N1+(e

i−1
i−k+1) + 110

if k = n then11

updD( S,k,cT (eii−k+1),cT (e
i
i−k+1) + 1)12

cT (e
i
i−k+1):=cT (e

i
i−k+1) + 113

cT (e
i−1
i−k+1):=cT (e

i−1
i−k+1) + 114

end15

Algorithm 7.1: Pseudocode for theupdate suff stats lm algorithm.

input : S (current set of sufficient statistics),k (order),c (current count),
c′ (new count)

output : (ck,1, ck,2) (updated sufficient statistics)
begin1

if c = 0 then2

if c′ = 1 then ck,1 := ck,1 + 13

if c′ = 2 then ck,2 := ck,2 + 14

if c = 1 then5

ck,1 := ck,1 − 16

if c′ = 2 then ck,2 := ck,2 + 17

if c = 2 then ck,2 := ck,2 − 18

end9

Algorithm 7.2: Pseudocode for theupdD algorithm.

SI . Given then-th training pair(fn, en) at instantt, the two quantities are updated according
to the following equations:

µ
(t)
i:i6=|en|

= µ
(t−1)
i (7.12)

µ
(t)
|en|

= µ
(t−1)
|en|

+ (|fn| − µ
(t−1)
|en|

)/c(|en|) (7.13)

S
(t)
i:i6=|en|

= S
(t−1)
i (7.14)

S
(t)
|en|

= S
(t−1)
|en|

+ (|fn| − µ
(t−1)
|en|

) · (|fn| − µ
(t)
|en|

) (7.15)
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wherec(|en|) is the count of the number of sentences of length|en| that have been seen
so far, andµ(t−1)

|en|
andS(t−1)

|en|
are the quantities previously stored (µ

(0)
|en|

is initialised to the

source sentence length of the first sample andS
(0)
|en|

is initialised to zero). Finally, the standard

deviation can be obtained fromS(t)
|en|

as follows:σ(t)
|en|

=
√

S
(t)
|en|

/(c(|en|)(t) − 1).

7.5.3 Inverse and Direct Phrase-Based Models (h3 and h4)

Feature functionsh3 andh4 implement inverse and direct phrase-based models respectively.
These phrase-based models are combined with HMM-based alignment models via linear in-
terpolation. In this thesis we have not studied how to incrementally update the weights of the
interpolation. Instead, these weights can be estimated from a development corpus.

Since phrase-based models are symmetric models, only an inverse phrase-based model is
maintained (direct probabilities can be efficiently obtained using appropriate data structures,
see section4.3.2). The inverse phrase model probabilities are estimated from phrase counts
as follows:

p(f̃ |ẽ) =
c(f̃ , ẽ)

∑

f̃ ′ c(f̃ ′, ẽ)

According to the previous equation, the set of sufficient statistics to be stored for the
inverse phrase model consists of a set of phrase counts,c(f̃ , ẽ).

Given then-th training pair(fn, en), the standard phrase-based model estimation method
uses a word alignment matrix,A, betweenfn anden to extract the set of phrase pairs that
areconsistentwith the word alignment matrix:BP(fn, en, A) (see section3.2 for more de-
tails). Once the consistent phrase pairs have been extracted, the phrase counts are updated as
follows:

c(f̃ , ẽ)(t) = c(f̃ , ẽ)(t−1) + c(f̃ , ẽ | BP(fn, en, A)) (7.16)

wherec(f̃ , ẽ)(t) is the current count of the phrase pair(f̃ , ẽ), c(f̃ , ẽ)(t−1) is the previous
count, andc(f̃ , ẽ | BP(fn, en, A)) is the count of(f̃ , ẽ) in BP(fn, en, A).

After updating the phrase counts, we need to efficiently compute the phrase translation
probabilities. For this purpose, we maintain in memory boththe current phrase counts and
their normalisers.

One problem to be solved when updating the phrase model parameters is the need of gen-
erating word alignment matrices. To solve this problem, we use the direct and inverse HMM-
based alignment models that are included in the formulationof the IMT system. Specifically,
these models are used to obtain word alignments in both translation directions. The resulting
direct and inverse word alignment matrices are combined by means of thesymmetrisation
alignment operation [ON03] before extracting the set of consistent phrase pairs.

In order to obtain an IMT system able to robustly learn from user feedback, we also need
to incrementally update the HMM-based alignment models. Inthe following section we show
how to efficiently incorporate new knowledge to these models.
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7.5.4 Inverse and Direct HMM-Based Alignment Models (h3 and h4)

HMM-based alignment models play a crucial role in log-linear componentsh3 andh4, since
they are used to smooth phrase-based models and to generate word alignment matrices.
HMM-based alignment models were chosen here because, according to [ON03] and [TIM02],
they outperform IBM 1 to IBM 4 alignment models while still allowing the exact calculation
of the loglikelihood for a given sentence pair. However, ourproposal is not restricted to the
use of HMM-based alignment models.

The standard estimation procedure for HMM-based alignmentmodels is carried out by
means of the EM algorithm. However, the standard EM algorithm is not appropriate to incre-
mentally extend our HMM-based alignment models because it is designed to work in batch
training scenarios. To solve this problem, the incrementalview of the EM algorithm described
in section7.3.1can be applied.

Model Definition

HMM-based alignment models are a class of single-word alignment models. Single-word
alignment models were introduced in section1.4.2; for the reader’s convenience, we describe
again those concepts that are relevant to the definition of HMM-based alignment models.

Single-word alignment models are based on the concept of alignment between word po-
sitions of the source and the target sentencesfJ

1 andeI1. Specifically, the alignment is defined
as a functiona : {1 · · · J} → {0 · · · I}, whereaj = i if the j’th source position is aligned
with the i’th target position. Additionally,aj = 0 notes that the word positionj of fJ

1 has
not been aligned with any word positioneI1 (or that it has been aligned with thenull word
e0). Let A(fJ

1 , e
I
1) be the set of all possible alignments betweeneI1 andfJ

1 , we formulate
Pr(fJ

1 |e
I
1) in terms of the alignment variable as follows (Equation (1.17)):

Pr(fJ
1 |e

I
1) =

∑

aJ
1∈A(fJ

1 ,eI1)

Pr(fJ
1 , a

J
1 |e

I
1) (7.17)

Under a generative point of view,Pr(fJ
1 , a

J
1 |e

I
1) can be decomposed without loss of

generality as follows (Equation (1.18)):

Pr(fJ
1 , a

J
1 |e

I
1) = Pr(J |eI1) ·

J∏

j=1

Pr(fj |f
j−1
1 , aj1, e

I
1) · Pr(aj |f

j−1
1 , aj−1

1 , eI1) (7.18)

HMM-based alignment models are very similar to IBM models, specifically, they only
differ in the assumptions made over the alignment probabilities. HMM-based alignment
models use a first order alignment modelp(aj |aj−1, I) to approximate the distribution
Pr(aj |f

j−1
1 , aj−1

1 , eI1) and a word-to-word lexical modelp(fj |eaj
) to approximate the dis-

tributionPr(fj |f
j−1
1 , aj1, e

I
1), resulting in the expression:

p(fJ
1 , a

J
1 |e

I
1,Θ) =

J∏

j=1

p(fj |eaj
) · p(aj |aj−1, I) (7.19)
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where we assume thata0 is equal to zero and

Θ =

{
p(f |e) ∀ f ∈ F ande ∈ E
p(i|i′, I) 1 ≤ i ≤ I, 0 ≤ i′ ≤ I and∀ I

(7.20)

is the set of hidden parameters. For the sake of simplicity, we do not allow alignments with the
null word, i.e.i 6= 0. This corresponds to the so-calledhomogeneousHMM-based alignment
models defined in [VNT96]. The treatment of the null word can be easily introduced as it is
shown in [ON03].

Incremental EM Algorithm

We follow the incremental EM iteration of (7.8). This incremental EM iteration is defined in
terms of a set of sufficient statistics summarising the inferential import of the complete data.

As a preliminary step, and following the same derivation strategy that is presented
in [Civ08] for the batch EM algorithm, we change the nature of the original alignment vari-
ableaj ∈ {0, . . . , I} from an integer value to an indicator vector:

aj = (aj0, aj1, . . . , ajI) (7.21)

The vectoraj takes the value of one in thei’th position and zeros elsewhere if the source
positionj is aligned to the target positioni.

Equation (7.19) can be reexpressed in terms of indicator vectors as follows:

p(fJ
1 , a

J
1 |e

I
1,Θ) =

J∏

j=1

I∏

i=1

p(fj |ei)
aij

I∏

i′=1

p(i|i′, I)aj−1i′aij (7.22)

with a00 = 1.
The complete data set,Z = (X ,Y) comprises the observed data,X =

{(f1, e1), ..., (fN , eN )}, which is composed of the training sentence pairs; and the hidden
data,Y = {a1, ...,aN}, which is composed of the alignment vectors associated withthe sen-
tence pairs ofX . The loglikelihood function of the complete data,L(Θ, f , e,a), is defined as
follows:

L(Θ, f , e,a) =
N∑

n=1

log p(fn,an|en,Θ) (7.23)

It can be demonstrated by means of the Fisher-Neyman factorisation theorem that
s(f , e,a) =

∑

n sn(fn, en,an) constitutes a vector of sufficient statistics for the model pa-
rameters, wheresn(fn, en,an) is the vector of sufficient statistics for data itemn:

sn(fn, en,an) =

{
c(f |e; fn, en,an) ∀ f ∈ F ande ∈ E
c(i|i′, I; fn, en,an) 1 ≤ i ≤ I, 0 ≤ i′ ≤ I and∀ I

(7.24)
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with

c(f |e; fn, en,an) =

|fn|∑

j:fnj=f

|en|∑

i:eni=e

anji (7.25)

c(i|i′, I; fn, en,an) = δ(I, |en|)

|fn|∑

j=1

(an(j−1)i′ anji) (7.26)

beingc(f |e; fn, en,an) the number of times that the worde is aligned to the wordf for the
sentence pair(fn, en); andc(i|i′, I; fn, en,an) the number of times that the alignmenti has
been seen after the previous alignmenti′ given a source sentence composed ofI words for
the sentence pair(fn, en).

The log-likelihood of the complete data can be expressed in terms of the sufficient statis-
tics as follows:

L(Θ, f , e,a) =
∑

f∈F

∑

e∈E

N∑

n=1

c(f |e; fn, en,an) · log p(f |e)+

∑

∀I

I∑

i=1

I∑

i′=0

N∑

n=1

c(i|i′, I; fn, en,an) · log p(i|i
′, I) (7.27)

To implement the E step of the incremental EM algorithm, we need to obtain the expected
value at instantt of the sufficient statistics given the probability distribution of the hidden
alignment variable:̃s(t)n = Eqn [sn(fn, en,an)], whereqn(an) = p(an|fn, en,Θ

(t−1)). For
this purpose, the counts given by equations (7.25) and (7.26) are replaced by expected counts:

c(f |e; fn, en,an)
(t) =

|fn|∑

j:fnj=f

|en|∑

i:eni=e

a
(t)
nji (7.28)

c(i|i′, I; fn, en,an)
(t) = δ(I, |en|)

|fn|∑

j=1

(an(j−1)i′ anji)
(t) (7.29)

where

a
(t)
nji =

αnji · βnji

|en|∑

ı̃=1

αnj ı̃ · βnj ı̃

(7.30)

(an(j−1)i′ anji)
(t) =

αn(j−1)i′ · p(i|i
′, |en|)

(t−1) · p(fnj |eni)
(t−1) · βnji

|en|∑

ı̃′=1

|en|∑

ı̃=1

αn(j−1)̃ı′ · p(̃ı | ı̃′, |en|)(t−1) · p(fnj |eñı)(t−1) · βnj ı̃

(7.31)
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beinga(t)nji, the posterior probability of aligning the source positionj to the target positioni at

the current instantt ; and(an(j−1)i′ anji)
(t), the posterior probability of aligning the source

positionj − 1 to the target positioni′ and the positionj to the positioni for then’th sample
at the current instantt. The recursive functionsα andβ are defined as follows:

αnji =







1 j = 0
p(i|0, |en|)

(t−1) · p(fnj |eni)
(t−1) j = 1

|en|∑

ı̃=1

αn(j−1)̃ı · p(i|̃ı, |en|)
(t−1) · p(fnj | eni)

(t−1) j > 1

(7.32)

βnji =







1 j = |fn|
|en|∑

ı̃=1

p(̃ı|i, |en|)
(t−1) · p(fn(j+1) | eñı)

(t−1) · βn(j+1)̃ı j < |fn|
(7.33)

Regarding the M step, we have to obtain the set of parameters that maximises the log-
likelihood of the complete data given the expected values ofthe sufficient statistics. For this
purpose, we replace the sufficient statistics in Equation (7.27) by their expected values at
instantt, and then maximise the resulting expression (which corresponds to theQ(Θ|Θt−1)
function expressed in terms of the sufficient statistics), obtaining the following update equa-
tions:

p(f |e)(t) =

N∑

n=1
c(f |e; fn, en,an)

(t)

∑

f ′∈F

N∑

n=1
c(f ′|e; fn, en,an)(t)

(7.34)

p(i|i′, I)(t) =

N∑

n=1
c(i|i′, I; fn, en,an)

(t)

I∑

ı̃=1

N∑

n=1
c(̃ı|i′, I; fn, en,an)(t)

(7.35)

In the previous equations, the numerator values constitutethe cumulative sufficient statis-
tics s̃(t) =

∑

n s̃
(t)
n for the model parameters.

Incremental Update Rule

Given then-th training pair(fn, en), the incremental update equation for the cumulative
sufficient statistics,̃s(t), is given by the following expression:

s̃(t) = s̃(t−1) + s̃(t)n (7.36)

It is worth mentioning that the sufficient statistics for a given sentence pair are nonzero
for a small fraction of its components. As a result of this, the time required to update the
parameters of the HMM-based alignment model depends only onthe number of nonzero
components.

Once the cumulative sufficient statistics,s̃(t), have been updated, we need to efficiently
compute the model parameters. For this purpose, the normaliser factors for̃s(t) are also
maintained.
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The parameters of the direct HMM-based alignment model are estimated analogously to
those of the inverse model.

7.5.5 Source Phrase Length, Target Phrase Length and Distortion Mod-
els (h5, h6 and h7)

Theδ parameters of the geometric distributions associated to the feature functionsh5, h6 and
h7 are left fixed. Because of this, there are no sufficient statistics to store for these feature
functions.

7.6 Summary

In this chapter, an IMT system in which the standard batch learning paradigm is replaced
by the online learning paradigm has been proposed. Online learning is particularly useful in
IMT since it allows to feed the models used by the IMT system with the translations validated
by the user.

Our proposed IMT system implements online learning by meansof incremental learning
algorithms. Incremental learning algorithms are a kind of online learning algorithms that
discard each new training sample after updating the learner.

Our online IMT system uses incremental learning algorithmsto update the parameters
of the statistical models involved in the translation process. For this purpose, we need to
maintain a set of sufficient statistics that can be incrementally updated for these models.

If the estimation of a given statistical model does not require the use of the EM algorithm,
then it is generally easy to incrementally extend the model given a new training sample. By
contrast, if the EM algorithm is required, the estimation procedure has to be modified, since
the conventional EM algorithm is designed for its use in batch learning scenarios. To solve
this problem, we have applied the incremental view of the EM algorithm described in [NH98].

We provided a complete set of update equations and algorithms that allow us to obtain
an incrementally updateable IMT system, breaking technical limitations encountered in other
works.
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CHAPTER 8

PB-IMT E VALUATION

In this chapter we show the results of the experiments that wecarried out to test the three
IMT techniques proposed in chapters6 and7, namely, IMT based on partial phrase-based
alignments, IMT based on stochastic error-correction models and IMT with online learninga.

8.1 IMT based on Partial Phrase-Based Alignments

We carried out experiments to test our proposed IMT system based on partial phrase-based
alignments described in section6.2. In some experiments, this IMT system uses a mono-
tonic version of the expansion algorithm given by Algorithm6.1. Monotonic IMT systems
are useful because of their lower response times, but this time complexity reduction usually
comes at the cost of poorer translation results. The language model used by the IMT system
was implemented as a standard backoff language model, whichwas estimated by means of
the SRILM toolkit [Sto02]. Regarding the inverse and direct smoothed phrase-based models,
they were obtained by means of the THOT toolkit presented in AppendixB of this thesis.

The experiments were performed using the Xerox and the EU corpora, which were de-
scribed in section1.10. We evaluated our proposed techniques by means of the KSMR (key
stroke and mouse action ratio) measure described in section1.9.3. In addition to this, in some
experiments we also assessed the performance of our proposed IMT system with respect to
using a conventional SMT system followed by human post-editing. This assessment is done
by comparing the KSR (key stroke ratio) measure obtained by the IMT system with the CER
(character error rate) and PKSR (post-editing key stroke ratio) measures. As was explained in
section1.9.3, the CER measure constitutes a rough estimation of the post-editing effort, since
professional translators typically use text editors with autocompletion capabilities to generate
the target translations. To solve this problem, the PKSR measure defined in [RTV10] is used.

aIn some experiments reported in this chapter we show the time cost of the proposed algorithms, all the experi-
ments were executed on a PC with a 2.40 Ghz Intel Xeon processorwith 1GB of memory.
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8.1.1 Experiments with the Xerox Corpus

In Table8.1, IMT results with the Xerox corpus using different phrase-to-phrase alignment
smoothing techniques are presented, for three different language pairs and both translation
directions. Geometric distributions were selected to implement both theh5 (target phrase
length model) andh6 (source phrase length model) feature functions. The first row of the ta-
ble shows the baseline, which consists of the results obtained using maximum-likelihood es-
timation without smoothing (ML). The rows labelled with GT (Good-Turing), AD (absolute-
discount), KN (Kneser-Ney) and SD (simple discount) show the results for the phrase-based
model estimators presented in section4.4.2. The rest of the rows corresponds to different
estimation techniques combined with the lexical distribution (LEX) by means of linear in-
terpolation (LI), backing-off (BO), and log-linear interpolation (LL). Because of the great
number of possible configurations of the IMT system and the high time cost of the MERT
algorithm, we used a monotonic IMT system with default values for the weights of the log-
linear model to carry out the experiments.

Table 8.1: KSMR results for the three Xerox corpora (for both direct and inversetrans-
lation directions separated by the symbol “/”) for a monotonic IMT system and different
smoothing techniques. Geometric distributions were selected to implement theh5 and
h6 feature functions. Default weights for the log-linear model were used.Best results
are shown in bold.

Smooth. Spa-Eng Fre-Eng Ger-Eng
ML 36.7/32.5 59.4/53.2 63.6/57.2
GT 28.6/29.4 51.9/49.4 57.7/53.0
AD 30.3/28.1 50.4/46.7 58.4/52.5
KN 30.3/28.1 50.4/46.7 58.4/52.4
SD 28.5/29.4 51.6/49.2 57.1/52.5
ML+LEX LI 21.2/21.3 39.9/39.2 43.9/42.4
GT+LEX LI 21.1/21.3 39.9/39.2 44.2/42.2
AD+LEX LI 21.4/22.2 40.2/40.5 45.1/42.2
KN+LEX LI 21.5/22.2 40.1/40.5 45.0/42.2
SD+LEXLI 21.2/21.2 39.9/39.0 44.0/41.8
GT+LEX BO 21.1/21.0 39.8/39.0 45.3/42.3
SD+LEXBO 21.2/21.0 39.8/39.2 45.1/42.3
ML+LEX LL 37.5/35.5 59.5/53.7 64.3/58.0
GT+LEX LL 24.0/25.8 43.2/43.3 50.9/46.9
AD+LEX LL 30.8/29.2 51.3/46.9 59.7/52.1
KN+LEX LL 30.9/29.1 51.4/46.9 59.7/52.0
SD+LEXLL 23.6/27.7 43.2/42.7 50.7/45.9

According to the table, the baseline system obtained by far the worst results. In contrast,
all those experiments that included the LEX distribution outperformed the others due to im-
proved assignment of probabilities to unseen events. As wasexpected (see section4.4.2),
linear interpolation and backing-off obtained better results than log-linear interpolation. Ad-
ditionally, GT and SD statistical estimators worked slightly better than the rest of estimators.
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We also carried out experiments to study the impact of the different probability distribu-
tions used for the feature functionsh5 (target phrase length model) andh6 (source phrase
length model) in the accuracy of our system. Table8.2reports the KSMR results for all pos-
sible combinations of the probability distributions used for h5 (Uniform (U) and Geometric
(G)) and forh6 (Uniform (U), Geometric (G), and Poisson (P)). Only the results obtained for
the best smoothing technique (Good-Turing) are reported (the results corresponding to other
smoothing techniques were similar). Again, a monotonic IMTsystem with default log-linear
weights were used.

Table 8.2: KSMR results for the three Xerox corpora (for both direct and inversetrans-
lation directions separated by the symbol “/”) for all possible combinationsof the proba-
bility distributions for theh5 andh6 feature functions when using two different smooth-
ing techniques. A monotonic IMT system with default log-linear model weights were
used. Best results are shown in bold.

Smooth. h5, h6 Spa-Eng Fre-Eng Ger-Eng

GT

U,U 30.1/29.0 53.8/50.7 58.0/53.9
U,P 29.5/28.6 52.9/49.7 57.6/53.4
U,G 28.7/28.0 51.7/48.7 57.3/52.7
G,U 30.5/29.7 54.6/51.5 58.5/54.4
G,P 29.7/29.4 53.3/50.5 58.2/53.7
G,G 28.6/29.4 51.9/49.4 57.7/53.0
U,U 21.8/21.6 40.4/39.1 44.8/42.2
U,P 21.5/21.4 40.2/39.0 44.3/42.0

GT+ U,G 21.3/21.4 40.1/38.8 44.0/41.8
LEX BO G,U 21.6/21.5 40.3/39.1 44.6/42.1

G,P 21.4/21.3 40.0/39.0 44.2/41.9
G,G 21.1/21.0 39.8/39.0 45.3/42.3

As can be seen in the table, slight KSMR differences are obtained. The best results
were obtained when U+G distributions were used for the GT estimator, and G+G for the BO
combination. As was mentioned in section6.2.2, the use of a uniform distribution forh5

penalises the length of the bisegmentation and the use of a geometric distribution penalises
the length of the source phrases. Correspondingly, the use of a geometric distribution forh6

makes it possible to establish a relationship between the length of source and target phrases
(the use of a Poisson distribution also worked well).

IMT results for the three considered corpora (for both translation directions) are shown
in Table8.3. MERT for the development corpus was performed to adjust theweights of the
log-linear model. In this case, only the GT+LEXBO, the SD+LEXBO and the SD+LEXLI

smoothing techniques were tested, obtaining very similar results. The last column of Ta-
ble 8.3shows the average time in seconds per iteration needed to complete a new translation
given a user validated prefix. Clearly, these times allow thesystem to work on a real time
scenario.

We also carried out experiments using a non-monotonic IMT system with GT+LEXBO

smoothing. Table8.4 shows the KSMR results and the time cost in seconds per each in-
teraction when translating the Xerox corpora from English to Spanish, French and German.
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Table 8.3: KSMR results for the three Xerox corpora, using a monotonic IMT system
with three different smoothing techniques. Geometric distributions were used to im-
plement theh5 andh6 feature functions. MERT was performed. The average time in
seconds per interaction is also reported.

Corpus Smooth. KSMR s/inter.

Spa–Eng
GT+LEX BO 19.6 0.086
SD+LEXBO 19.6 0.090
SD+LEXLI 19.7 0.090

Eng–Spa
GT+LEX BO 17.5 0.093
SD+LEXBO 17.6 0.094
SD+LEXLI 17.9 0.106

Fre–Eng
GT+LEX BO 36.9 0.204
SD+LEXBO 37.0 0.205
SD+LEXLI 37.4 0.242

Eng–Fre
GT+LEX BO 34.4 0.148
SD+LEXBO 34.4 0.147
SD+LEXLI 34.1 0.211

Ger–Eng
GT+LEX BO 39.5 0.170
SD+LEXBO 39.5 0.184
SD+LEXLI 39.7 0.237

Eng–Ger
GT+LEX BO 39.1 0.152
SD+LEXBO 39.2 0.154
SD+LEXLI 39.2 0.210

Table 8.4: KSMR results for the three Xerox corpora, using a non-monotonic IMT
system with GT+LEXBO smoothing. Geometric distributions were used to implement
theh5 andh6 feature functions. MERT was performed. The average time in seconds
per interaction is also reported.

Corpus KSMR s/inter.
Eng–Spa 16.7 0.283
Eng–Fre 34.9 0.388
Eng–Ger 38.6 0.405

Geometric distributions were used to implement theh5 andh6 feature functions, the weights
of the log-linear combination were adjusted by means of the MERT algorithm. As can be
seen in the table, the non-monotonic IMT system obtains better KSMR results than those
reported in Table8.3 for the monotonic IMT system. However, these improved results are
obtained with higher time costs per each interaction of the IMT process.

Additionally, we performed experiments to estimate the human effort reduction that can
be obtained using our proposed IMT system with respect to using the post-editing approach.
For this purpose, we compared the KSR measure obtained by ourIMT system with the CER
and PKSR measures. Table8.5 shows the obtained results. According to the results, the
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Table 8.5: CER and PKSR obtained with the post-editing approach and KSR obtained
with our proposed IMT system based on smoothing techniques (a monotonic IMT sys-
tem with GT+LEXBO smoothing tuned with MERT was used, geometric distributions
were selected to implement theh5 andh6 feature functions). The results were obtained
for the Xerox corpora.

Corpus CER PKSR KSR
Eng–Spa 22.3 17.3 10.0
Eng–Fre 48.1 35.6 21.7
Eng–Ger 55.3 39.5 25.1

Table 8.6: KSMR results comparison of our IMT system based on partial statistical
phrase-based alignments (a monotonic IMT system with GT+LEXBO smoothing tuned
with MERT was used, geometric distributions were selected to implement theh5 and
h6 feature functions) and three different state-of-the art IMT systems.95% confidence
intervals are shown. The experiments were executed on the Xerox corpora. Best results
are shown in bold.

Corpus AT PB SFST PSPBA
Spa–Eng 24.0±1.3 18.1±1.2 26.9±1.3 19.6±1.1
Eng–Spa 23.2±1.3 16.7±1.2 21.8±1.4 17.6±1.1
Fre–Eng 40.5±1.4 37.2±1.3 45.5±1.3 37.0±1.4
Eng–Fre 40.4±1.4 35.8±1.3 43.8±1.6 34.4±1.2
Ger–Eng 45.9±1.2 36.7±1.2 46.6±1.4 39.5±1.1
Eng–Ger 44.7±1.2 40.1±1.2 45.7±1.4 39.2±1.1

estimated human effort to generate correct translations using our proposed IMT system is
significantly reduced with respect to using the post-editing approach. As was expected, the
values of the CER measure were greater than those of the PKSR measure for the three lan-
guage pairs. This is due to the autocompletion capabilitiesthat are involved in the calculation
of the PKSR measure.

Finally, in Table8.6a comparison of the best results obtained by our IMT system based on
partial statistical phrase-based alignments (PSPBA) withstate-of-the-art IMT systems is re-
ported (95% confidence intervals are shown). We compared oursystem with those presented
in [BBC+09]: the alignment templates (AT), the stochastic finite-state transducer (SFST),
and the phrase-based (PB) approaches to IMT. As can be seen, our system obtains similar
results and in some cases clearly outperforms the results obtained by these IMT systems.
Specifically, our results were better than those obtained bythe SFST and the AT systems. By
contrast, the KSMR results with respect to the PB approach were similar.

8.1.2 Experiments with the EU Corpus

Additional experiments using the EU corpus were carried outto test the performance of our
IMT system based on partial phrase-based alignments. Table8.7shows the obtained KSMR
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Table 8.7: KSMR results for the three EU corpora, using a monotonic IMT system with
GT+LEXBO smoothing. Geometric distributions were used to implement theh5 andh6

feature functions. MERT was performed. The average time in secondsper interaction
is also reported.

Corpus KSMR s/inter.
Spa–Eng 21.9 0.327
Fre–Eng 19.5 0.326
Ger–Eng 28.3 0.278

Table 8.8: CER and PKSR obtained with the post-editing approach and KSR obtained
with our proposed IMT system based on smoothing techniques (a monotonic IMT sys-
tem with GT+LEXBO smoothing tuned with MERT was used, geometric distributions
were selected to implement theh5 andh6 feature functions). The results were obtained
for the EU corpora.

Corpus CER PKSR KSR
Spa–Eng 36.6 25.5 13.1
Fre–Eng 32.7 23.2 11.6
Ger–Eng 45.0 30.6 17.4

results when translating from Spanish, French and German tothe English language. All the
results were obtained by means of a monotonic IMT system withGT+LEXBO smoothing.
Theh5 andh6 feature functions were implemented by means of geometric distributions. The
weights of the log-linear combination were obtained by using the MERT algorithm. The table
also shows the average time in seconds required by each new interaction of the IMT process.

As can be seen in the table, the interactive translation fromEnglish to Spanish obtained
the lowest KSMR measure. The time costs per interaction for the three language pairs were
higher than those obtained when translating the Xerox corpora (see Table8.3). This is due
to the fact that the EU corpora have greater training sets which produce substantially larger
translation and language models.

Additional experiments were carried out to compare the performance of our proposed
system with respect to that of the post-editing approach. Results are shown in Table8.8.
According to the table, post-editing significantly increased the required human effort with
respect to the IMT system. This is the same situation that wasobserved for the Xerox corpora
(see Table8.5).

Finally, Table8.9 shows a comparison of the KSMR results (95% confidence intervals
are shown) that were obtained by our proposed IMT system based on partial phrase-based
alignments (PSPBA), with respect to those obtained by state-of-the-art IMT systems. As was
explained in section8.1.1, these state-of-the-art IMT systems are based on differenttrans-
lation technologies, including alignment templates (AT),stochastic finite-state transducers
(SFST) and phrase-based models (PB). In the table we show theresults obtained by a mono-
tonic IMT system with GT+LEXBO smoothing tuned with MERT. As can be seen, our system
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Table 8.9: KSMR results comparison of our IMT system based on partial statistical
phrase-based alignments (a monotonic IMT system with GT+LEXBO smoothing tuned
with MERT was used, geometric distributions were selected to implement theh5 and
h6 feature functions) and three different state-of-the art IMT systems.95% confidence
intervals are shown. The experiments were executed on the EU corpora. Best results
are shown in bold.

Corpus AT PB SFST PSPBA
Spa–Eng 33.3±1.3 23.8±1.0 31.1±1.3 21.9±1.0
Fre–Eng 28.6±1.2 21.5±1.0 28.0±1.2 19.5±0.9
Ger–Eng 38.1±1.4 31.7±1.0 39.1±1.5 28.2±1.2

outperforms the results obtained by these IMT systems in allcases.

8.2 IMT based on Stochastic Error-Correction Models

We carried out experiments to test our IMT system based on stochastic error-correction mod-
els described in section6.3. The initial word graph for each source sentence was generated
using a regular SMT system. This SMT system uses the log-linear model described in sec-
tion 3.5.3. The components of the log-linear combination where instantiated as follows: a
standard backoff language model estimated by means of the SRILM toolkit was used to im-
plementh1; h2 was implemented by means of a set of normal distributions; inverse and direct
phrase-based models without smoothing generated by means of the THOT toolkit were used
to implementh3 andh4, respectively; the target phrase length model,h5, was implemented
by means of a geometric distribution; finally, geometric distributions were used to implement
the source phrase length and the distortion models,h6 andh7, respectively.

The experiments were performed using the Xerox corpora and the EU corpora as well as
in the previous section. We also used the same evaluation measures, including KSMR and
KSR compared with CER and PKSR.

8.2.1 Experiments with the Xerox Corpus

In Table8.10 the IMT results for the Xerox corpora (for the three languagepairs and both
translation directions) using our proposed IMT system based on stochastic error-corrections
models are shown. A monotonic SMT system was used to generatethe word graphs that
are required during the IMT process. MERT for the development corpus was performed to
adjust the weights of the log-linear model. The last column of Table8.10shows the average
time in seconds per iteration needed to complete a new translation given a user validated pre-
fix. These times allow the system to work on a real time scenario, and they are even lower
than those obtained by the IMT system based on partial phrase-based alignments given in Ta-
ble 8.3. By contrast, the obtained KSMR results are slightly worse.This is because the
greater simplicity of the word-graph based IMT system, which carries out only one transla-
tion process at the first interaction of the interactive translation of each source sentence.
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Table 8.10:KSMR results for the three Xerox corpora, using an IMT system based on
stochastic error-correction models. Word graphs were generated bymeans of a mono-
tonic SMT system. MERT was performed. The average time in seconds per interaction
is also reported.

Corpus KSMR s/inter.
Spa–Eng 21.2 0.010
Eng–Spa 19.8 0.010
Fre–Eng 41.2 0.012
Eng–Fre 37.5 0.013
Ger–Eng 41.0 0.012
Eng–Ger 42.7 0.012

Table 8.11:KSMR results for the three Xerox corpora, using an IMT system based on
stochastic error-correction models. Word graphs were generated bymeans of a non-
monotonic SMT system. MERT was performed. The average time in seconds per
interaction is also reported.

Corpus KSMR s/inter.
Eng–Spa 19.3 0.048
Eng–Fre 36.9 0.100
Eng–Ger 42.2 0.084

We also performed non-monotonic experiments. Table8.11 shows the KSMR results
when translating the Xerox test corpora from English to the other three languages. Word
graphs were generated by means of a non-monotonic SMT system. The weights of the IMT
system were tuned using the MERT algorithm. The average timecosts per each interaction
are also shown. As can be seen, slight improvements with respect to the monotonic IMT
system can be obtained, at the cost of higher interaction times.

We carried out experiments to compare the performance of ourproposed IMT system
based on stochastic error-correction models with that of the post-editing approach. Table8.12
shows the obtained results. According to the table, our proposed IMT system allowed us to
significantly reduce the required human effort with respectto post-editing the output of an
SMT system.

Finally, in Table8.13 a comparison of the results obtained by our phrase-based IMT
system based on stochastic error-correction models (PB-SECM) with state-of-the-art IMT
systems is reported (95% confidence intervals are shown). Asin previous sections, the com-
parison includes the KSMR results obtained by IMT systems using different translation tech-
nologies, namely, alignment templates (AT), stochastic finite-state transducer (SFST), and
phrase-based models (PB). Additionally, we also show the results of the IMT system based
on partial phrase-based alignments (PSPBA) that were reported in the previous section. As
can be seen, our system is competitive with the SFST and the ATsystems but underperforms
the results obtained by the PB and PSPBA IMT systems. It is worth mentioning that the
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Table 8.12:CER and PKSR obtained with the post-editing approach and KSR obtained
with our proposed IMT system based on error-correction models (word graphs were
generated by means of a monotonic SMT system). The results were obtained for the
Xerox corpora.

Corpus CER PKSR KSR
Eng–Spa 21.6 16.8 11.8
Eng–Fre 47.9 35.6 24.5
Eng–Ger 55.2 39.1 28.3

AT and the SFST systems are also based on word graphs and error-correction techniques to
generate the suffixes required in IMT, as well as our proposedIMT system; specifically, these
systems obtain the translation of minimum edit distance to the given prefix. By contrast, the
PB and PSPBA IMT systems generate a new translation of the source sentence at each inter-
action of the IMT process instead of generating a word graph at the beginning. This allows
such IMT systems to obtain better results but generally withhigher time costs per interaction.

Table 8.13: KSMR results comparison of our IMT system based on stochastic error-
correction models and four different state-of-the art IMT systems (word graphs were
generated by means of a monotonic SMT system). 95% confidence intervals are shown.
The experiments were executed on the Xerox corpora. Best results are shown in bold.

Corpus AT PB SFST PSPBA PB-SECM
Spa–Eng 24.0±1.3 18.1±1.2 26.9±1.3 19.6±1.1 21.2±1.2
Eng–Spa 23.2±1.3 16.7±1.2 21.8±1.4 17.6±1.1 19.8±1.3
Fre–Eng 40.5±1.4 37.2±1.3 45.5±1.3 37.0±1.4 41.1±1.4
Eng–Fre 40.4±1.4 35.8±1.3 43.8±1.6 34.4±1.2 37.5±1.2
Ger–Eng 45.9±1.2 36.7±1.2 46.6±1.4 39.5±1.1 41.0±1.2
Eng–Ger 44.7±1.2 40.1±1.2 45.7±1.4 39.2±1.1 42.7±1.1

8.2.2 Experiments with the EU Corpus

We executed experiments on the EU corpora using our IMT system based on stochastic error-
correction models. Table8.14shows the obtained KSMR results when translating from Span-
ish, French and German to the English language. The word graphs required in the IMT pro-
cess were generated by means of a monotonic SMT system. The weights of the log-linear
models were tuned via MERT. The table also shows the average time costs per each inter-
action of the interactive translation. Again, we observe worse KSMR results and lower time
costs per interaction of the IMT system based on stochastic error-correction models with re-
spect to the results obtained by the IMT system based on partial phrase-based alignments (see
Table8.7).

We also performed experiments to compare the results of our proposed IMT system with
those of the post-editing approach. Table8.15shows the CER, PKSR and KSR results for the
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Table 8.14: KSMR results for the three EU corpora, using an IMT system based on
stochastic error-correction models. Word graphs were generated bymeans of a mono-
tonic SMT system. MERT was performed. The average time in seconds per iteration is
also reported.

Corpus KSMR s/inter.
Spa–Eng 26.9 0.021
Fre–Eng 23.2 0.027
Ger–Eng 31.9 0.024

Table 8.15:CER and PKSR obtained with the post-editing approach and KSR obtained
with our proposed IMT system based on error-correction models (word graphs were
generated by means of a monotonic SMT system). The results were obtained for the
EU corpora.

Corpus CER PKSR KSR
Spa–Eng 37.4 26.7 16.7
Fre–Eng 32.8 23.4 14.3
Ger–Eng 43.5 30.7 20.1

Table 8.16: KSMR results comparison of our IMT system based on stochastic error-
correction models and four different state-of-the art IMT systems (word graphs were
generated by means of a monotonic SMT system). 95% confidence intervals are shown.
The experiments were executed on the EU corpora. Best results are shown in bold.

Corpus AT PB SFST PSPBA PB-SECM
Spa–Eng 33.3±1.3 23.8±1.0 31.1±1.3 21.9±1.0 26.9±1.0
Fre–Eng 28.6±1.2 21.5±1.0 28.0±1.2 19.5±0.9 23.2±1.0
Ger–Eng 38.1±1.4 31.7±1.0 39.1±1.5 28.2±1.2 31.9±1.1

three EU test corpora. Again, the required human effort was lower for the interactive system.
As in previous sections, we also present a comparison between the results obtained by

our IMT system and those obtained by state-of-the-art IMT systems following different
translation approaches, including the alignment templates (AT), the stochastic finite-state
transducers (SFST) and the phrase-based (PB) approaches toIMT. Again, we have also in-
cluded the results obtained by our proposed IMT system basedon partial phrase-based align-
ments (PSPBA). Table8.16shows the obtained KSMR results (95% confidence intervals are
shown). Again, the PB and PSPBA IMT systems obtained the bestresults, and our PB-SECM
IMT system outperformed the results of the AT and the SFST IMTsystems, which are also
based on error-correction techniques to generate the suffixes required in IMT.
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8.3 IMT with Online Learning

This section describes the experiments that we carried out to test our proposed online IMT
system presented in Chapter7. In our experiments, the basic IMT system is restricted to
obtain monotonic alignments between the source and the target sentences. The incremental
language and phrase-based models involved in the interactive translation process were gen-
erated and accessed by means of a yet unpublished extension of the THOT toolkit presented
in this thesis.

We evaluated our IMT system with online learning by means of the KSMR measure
described in section1.9.3. In addition to this, we also used the well-known BLEU score to
measure the translation quality of the first translation hypothesis produced by the IMT system
for each source sentence (which is automatically generatedwithout user intervention).

8.3.1 Experiments with the Xerox Corpus

To test our proposed techniques, we carried out experimentswith the Xerox corpora in two
different scenarios. In the first one, the first10 000 sentences extracted from the training cor-
pora were interactively translated by means of an IMT systemwithout any preexistent model
stored in memory. Each time a new sentence pair was validated, it was used to incrementally
train the system. To save computation time, monotonic search was used in all cases. Default
values for the weights of the log-linear model were adopted.Figures8.1a, 8.1b and8.1c
show the evolution of the KSMR with respect to the number of sentence pairs processed by
the IMT system; the results correspond to the translation from English to Spanish, French and
German, respectively. In addition to this, for each language pair we interactively translated
the original portion of the training corpus and the same portion of the original corpus after
being randomly shuffled.

As the above mentioned figures show, the results clearly demonstrate that the IMT system
is able to learn from scratch. The results were similar for the three languages. It is also
worthy of note that the obtained results were better in all cases for the original corpora than
for the shuffled ones. This is because, in the original corpora, similar sentences appear more
or less contiguously (due to the organisation of the contents of the printer manuals). This
circumstance increases the accuracy of the online learning, since with the original corpora the
number oflateral effectsoccurred between the translation of similar sentences is decreased.
The online learning of a new sentence pair produces a lateraleffect when the changes in the
probability given by the models not only affect the newly trained sentence pair but also other
sentence pairs. A lateral effect can cause that the system generates a wrong translation for a
given source sentence due to undesired changes in the statistical models.

The accuracy were worse for shuffled corpora, since shufflingincreases the number of
lateral effects that may occur between the translation of similar sentences (because they no
longer appear contiguously). These results illustrate theimportance of the order in which
knowledge is acquired when executing incremental learningalgorithms that was mentioned
in section7.3. A good way to compare the quality of different online IMT systems is to
determine their robustness in relation to sentence ordering. However, it can generally be
expected that the sentences to be translated in an interactive translation session will be in a
non-random order.
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Figure 8.1: KSMR evolution translating a portion of the Xerox training corpora. A
monotonic online IMT system with log-linear weights tuned via MERT was used.

174 DOM-DSIC-UPV



8.3. IMT with Online Learning

Alternatively, we carried out experiments in a different learning scenario. Specifically,
the Xerox test corpora were interactively translated from the English language to the other
three languages, comparing the performance of a batch IMT system with that of an online
IMT system. The batch IMT system is a conventional IMT systemwhich is not able to
take advantage of user feedback after each translation while the online IMT system uses the
new sentence pairs provided by the user to revise the statistical models. Both systems were
initialised with a log-linear model trained in batch mode bymeans of the Xerox training cor-
pora. The weights of the log-linear combination were adjusted for the development corpora
by means of the MERT algorithm.

Table8.17shows the obtained results. The table shows the BLEU score and the KSMR
for the batch and the online IMT systems (95% confidence intervals are shown). Both sys-
tems used monotonic search. The log-linear weights were adjusted by means of the MERT
algorithm. The BLEU score was calculated from the first translation hypothesis produced
by the IMT system for each source sentence (see, for example,the initial interaction in Fig-
ure 1.3). The table also shows the average online learning time (LT)for each new sample
presented to the system. All the improvements obtained withthe online IMT system were
statistically significant. Also, the average learning times clearly allow the system to be used
in a real-time scenario.

Table 8.17: BLEU and KSMR results for the Xerox test corpora using the batch and
the online IMT systems. Both systems used monotonic search with log-linearweights
tuned via MERT. The average online learning time (LT) in seconds is shownfor the
online system.

Corpus IMT system BLEU KSMR LT (s)

Eng-Spa
batch 55.1± 2.3 18.2± 1.1 -
online 60.6± 2.3 15.8± 1.0 0.04

Eng-Fre
batch 33.7± 2.0 33.9± 1.3 -
online 42.2± 2.2 27.9± 1.3 0.09

Eng-Ger
batch 20.4± 1.8 40.3± 1.2 -
online 28.0± 2.0 35.0± 1.3 0.07

Finally, as in previous sections, a comparison of the KSMR results (95% confidence
intervals are shown) obtained by the online IMT system with state-of-the-art IMT systems
is reported in Table8.18. These IMT systems are based on different translation approaches,
including the alignment templates (AT), the stochastic finite-state transducer (SFST), and the
phrase-based (PB) approaches to IMT. Our system outperformed the results obtained by these
systems.

8.3.2 Experiments with the EU Corpus

We executed additional experiments on the EU corpus to test the learning capabilities of our
proposed online IMT system. In this case, the experimentation was restricted to the French-
English language pair. In addition to this, only the second experimentation scenario described
in section8.3.1was considered here.
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Table 8.18:KSMR results comparison of our system and three different state-of-the-art
batch systems. The experiments were executed on the Xerox corpora.Best results are
shown in bold.

Corpus AT PB SFST Online
Eng-Spa 23.2±1.3 16.7±1.2 21.8±1.4 15.8± 1.0
Eng-Fre 40.4±1.4 35.8±1.3 43.8±1.6 27.9± 1.3
Eng-Ger 44.7±1.2 40.1±1.2 45.7±1.4 35.0± 1.3

Table8.19shows a comparison of the performance of a batch IMT system with that of
an online IMT system when translating the French-English test set of the EU corpus. Both
systems used monotonic search and were initialised with a log-linear model trained in batch
mode by means of the EU training corpus. The weights of the log-linear model were adjusted
via MERT. The table shows the BLEU score (calculated from thefirst translation hypothesis
produced by the IMT system) and the KSMR measure for the batchand the online IMT
systems (95% confidence intervals are shown). The table also shows the average online
learning time (LT) for each new sample presented to the system. As can be seen in the table,
the online IMT system is not able to improve the results obtained by the batch IMT system.
The accuracy of online learning may depend of a series of factors, including the ordering of
the test sentences, the presence or not of similar sentencesthat cannot be correctly translated
by the IMT system or the size of the test set (online learning techniques are to be evaluated in
the long term). We think that one possible reason to explain the results can be the small size
of the EU test set, which is composed of only800 sentences (below we show the results of
an additional experiment that tries to validate this hypothesis). Regarding the learning time
per sample, a small increase can be observed with respect to the learning times that were
reported for the Xerox corpora (see Table8.17), despite this, the proposed techniques can
still be applied in a real time scenario.

Table 8.19: BLEU and KSMR results for the French-English EU test corpus using the
batch and the online IMT systems. Both IMT systems used monotonic search. MERT
was performed. The average online learning time (LT) in seconds is shown for the
online system.

Corpus IMT system BLEU KSMR LT (s)

Fre-Eng
batch 47.6±2.0 21.5±1.3 -
online 47.6±1.9 21.5±1.0 0.342

In order to determine the influence of the size of the test set in the performance of the
online IMT system, we repeated the same experiment using an alternative partition of the
French-English EU corpus. Specifically, the last5 000 sentence pairs of the French-English
EU training corpus were used as the new test set and all the previous ones as the new training
set. Table8.20shows the BLEU score, the KSMR measure and the average learning time
(LT) in seconds that were obtained during the interactive translation of the alternative test
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set using a batch and an online IMT system. Both systems used monotonic search and their
log-linear weights were adjusted using the MERT algorithm.

Table 8.20:BLEU and KSMR results for an alternative partition of the French-English
EU corpus using the batch and the online IMT systems. Both systems used monotonic
search. The log-linear weights were tuned by means of the MERT algorithm. The
average online learning time (LT) in seconds is shown for the online system.

Corpus IMT system BLEU KSMR LT (s)

Fre-Eng
batch 45.1±0.8 21.6±0.4 -
online 46.5±0.8 20.9±0.4 0.380

As can be seen in the table, the online IMT system is now able toobtain slight improve-
ments both in terms of BLEU and KSMR with respect to the batch IMT system. There are
no significant differences between the obtained average learning time and that obtained while
interactively translating the standard test corpus.

8.4 Summary

In this chapter we have empirically demonstrated that the concept of partial phrase-based
alignment can be successfully used to implement IMT systems. The details of the proposal
were described in section6.2. The experiments we carried out show the great impact of the
smoothing techniques in the accuracy of our system. The combination of a phrase-based
model estimator with a lexical distribution yielded the best results. Three different combina-
tion techniques were tested: backing-off, linear interpolation and log-linear interpolation. As
we expected, backing-off and linear interpolation worked better.

We have also compared the results obtained by our system withthose obtained by state-
of-the-art IMT systems. Our system obtained similar results and in some cases clearly out-
performed the results obtained by the state-of-the-art systems.

In addition to this, we also carried out experiments to test the IMT system based on error-
correction techniques described in section6.3. The results of the experiments show that the
IMT system based on error-correction techniques obtains worse results but is faster than the
IMT system based on partial phrase-based alignments that was also proposed in this thesis.
Again, we compared the proposed IMT system with other state-of-the-art IMT systems. Our
IMT system outperformed the results of those state-of-the-start IMT systems that are based
on word graphs.

We empirically demonstrated that the two IMT systems proposed in this thesis were able
to reduce the user effort that is required to generate correct translations with respect to using
a conventional SMT system followed by human post-editing. For this purpose, we compared
the KSR results obtained by our proposed systems with the CERand PKSR results calculated
from the fully-automatic translations.

Finally, we also performed experiments to test the IMT system with online learning tech-
niques proposed in Chapter7. The results of the experiments show that our techniques allow
the IMT system to learn from scratch or from previously estimated models. In addition to this,
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the online learning techniques proposed in this thesis allowed us to significantly outperform
the results obtained by other state-of-the-art IMT systemsdescribed in the literature.
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CHAPTER 9

CONCLUSIONS

In this chapter we summarise the achievements of this thesisand provide a list of publica-
tions related with these achievements. Additionally, the chapter is concluded with a list of
directions for future work.

9.1 Summary

In Chapter2, we defined the list of scientific ([SC]) and technologic ([TC]) goals of this
thesis. These goals were classified into fully automatic andinteractive phrase-based SMT
goals. In this section we summarise the achievements of thisthesis with respect to the list of
scientific and technologic goals:

1. Fully-automatic phrase-based SMT achievements

• Improved phrase-based model estimation[SC]

We proposed an alternative estimation technique for phrase-based models which
we have called BRF (bisegmentation-based relative frequency) estimation. BRF
estimation tries to reduce the strong heuristic component of the standard estima-
tion method by considering the extracted phrase pairs as part of complete biseg-
mentations of the source and target sentences. We theoretically studied the com-
putational complexity of the estimation algorithm, findingthat the problem is
tractable under some conditions that are commonly met by existing corpora. This
was empirically demonstrated by means of a series of experiments. It is also im-
portant to stress that the proposed technique did not require additional constraints
to be executed.

Additionally, we also carried out translation quality experiments. The standard
estimation technique slightly outperformed our proposed technique, but the dif-
ferences were not statistically significant. In spite of this, BRF estimation ob-
tained higher likelihood values than the standard estimation technique for corpora
of different complexity. One possible explanation for the negative results may be
that our estimation technique overfits the training data. Anyway, we think that the
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acceptable time cost of BRF estimation makes it interestingas a starting point to
implement more sophisticated estimation techniques for phrase-based models.

• Phrase-based model estimation from very large corpora[TC]
We proposed a specific training procedure that allows us to train phrase-based
models from corpora of an arbitrary size without introducing a significant time
overhead. The proposed training procedure works by transforming memory re-
quirements into hard disk requirements. One advantage of the proposed estima-
tion technique is its ability to collect the information that is required to gener-
ate direct and inverse probabilities in only one iteration over the set of training
samples. The direct and inverse probabilities can be efficiently obtained from
the collected information using appropriate data structures. Experimental results
obtained on the Europarl corpus shows that the proposed techniques efficiently
estimate the parameters of phrase-based models, in some cases even outperform-
ing the efficiency of the standard estimation algorithm. In addition to this, the
proposed technique can be easily parallelised.

• Development of open-source software for phrase-based SMT[TC]
We developed the open-source THOT toolkit for SMT (see AppendixB). The
THOT toolkit allows to estimate phrase-based models using two different estima-
tion techniques, namely, the well-known, standard phrase-based model estimation
technique and the BRF estimation technique proposed in thisthesis. The THOT

toolkit has been successfully used throughout this thesis to execute SMT and
IMT experiments. The development of the THOT toolkit also aimed at offering
a publicly available resource for the research community. The toolkit is hosted
by SourceForgea and released under GPL license. According to information pro-
vided by the SourceForge web site, THOT has been downloaded more than one
thousand times since its first release. In addition to this, the toolkit has been cited
in different research papers.

• Specific phrase-based model derivation[SC]
We proposed a specific derivation for phrase-based models that allows us to ob-
tain a set of statistical submodels governing different aspects of the translation
process. In addition to this, these submodels can be introduced as individual
components of a log-linear model. Such log-linear model wassuccessfully used
throughout this thesis to define and implement different tools, including a phrase-
based SMT decoder, a tool to generate alignments at phrase level and a set of
IMT systems using different technologies.

• Branch-and-bound search for phrase-based SMT[SC]
We described a search algorithm for SMT which is based on the well-known
branch-and-bound search paradigm. The computational complexity of the pro-
posed algorithm can be bounded by the complexity of a well-known dynamic
programming algorithm described in the literature. The proposed algorithm in-
corporates different pruning techniques. Among such pruning techniques, the
most important one is the maximum stack size limitation. Thepruning efficiency

ahttp://sourceforge.net/
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is improved by using multiple stacks. Specifically, those hypotheses with the
same number of aligned source words are stored into the same stack.

The initial search algorithm can be modified to obtain new algorithms with dif-
ferent properties, including the breadth-first search algorithm and the generalised
multiple-stack search algorithms. Such generalised algorithms can explore the
search space either in a best-first or a breadth-first manner.

The search space can be explored in a breadth-first fashion bymodifying the scor-
ing function of the initial search algorithm. We theoretically demonstrated that
the computational complexity of best-first search cannot bebounded by the com-
plexity of breadth-first search when a maximum stack size limitation is imposed.
Nevertheless, empirical results show that best-first search is less time consuming
than breadth-first search when translating simple corpora.In addition to this, best-
first search executes a less aggressive pruning of the searchspace. As a result,
best-first search allowed us to slightly improve the averagescore per sentence for
a given test corpus with respect to breadth-first search.

Generalised best-first search algorithms determine the number of stacks that will
be used during the search process by means of the so-called granularity parameter.
This parameter allows us to make a tradeoff between the advantages of single- and
multiple-stack algorithms. Empirical results were not positive, obtaining a worse
average score per sentence with respect to the initial algorithm. One possible
reason for these results may be that the proposed algorithmsstores hypotheses
with different number of aligned words in the same stack.

Generalised breadth-first search algorithms improve the pruning efficiency by
defining equivalence classes for the partial hypotheses. Such equivalence classes
are used to map partial hypotheses to stacks. Empirical results show that these
algorithms outperform conventional breadth-first search algorithms in terms of
average score and time cost per sentence.

Finally, we compared the translation quality obtained by a decoder using gener-
alised breadth-first search with that obtained with the Moses decoder. The ob-
tained results were similar for both decoders when translating the test sets of
the Xerox and EU corpora. Regarding the Europarl corpora, Moses obtained
similar results to those obtained by our proposed decoder when translating from
French and German to the English language, and significantlyoutperformed our
decoder for the Spanish-English language pair. Nevertheless, if the lexical log-
linear components of the Moses decoder are removed (our proposed decoder does
not include them), then the observed differences between the two decoders were
not statistically significant.

• Efficient decoding with large phrase-based models[TC]

We proposed a technique to efficiently handle phrase-based models composed of
millions of parameters. The proposed technique is stronglyinspired by a clas-
sic concept of computer architecture: cache memory. The proposed technique
allows to transform main memory requirements into disk requirements without
introducing significant time overhead. In addition to this,we also proposed a spe-
cific data structure with very low memory requirements to represent the phrase
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pairs that compose the phrase models. Experiments carried out on the Europarl
corpus show that the proposed cache memory architecture hasa extremely low
rate of cache misses, allowing a very efficient access to phrase-based model pa-
rameters. Regarding the proposed data structure, we empirically demonstrated
that it greatly reduces the memory requirements with respect to the requirements
of standard representation techniques.

• Generation of phrase-based alignments[SC]

We studied the problem of generating alignments at phrase level. The main dif-
ficulty that may be encountered during the generation of phrase-level alignments
are those situations in which the phrase pairs that are required to compose the
phrase alignments are not contained in the phrase table. Theproposed solution
is based on the use of a phrase-based statistical alignment model together with
a set of smoothing techniques. The smoothing techniques consists of different
statistical phrase-based model estimators and a lexical distribution which can be
combined by means of backoff techniques, linear interpolation or log-linear inter-
polation. In addition to this, a specific search algorithm able to efficiently explore
the space of possible phrase alignments was proposed (specifically, only the hy-
pothesis expansion algorithm has to be modified).

Although we were interested in evaluating the quality of thephrase-to-phrase
alignments, there is not a gold standard for them. As a resultof this, we needed
to refine the obtained phrase alignments to word alignments in order to compare
them with other existing word alignment techniques. Experimental results for a
well-known shared task on word alignment evaluation were obtained. The results
show the great impact of the smoothing techniques on alignment quality. As
we expected, backing-off and linear interpolation worked better than log-linear
interpolation.

2. Interactive phrase-based SMT achievements

• Alternative IMT techniques [SC]

A common problem in IMT arises when the user sets a prefix whichcannot be ex-
plained by the statistical models used by the IMT system. By this reason, existing
systems use specific techniques to robustly generate the suffixes required in IMT.
In this thesis we presented two novel IMT techniques which tackle this problem
in different ways. The first one constitutes an application of the techniques to
generate alignments at phrase level that were also presented in this thesis. In this
technique, robustness is ensured via the application of smoothing techniques over
the phrase-based models as well as by means of a specific search algorithm.

The second IMT technique proposed in this thesis is based on the application
of error-correction techniques over the target sentences generated by the SMT
system, allowing us to obtain the translation that better explains the user prefix. In
contrast with other similar IMT systems described in the literature, we modify the
statistical formalisation of the IMT process to justify theuse of error-correction
techniques. As it is explained in Chapter6, this new IMT formalisation can be
generalised for its use in other pattern recognition applications.
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Empirical results obtained on the Xerox and the EU corpora demonstrate that the
two IMT systems proposed in this thesis are competitive withstate-of-the-art IMT
systems. The IMT system based on the application of error-correction techniques
was faster than the IMT system based on phrase-level alignments, but obtained
worse results.
Additionally, we also empirically demonstrated that the two proposed IMT sys-
tems reduced the user effort that is required to generate correct translations with
respect to using a conventional SMT system followed by humanpost-editing.
Finally, the IMT techniques proposed in this thesis have been implemented into
an IMT prototype. Such prototype is described in AppendixC.

• Online learning for IMT [SC]
We presented an IMT system that is able to learn from user feedback by means
of online learning techniques. This contrasts with existing IMT systems, which
are based on the well-known batch learning paradigm. The proposed system
is able to incrementally extend the statistical models involved in the translation
process, breaking technical limitations encountered in other works. Empirical
results obtained on the Xerox and the EU corpora show that ourtechniques allow
the IMT system to learn from scratch or from previously estimated models. One
key aspect of the proposed system is the use of HMM-based alignment models
trained by means of the incremental EM algorithm.

9.2 Scientific Publications

In this section we summarise the list of publications derived from the work presented in this
thesis.

The BRF phrase-based model estimation procedure along withthe THOT toolkit pre-
sented in Chapter3, were described in an international conference:

• D. Ortiz, I. Garćıa-Varea, and F. Casacuberta. Thot: a toolkit to train phrase-based
statistical translation models. InProceedings of the Machine Translation Summit X,
pages 141–148. Asia-Pacific Association for Machine Translation, Phuket, Thailand,
September 2005.CORE B

The THOT toolkit also yielded a publication in an international workshop as an invited
talk as well as in a national and an international conference:

• D. Ortiz, I. Garćıa-Varea, F. Casacuberta, L. Rodrı́guez, and J. Toḿas. Thot. New
features to deal with larger corpora and long sentences. InTC-STAR OpenLab on
Speech Translation Workshop, Trento, Italy, 30th March - 1st April 2006. http://tc-
star.itc.it/openlab2006/day1/GarciaVarea.pdf.invited talk .

• D. Ortiz, I. Garćıa-Varea, and F. Casacuberta. Estimación de modelos de traducción
de secuencias de palabras a partir de corpus muy grandes mediante thot. InActas de
las IV Jornadas en Tecnologı́as del Habla, pages 65-70, Zaragoza, Spain, November
2006.
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• R. San-Segundo, A. Pérez, D. Ortiz, L. F. D’Haro, I. Torres, and F. Casacuberta. Eval-
uation of alternatives on speech to sign language translation. In Proceedings of the
Interspeech conference, pages 2529–2532, Antwerp, Belgium, August 2007.CORE A

The techniques to estimate phrase-based models from very large corpora presented in
Chapter3; as well as the techniques to access the resulting models during the decoding stage
presented in Chapter4, were described in a national and an international conference:

• D. Ortiz, I. Garćıa-Varea, and F. Casacuberta. Algunas soluciones al problema del
escalado en traducción autoḿatica estad́ıstica. InActas del Campus Multidisciplinar
en Percepcíon e Inteligencia, pages 830–842, Albacete, Spain, July 2006.

• D. Ortiz, I. Garćıa-Varea, and F. Casacuberta. A general framework to deal with the
scaling problem in phrase-based statistical machine translation. InProceedings of the
3rd Iberian Conference on Pattern Recognition and Image Analysis, volume 4478 of
Lecture Notes in Computer Science, pages 314–322. Springer Verlag, Girona (Spain),
June 2007.CORE C

These techniques also yielded a publication in an international journal:

• D. Ortiz-Mart́ınez, I. Garćıa-Varea, and F. Casacuberta. The scaling problem in the
pattern recognition approach to machine translation.Pattern Recognition Letters,
29:1145–1153, 2008.JCR

A predecessor of the work on decoding with branch-and-boundsearch algorithms pre-
sented in Chapter4 was published in an international conference. In this work,single-word
alignment models instead of phrase-based models were used:

• D. Ortiz, I. Garćıa-Varea, and F. Casacuberta. An empirical comparison of stack-
based decoding algorithms for statistical machine translation. In Proceedings of the
1st Iberian Conference on Pattern Recognition and Image Analysis, volume 2652 of
Lecture Notes in Computer Science, pages 654–663. Springer Verlag, Mallorca, Spain,
June 2003.CORE C

Some of the features of the generalised branch-and-bound search algorithm for phrase-
based models were presented in an international workshop:

• D. Ortiz, I. Garćıa-Varea, and F. Casacuberta. Generalized stack decoding algorithms
for statistical machine translation. InProceedings of the HLT-NAACL Workshop on
Statistical Machine Translation, pages 64–71, New York City, USA, June 4–9 2006.

The proposed branch-and-bound search algorithms proposedin this thesis were used to
implement an improved IMT system in the following international conference:

• G. Sanch́ıs-Trilles, D. Ortiz-Mart́ınez, J. Civera, F. Casacuberta, E. Vidal, H. Hoang.
Improving interactive machine translation via mouse actions. InProceedings of the
Empirical Methods in Natural Language Processing conference, pages 485–494, Hon-
olulu, Hawaii, November 2008.CORE A
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Additionally, The proposed branch-and-bound search algorithms were also used to em-
pirically demonstrate theoretical results related to lossfunctions in SMT. This work was
presented in an international journal:

• J. Andŕes Ferrer, D. Ortiz Martı́nez, I. Garca Varea, F. Casacuberta Nolla. On the use of
different loss functions in statistical pattern recognition applied to machine translation.
In Pattern Recognition Letters, 29(8):1072-1181, 2008.JCR

The phrase-level alignment generation technique described in Chapter4 was published in
an international conference:

• D. Ortiz-Mart́ınez, I. Garćıa-Varea, and F. Casacuberta. Phrase-level alignment genera-
tion using a smoothed loglinear phrase-based statistical alignment model. InProceed-
ings of the Conference of the European Association for Machine Translation, pages
160–169, Hamburg, Germany, September 2008.best paper award. CORE B

This contribution received the best paper award sponsored by the Springer Verlag edi-
torial to a paper accepted for publication in the EAMT conference.

A predecessor of the work on phrase-level alignment generation mentioned above was
presented in an international conference:

• I. Garćıa-Varea, D. Ortiz, F. Nevado, P. A. Gómez, and F. Casacuberta. Automatic
segmentation of bilingual corpora: A comparison of different techniques. InProceed-
ings of the 2nd Iberian Conference on Pattern Recognition and Image Analysis, volume
3523 ofLecture Notes in Computer Science, pages 614–621. Springer Verlag, Estoril,
Portugal, June 2005.CORE C

The generation of phrase-level alignments was applied to implement a technique to prune
the parameters of phrase-based models. Such technique was presented in an international
conference:

• G. Sanch́ıs-Trilles, D. Ortiz-Mart́ınez, J. Gonźalez-Rubio, J. Gonźalez, F. Casacuberta.
Bilingual segmentation for phrasetable pruning in statistical machine translation. In
Proceedings of the European Association for Machine Translation, pages 257–264,
Leuven, Belgium, May, 2011.CORE B

The IMT system based on partial phrase-based alignments described in Chapter6 was
published in an international conference:

• D. Ortiz-Mart́ınez, I. Garćıa-Varea, and F. Casacuberta. Interactive machine translation
based on partial statistical phrase-based alignments. InProceedings of the Interna-
tional Conference Recent Advances in Natural Language Processing, pages 330–336,
Borovets, Bulgaria, September 2009. (paper selected to appear in the volume “Best
RANLP papers” ). CORE C

This contribution has been selected to appear in the volume “Best RANLP papers”
published by John Benjamins, due to the excellent reviews received at this conference.
In addition to this, the authors have been invited to submit an extended version of the
paper to the JNLE (Journal of Natural Language Engineering).
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The IMT techniques presented in Chapter6 were used to build different prototypes that
were presented in international conferences:

• V. Alabau, D. Ortiz, V. Romero, and J. Ocampo. A multimodal predictive-interactive
application for computer assisted transcription and translation. In Proceedings of the
International Conference on Multimodal interfaces, pages 227–228, New York, NY,
USA, 2009. ACM.CORE B

• D. Ortiz-Mart́ınez, L. A. Leiva, V. Alabau, and F. Casacuberta. Interactive machine
translation using a web-based architecture. InProcedings of the International Con-
ference on Intelligent User Interfaces, pages 423–425. Hong Kong, China, February
2010.CORE A

• V. Alabau, D. Ortiz-Mart́ınez, A. Sanch́ıs, F. Casacuberta. Multimodal interactive
machine translation. InProceedings of the International Conference on Multimodal
Interfaces, Beijing, China, November 2010.CORE B

Additionally, the IMT system based on error-correction techniques was the basis of two
new IMT system proposals which were presented in international conferences:

• J. Gonźalez-Rubio, D. Ortiz-Martı́nez, F. Casacuberta. On the use of confidence mea-
sures within an interactive-predictive machine translation system. InProceedings of
the European Association for Machine Translation conference, Saint Raphael, France,
May, 2010.CORE B

• J. Gonźalez-Rubio, D. Ortiz-Martı́nez, F. Casacuberta. Balancing user effort and trans-
lation error in interactive machine translation via confidence measures. InProceedings
of the 48th Annual Meeting of the Association for Computational Linguistics, pages
173–177, Uppsala, Sweden, July, 2010.CORE A

The online learning techniques for IMT presented in Chapter7, as well as a prototype of
an IMT system with online learning capabilities were published in two international confer-
ences:

• D. Ortiz-Mart́ınez, I. Garćıa-Varea, F. Casacuberta. Online learning for interactive
statistical machine translation. InProceedings of the North American Chapter of
the Association for Computational Linguistics - Human Language Technologies, pages
546–554, Los Angeles, USA, June 2010.CORE A

• D. Ortiz-Mart́ınez, L. A. Leiva, V. Alabau, I. Garcı́a-Varea, and F. Casacuberta. An
interactive machine translation system with online learning. In Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics - Human Lan-
guage Technologies, pages 68–73, companion volume, system demonstrations, Port-
land, USA, June 2011.CORE A

Finally, part of the work on IMT presented in this thesis was also published in three book
chapters:
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• J. Civera, J. Gonźalez-Rubio, D. Ortiz-Martı́nez. Interactive machine translation. In
Multimodal Interactive Pattern Recognition and Applications, pages 135-152, Springer,
June, 2011.

• D. Ortiz-Mart́ınez, I. Garćıa-Varea. Incremental and adaptive learning for interactive
machine translation. InMultimodal Interactive Pattern Recognition and Applications,
pages 169-178, Springer, June, 2011.

• L. A. Leiva, V. Alabau, V. Romero, F. M. Segarra, R. Sánchez Śaez, D. Ortiz-Mart́ınez,
L. Rodŕıguez. Prototypes and demonstrators. InMultimodal Interactive Pattern Recog-
nition and Applications, pages 227-266, Springer, June, 2011.

9.3 Future Work

In this section we outline future directions for further developments of the work presented in
this thesis.

• Richer phrase-based models using BRF estimation

In this thesis, an alternative estimation technique for phrase-based models called BRF
estimation has been proposed. As was explained in Chapter3, the proposed technique
can be straightforwardly modified to obtain more detailed information about the biseg-
mentation process, including information about bisegmentation lengths, about source
and target phrase lengths or about reorderings. This contrasts with the vast majority of
phrase-based models described in the literature, where only the phrase-to-phrase prob-
abilities and (in some cases) the reordering probabilitiesare estimated from training
data.

• Improved phrase-based model estimation using EM algorithm

As was explained in Chapter3, the BRF estimation algorithm can be modified to effi-
ciently compute the sum of the probability for each possiblebisegmentation composed
of consistent phrase pairs. This extension can be used to partially compute the E step
of the EM algorithm. This partial computation can be justified by means of the sparse
version of the EM algorithm proposed in [NH98]. The resulting estimation procedure
would be similar to that proposed in [DGZK06]. However, in that work the maximum
phrase length is limited to three words and only lexical and distortion parameters are
estimated. We think that our proposed computation of the E step will allow us to re-
move the maximum phrase length limitation. In addition to this, our proposed specific
phrase-based model derivation can be applied to determine acomplete set of distribu-
tions to be estimated.

Additionally, the information generated by our proposed BRF estimation algorithm can
be used to generate random samples from the set of bisegmentations that are composed
of consistent phrase pairs. For the future we plan to study ifthis sampling technique
can be useful to estimate phrase-based models by means of theMonte-Carlo EM algo-
rithm [WT90].
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• Further development of open-source software

The THOT toolkit constitutes a publicly available resource for the SMT scientific com-
munity and has been successfully used to carry out experiments presented in this thesis.
In addition to this, THOT has also been the starting point to develop new code and tools
for SMT and IMT also used in this thesis, including a phrase-based translation decoder,
a tool to generate alignments at phrase level, IMT engines, tools to incrementally esti-
mate statistical translation models, etc. In the near future, we plan to study the interest
of releasing public versions of this software.

• Further applications of statistical phrase-level alignments

We studied the problem of generating alignments at phrase level, which can be seen as a
slightly modified version of the search problem. One possible application of the gener-
ation of phrase-level alignments is in the area of multi-source SMT [ON01]. In that pa-
per, the PROD ranking technique is described. This technique requires the generation
of phrase-level alignments between two languages, but their authors report coverage
problems that make the technique impractical. These problems can be solved by means
of the techniques proposed here. In addition to this, the best phrase alignments for each
sentence pair can be used to perform a Viterbi-like estimation of phrase-based models
as it is proposed in [WMN10]. Phrase-level alignments have been also used in dis-
criminative training [LBCKT06], training of phrase segmentation models [SDAS08],
etc.

• Development of more complex error-correction models for IMT

In this thesis we proposed an IMT system based on stochastic error-correction mod-
els. These stochastic error-correction models allow us to find the target translation
that better explains the prefix given by the user. We have usedprobabilistic finite
state machines (PFSMs) with ad-hoc parameters as error-correction models. One pos-
sible continuation of the presented work is to estimate the parameters of the PFSMs
by means of the EM algorithm. In addition to this, PFSMs can bereplaced by more
complex models, such as the IBM or the HMM-based alignment models. One advan-
tage of these models with respect to models based on PFSMs is that they can represent
non-monotonic alignments between the target translation and the user prefix.

• Implementation of interactive systems using the proposed generalised formalisa-
tion

One of the IMT techniques presented in this thesis uses an alternative formalisation
of the IMT process in which the target sentence generated by the system and the user
prefix constitute separated entities. As it was explained, this alternative formalisa-
tion can be generalised for its use in other pattern recognition applications, including
multi-source translation, computer assisted speech transcription, multimodal computer
assisted translation and computer assisted transcriptionof text images. For the future,
we plan to implement the pattern recognition applications mentioned above following
our general formalisation.

190 DOM-DSIC-UPV



9.3. Future Work

• Further applications of incremental learning in SMT and IMT

We implemented an IMT system with online learning which is based on the application
of incremental learning techniques. It is worth noting thatthe incremental techniques
proposed here can also be exploited to extend SMT systems (infact, our proposed
IMT system is based on an incrementally updateable SMT system). For the near future
we plan to study possible applications of our techniques both in the SMT and IMT
frameworks. One example of these applications is active learning (the interested reader
can find a survey on active learning in [Set09]). In the active learning paradigm, the
learner pose queries, usually in the form of unlabelled datainstances to be labelled by
an oracle. Incremental learning can help in those active learning scenarios in which
the time required to process a newly labelled sample is slow due to the necessity of
performing a complete retraining of the set of labelled samples.

• Apply online learning techniques in other interactive applications

In this thesis we presented an IMT system with online learning. Online learning fits
nicely into the IMT framework, since the user generates new training samples as a by-
product of the use of the IMT system. The proposed online learning techniques require
the definition of incremental versions of the statistical models involved in the inter-
active translation process. These online learning techniques can be exported to other
interactive applications, such as computer assisted speech transcription, interactive im-
age retrieval, etc (see [VRCGV07] for a complete list).
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[CM09] O. Capṕe and E. Moulines. On-line expectation-maximization algorithm
for latent data models.Journal of the Royal Statistical Society Ser. B,
71(1):593–613, 2009.

[CMR08] D. Chiang, Y. Marton, and P. Resnik. Online large-margin training of syn-
tactic and structural translation features. InProceedings of the Conference
on Empirical Methods in Natural Language Processing, 2008.

[CNO+04] F. Casacuberta, H. Ney, F. J. Och, E. Vidal, J. M. Vilar, S.Barrachina,
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D. Picó, A. Sanchis, and C. Tillmann. Some approaches to statistical and
finite-state speech-to-speech translation.Computer Speech and Language,
18:25–47, January 2004.

DOM-DSIC-UPV 195



Bibliography

[Com08] European Communities. Directorate-general for translation. http://
ec.europa.eu/dgs/translation/index_en.htm , 2008.

[CV04] F. Casacuberta and E. Vidal. Machine translation with inferred stochastic
finite-state transducers.Computational Linguistics, 30(2):205–225, 2004.

[CVC+04] J. Civera, J. M. Vilar, E. Cubel, A. L. Lagarda, S. Barrachina, E. Vidal,
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[LBCKT06] P. Liang, A. Bouchard-Ĉoté, D. Klein, and B. Taskar. An end-to-end dis-
criminative approach to machine translation. InProceedings of the 44th
Annual Meeting of the Association for Computational Linguistics, pages
761–768, Morristown, NJ, USA, 2006.

[LCBO10] A. Levenberg, C. Callison-Burch, and M. Osborne. Stream-based trans-
lation models for statistical machine translation. InProceedings of the
North American Chapter of the Association for Computational Linguistics
- Human Language Technologies, pages 394–402, Los Angeles, California,
June 2010.

[LD60] A. H. Land and A. G Doig. An automatic method of solvingdiscrete pro-
gramming problems.Econometrica, 28(3):497–520, 1960.

[Lev66] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions
and reversals.Soviet Physics Doklady., 10(8):707–710, February 1966.

[LFL00] P. Langlais, G. Foster, and G. Lapalme. Unit completion for a computer-
aided translation typing system.Machine Translation, 15(4):267–294,
2000.

[Lit88] N. Littlestone. Learning quickly when irrelevant attributes abound: A new
linear-threshold algorithm. InMachine Learning, pages 285–318, 1988.
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APPENDIX A

I NCREMENTAL EM A LGORITHM

FOR HMM A LIGNMENT M ODEL

This appendix shows the details of the derivation of the incremental EM algorithm for HMM-
based alignment models. Specifically, we have applied the EMiteration given by (7.8). The
general details of such derivation were presented in Chapter 7.

A.1 Sufficient Statistics

The application of the incremental view of the EM algorithm given by iteration (7.8) requires
the definition of a vector of sufficient statistics for HMM-based alignment model. The set of
parametersΘ for HMM-based alignment models is defined by Equation (7.20).

The vector of sufficient statistics forΘ, s(f , e,a) =
∑

n sn(fn, en,an), is obtained as
the sum of a set of counts for each training sample,sn(fn, en,an). Such set of counts for the
samplen is given by Equation (7.24) and includes counts of aligned words,c(f |e; fn, en,an),
and counts of the width of alignment jumps,c(i|i′, I; fn, en,an). It can be demonstrated
that s(f , e,a) constitutes a sufficient statistic by means of the Fisher-Neyman factorisation
theorem.

Theorem 1 (Fisher-Neyman factorization theorem)Let f(Θ,x) be the density or mass
function for the random vectorx, parametrised by the vectorΘ. The statistics(x) is suf-
ficient forΘ if and only if there exist functionsa(x) (not depending onΘ) and b(Θ, s(x))
such that

f(Θ,x) = a(x) · b(Θ, s(x))

for all possible values ofx.

We use the Fisher-Neyman factorisation theorem to demonstrate thats(f , e,a) consti-
tutes a vector of sufficient statistics for the HMM-based alignment model. For this purpose,
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the log-likelihood function of the complete data that can beobtained by combining equa-
tions (7.22) and (7.23) is represented in terms of the sufficient statistics:

L(Θ, f , e,a) =

N∑

n=1

|fn|∑

j=1

|en|∑

i=1

anji · log p(fnj |eni)+

|en|∑

i′=1

(an(j−1)i′ anji) · log p(i|i
′, |en|) (A.1)

=
∑

f∈F

∑

e∈E

N∑

n=1

c(f |e; fn, en,an) · log p(f |e)+

∑

∀I

I∑

i=1

I∑

i′=0

N∑

n=1

c(i|i′, I; fn, en,an) · log p(i|i
′, I) (A.2)

= a(f , e,a) · b(Θ, s(f , e,a)) (A.3)

wherea(f , e,a) = 1 andb(Θ, s(f , e,a)) is equal to the right-hand side of Equation (A.2).
By the Fisher-Neyman factorisation theorem,s(f , e,a) is sufficient forΘ.

A.2 E step

The E step of the incremental EM algorithm requires the computation of the expected values
of the sufficient statistics for each data item,s̃

(t)
n = Eqn [sn(fn, en,an)], whereqn(an) =

p(an|fn, en,Θ
(t−1)); s̃

(t)
n includes expected counts of the formc(f |e; fn, en,an)(t) and

c(i|i′, I; fn, en,an)
(t).

To computec(f |e; fn, en,an)(t) andc(i|i′, I; fn, en,an)(t), the expected values ofanji
and(an(j−1)i′ anji), respectively, are to be calculated.

The terma
(t)
nji is calculated as follows:

a
(t)
nji = p(anji = 1 | fn, en,Θ

(t))

=
p(fn,anji = 1 | en,Θ

(t))
|en|∑

ı̃=1

p(fn,anj ı̃ = 1 | en,Θ(t))

=
p(f j

n1 ,anji = 1 | en,Θ
(t)) · p(f

|fn|
n(j+1) | f

j
n1 ,anji = 1, en,Θ

(t))

|en|∑

ı̃=1

p(f j
n1 ,anj ı̃ = 1 | en,Θ(t)) · p(f

|fn|
n(j+1) | f

j
n1 ,anj ı̃ = 1, en,Θ(t))

=

αnji · βnji

|en|∑

ı̃=1

αnj ı̃ · βnj ı̃

(A.4)
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A.3. M step

where theα andβ recursive functions are given by Equations (7.32) and (7.33), respectively.
The term(an(j−1)i′ anji)

(t) is given by the following expression:

(an(j−1)i′anji)
(t) = p(an(j−1)i′ = 1,anji = 1 | fn, en,Θ

(t))

=

p(fn,an(j−1)i′ = 1,anji = 1 | en,Θ
(t))

|en|∑

ı̃′=1

|en|∑

ı̃=1

p(fn,an(j−1)̃ı′ = 1,anj ı̃ = 1 | en,Θ(t))

(A.5)

where

p(fn,an(j−1)i′ = 1,anji = 1 | en;Θ
(t)) = p(f

(j−1)
n1 ,an(j−1)i′ = 1 | en,Θ

(t))·

p(anji = 1 | f
(j−1)

n1 ,an(j−1)i′ = 1, en,Θ
(t))·

p(fnj | f
(j−1)

n1 ,an(j−1)i′ = 1,anji = 1, en,Θ
(t))·

p(f
|fn|

n(j+1) | f
j

n1 ,an(j−1)i′ = 1,anji = 1, en,Θ
(t))

=αn(j−1)i′ p(i|i
′, |en|)

(t) p(fnj |eni)
(t) βnji (A.6)

Then,

(an(j−1)i′anji)
(t) =

αn(j−1)i′ · p(i|i
′, |en|)

(t) · p(fnj |eni)
(t) · βnji

|en|∑

ı̃′=1

|en|∑

ı̃=1

αn(j−1)̃ı′ · p(̃ı | ı̃′, |en|)(t) · p(fnj |eñı)(t) · βnj ı̃

(A.7)

A.3 M step

The M step of the incremental EM algorithm obtains the model parameters,Θ(t), that max-
imises the log-likelihood of the complete data given the expected values of the sufficient
statistics,̃s(t).

If we replacesn by s̃
(t)
n in EquationA.2, we obtain the functionQ(Θ|Θ(t−1)) expressed

in terms of the sufficient statistics:

Q(Θ|Θ(t−1)) =
∑

f∈F

∑

e∈E

N∑

n=1

c(f |e; fn, en,an)
(t) · log p(f |e)

+
∑

∀I

I∑

i=1

I∑

i′=0

N∑

n=1

c(i|i′, I; fn, en,an)
(t) · log p(i|i′, I) (A.8)

(A.9)

The maximum-likelihood parameters are given by:

Θ = argmax
Θ

{Q(Θ|Θ(t−1))} (A.10)
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whereΘ includes lexical and alignment parameters that are subjectto the following con-
straints:

∑

f∈F

p(f |e) = 1 ∀ e

I∑

i=1

p(i|i′, I) = 1 ∀ 1 ≤ i′ ≤ I andI
(A.11)

To ensure that the previous constraints are satisfied, we define Lagrange multipliers:

Λ =







−
∑

e∈E

λe

(

∑

f∈F

p(f |e)− 1

)

−
I∑

i′=1

∑

I

λi′I

(
I∑

i=1

p(i|i′, I)− 1

) (A.12)

which are introduced in Equation (A.10), resulting in the following expression:

Θ = argmax
Θ

{max
λ

Q(Θ|Θ(t−1)) + Λ} (A.13)

The maximum-likelihood parameters are obtained by taking derivatives of Equa-
tion (A.13) with respect toΘ andΛ and equating to zero.

According to this maximisation procedure, the lexical parameters,p(f |e), are updated as
follows:

∂Q(Θ |Θ(t−1)) + Λ

∂p(f |e)
=

N∑

n=1

c(f |e; fn, en,an)
(t) · p(f |e)−1 − λe = 0 (A.14)

∂Q(Θ |Θ(t−1)) + Λ

∂λe

=
∑

f∈F

p(f |e)− 1 = 0 (A.15)

Reorganising terms

p(f |e) = λ−1
e

N∑

n=1

c(f |e; fn, en,an)
(t) (A.16)

∑

f∈F

p(f |e) = 1 (A.17)

substitutingp(f |e) by λ−1
e

N∑

n=1
c(f |e; fn, en,an)

(t) in Equation (A.17), we get:

λ−1
e

∑

f∈F

N∑

n=1

c(f |e; fn, en,an)
(t) = 1 (A.18)

where

λe =
∑

f∈F

N∑

n=1

c(f |e; fn, en,an)
(t) (A.19)
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Replacingλe into Equation (A.16) we obtain

p(f |e)(t) =

N∑

n=1
c(f |e; fn, en,an)

(t)

∑

f ′∈F

N∑

n=1
c(f ′|e; fn, en,an)(t)

(A.20)

Finally, the update equations for the alignment parameters, p(i|i′, I), are given by:

∂Q(Θ |Θ(t−1)) + Λ

∂p(i|i′, I)
=

N∑

n=1

c(i|i′, I; fn, en,an)
(t) · p(i|i′, I)−1 − λi′I = 0 (A.21)

∂Q(Θ |Θ(t−1)) + Λ

∂λi′I

=

I∑

i=1

p(i|i′, I)− 1 = 0 (A.22)

so

p(i|i′, I) = λ−1
i′I

N∑

n=1

c(i|i′, I; fn, en,an)
(t) (A.23)

I∑

i=1

p(i|i′, I) = 1 (A.24)

substitutingp(i|i′, I) by λ−1
i′I

N∑

n=1
c(i|i′, I; fn, en,an)

(t) in Equation (A.24), we obtain

λ−1
i′I

I∑

i=1

N∑

n=1

c(i|i′, I; fn, en,an)
(t) = 1 (A.25)

where

λi′I =

I∑

i=1

N∑

n=1

c(i|i′, I; fn, en,an)
(t) (A.26)

and replacingλi′I into Equation (A.23), we obtain

p(i|i′, I)(t) =

N∑

n=1
c(i|i′, I; fn, en,an)

(t)

I∑

ı̃=1

N∑

n=1
c(̃ı|i′, I; fn, en,an)(t)

(A.27)
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APPENDIX B

THE OPEN-SOURCE THOT

TOOLKIT

Open-source software constitutes a valuable resource for the researchers. We have developed
the open-source THOT toolkit for PB-SMT, which is freely and publicly available and it has
been extensively used throughout this thesis.

B.1 Design Principles

The open-source THOT toolkit has been developed using the C++ and the AWK programming
languages. The design principles that have led the development process were:

• Modularity and extensibility : The THOT code is organised into classes for each as-
pect of its main functionality. Abstract classes are used when appropriate to define the
basic behaviour of the functional components of the toolkit. In addition to this, the use
of abstract classes also allows to easily extend the toolkitfunctionality by means of the
well-known object-oriented programming mechanism of inheritance.

• Flexibility : it works with different and well-known data formats, including data for-
mats used by the well-known GIZA++, Pharaoh or Moses toolkits.

• Usability: the toolkit functionality is easy to use, the code is easy toincorporate to new
code.

• Portability : It is known to compile in the following architectures: Linux (tested for
different kernel versions), Windows (using cygwin), Sun Sparc, Sun Solaris, MacOS
X, DEC Alpha and FreeBSD.

B.2 Toolkit Functionality

The THOT toolkit implements the following functionality:
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• Operations between alignments: As stated in section3.2, it is common to apply
operations between alignments in order to make them better.The toolkit provides the
following operations:

– Union: Obtains the union of two matrices.

– Intersection: Obtains the intersection of two matrices.

– Sum: Obtains the sum of two or more matrices.

– Symmetrisation: Obtainssomethingbetween the union and the intersection of
two matrices. It was defined in [Och02] for the first time, and there exist different
versions.

• RF and BRF estimation: The THOT toolkit implements both the relative frequency
(RF) and the bisegmentation-based RF (BRF) estimation techniques described in sec-
tions3.2and3.3respectively.

• Scalable estimation: The estimation techniques implemented by the THOT toolkit can
be applied on very large corpora by means of the techniques described in section3.4.
The maximum size of the corpus is only restricted by available disk space.

• Parallel estimation: The THOT toolkit incorporates a specific utility that allows the
parallel execution of the main functionality of the toolkiton multiprocessors or PBS
(portable batch system) clusters.

• Phrase-based models library: The toolkit provides a library of functions that allows
us to generate phrase-based models as well as to access the statistical parameters con-
tained in them.

B.3 Documentation

The THOT toolkit includes the following documentation resources:

• A tutorial in pdf format.

• README file and man pages.

• Class diagrams showing the software architecture.

B.4 Public Availability and License

The THOT toolkit is released under the GNU General Public License (GPL)a. The toolkit can
be downloaded athttp://sourceforge.net/projects/thot/ .

aFor more information on the GPL, seehttp://www.gnu.org/copyleft/gpl.html
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APPENDIX C

WEB-BASED I NTERACTIVE

M ACHINE TRANSLATION

PROTOTYPE

This appendix describes the main features of a web-based IMTprototype that has been de-
veloped following the techniques proposed in this thesis. This prototype is not intended to
be a production-ready application. Rather, it provides an intuitive interface which aims at
showing that the IMT approaches presented in this thesis canwork in practise. The prototype
is publicly available athttp://cat.iti.upv.es/imt/ .

It is important to stress here that this prototype has been developed with the collaboration
of other persons. Specifically, the web interface has been developed by Luis A. Leiva and
the application programming interface (API) that allows client and server applications to
communicate through sockets has been developed by Vicent Alabau.

The rest of the appendix is organised as follows: first, the system architecture is intro-
duced. Second, we describe the protocol that rules the interaction process. Next, the proto-
type functionalities are enumerated, and finally we describe the interface of the prototype.

C.1 System Architecture

The system architecture has been built on two main aspects, namely, accessibility and flexibil-
ity. The former is necessary to reach a larger number of potential users. The latter allows the
researchers to test different techniques and interaction protocols reducing the implementation
effort.

For that reason, an application programming interface for CAT tools was developed. This
API allows a neat separation between the client interface and the actual translation system
by using a network communication protocol and by exposing a well-defined set of functions.
Furthermore, it allows the customisation of professional tools to use the IMT system with
minimal implementation effort.
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Figure C.1: IMT system architecture.

A diagram of the architecture is shown in FigureC.1. On the one hand, the IMT client pro-
vides a user interface (UI) which uses the API to communicatewith the IMT server through
the Web. The hardware requirements in the client are very low, as the translation process
is carried out remotely on the server, so virtually any computer (including netbooks, tablets
or 3G mobile phones) should be enough. On the other hand, the server, which is unaware
of the implementation details of the IMT client, uses the models and the statistical methods
described in this thesis to perform the translation.

C.2 User Interaction Protocol

The protocol that rules the IMT process has the following steps:

1. The system proposes a full translation of the selected text segment.

2. The user validates the longest prefix of the translation which is error-free and/or cor-
rects the first error in the suffix. Corrections are entered byamendment keystrokes or
mouse-clicks operations.

3. In this way, a new extended consolidated prefix is producedbased on the previous
validated prefix and the interaction amendments. Using thisnew prefix, the system
suggests a suitable continuation of it.

4. Steps 2 and 3 are iterated until the user-desired translation is produced.

C.3 Prototype Functionality

The following is a list of the features that the prototype supports:

• When the user corrects the solution proposed by the system, a new improved suffix is
proposed.

• The user is able to performactionsby means of keyboard shortcuts or mouse gestures.
The supported actions on the proposed suffix are:
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Substitution Substitute the first word or character of the suffix.

Deletion Delete the first word or character of the suffix.

Insertion Insert a word before the suffix.

• At any time, the user is able to visualise the original document (FigureC.2a), as well
as a draft of the current translation properly formatted (FigureC.2b).

• A list of documents is presented to the user (FigureC.3) so that she can test the proto-
type under different conditions, i.e. corpora and languagepairs.

q0

(a) Source document example, created from the EuroParl corpus.

(b) Translated example document, preserving original format and highlighting non-translated sentences.

Figure C.2: Translating documents with the proposed system.

C.4 Prototype Interface

This prototype exploits the WWW to enable the connection of simultaneous accesses across
the globe, coordinating client-side scripting with server-side technologies. The interface is
built by using Web technologies such as HTML, JavaScript andActionScript; while the IMT
engine is written in C++ using the THOT toolkit.

To begin with, the Web UI (WUI) loads an index of all available translation corpora
(FigureC.3). The user chooses a corpus and navigates to the main interface page (FigureC.4),
where she starts translating the text segments one by one. User’s feedback is then processed
by the IMT server. Predictive interaction is approached in such a way that both the main
and the feedback data streams help each-other to optimise overall performance and usability.
All corrections are stored in plain text logs on the server, so the user can retake them in any
moment, also allowing other users to help to translate the full documents.
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on sencilla

Figure C.3: Index of available corpora.

Figure C.4: Prototype interface. The source text segments are automatically extracted
from source document.

Since the users operate within a Web browser, the system alsoprovides crossplatform
compatibility and requires neither computational power nor disk space on the client’s ma-
chine. Client-Web server communication is based on asynchronous HTTP connections, pro-
viding thus a richer interactive experience (no page refreshes are required, only for chang-
ing the corpus to translate). Moreover, the Web server communicates with the IMT engine
through binary TCP sockets. Thus, response times are quite slow (a desired requirement for
the user’s solace). Additionally, cross-domain requests are possible. In this way, it is possible
to switch between different IMT engines from the same WUI.
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APPENDIX D

SYMBOLS AND ACRONYMS

D.1 Mathematical Symbols

| · | cardinal of a set or word sequence
BOS begin of sentence symbol
EOS end of sentence symbol
x ≡ x1 . . . xi . . . x|x| data vector composed of|x| elements
xi i’th element of the data vector
fJ
1 ≡ f1 . . . fj . . . fJ source sentence composed ofJ words
f j2
j1

≡ fj1 . . . fj2 phrase offJ
1 , where1 ≤ j1 ≤ j2 ≤ J

F source vocabulary
f source word
J length of the source sentence
fj j’th word of the source sentence
eI1 ≡ e1 . . . ei . . . eI target sentence composed ofI words
ei2i1 ≡ ei1 . . . ei2 phrase ofeI1, where1 ≤ i1 ≤ i2 ≤ I
E target vocabulary
e target word
I length of the target sentence
ei i’th word of the target sentence
e0 null word of the target sentence
aJ1 ≡ a1 . . . aj . . . aJ word alignment vector
aj j’th position of the word alignment vector
K length of a phrase sequence
k index for a phrase sequence
f̃K
1 ≡ f̃1 . . . f̃k . . . f̃K source phrase sequence
f̃k k’th source phrase
f̃ source phrase of an arbitrary length
ẽK1 ≡ ẽ1 . . . ẽk . . . ẽK target phrase sequence
ẽk k’th target phrase
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ẽ target phrase of an arbitrary length
ãK1 ≡ ã1 . . . ãk . . . ãK phrase alignment vector
ãk k’th position of the phrase alignment vector
Ã(fJ

1 , e
I
1) bisegmentation or phrase-based alignment betweenfJ

1

andeI1
ÃV (f

J
1 , e

I
1) Viterbi phrase-based alignment betweenfJ

1 andeI1
A word alignment matrix
BP(fJ

1 , e
I
1, A) set of consistent phrase pairs forfJ

1 , eI1 andA
MSfJ

1 ,eI1
set of monotonic bisegmentations forfJ

1 , eI1
SfJ

1 ,eI1
set of bisegmentations forfJ

1 , eI1
SBP(fJ

1 ,eI1,A) set of bisegmentations forfJ
1 , eI1 constrained

toBP(fJ
1 , e

I
1, A)

SP set of unaligned source positions
T P set of unaligned target positions
ep prefix of the target sentence
es suffix of the target sentence
X set of training samples
(fn, en) n’th training sentence pair
fnj j’th word of fn
eni i’th word of en
an alignment variable for then’th training sentence pair
anji indicator variable for alignment of source positionj with

target positioni corresponding to then’th training pair
Pr(·) real probability distribution
p(·) model probability distribution
Θ parameter vector for a model
L(X|Θ) likelihood for the set of training samplesX givenΘ
c(·) count of a given event
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D.2 Acronyms

AER alignment error rate
BLEU bilingual evaluation understudy
BRF bisegmentation-based relative frequency
CAT computer-assisted translation
CER character error rate
EM expectation-maximisation
EU European Union
HMM hidden Markov model
GIS generalized iterative scaling
IBM international business machines
IMT interactive machine translation
KSR key-stroke ratio
KSMR key-stroke and mouse-action ratio
MAR mouse-action ratio
MERT minimum error rate training
ML maximum likelihood
MT machine translation
NLP natural language processing
PB-SMT phrase-based statistical machine translation
PSPBA partial statistical phrase-based alignment
PFSM probabilistic finite state machine
PKSR post-editing key stroke ratio
RF relative frequency
SMT statistical machine translation
SFST stochastic finite state transducer
SCFG synchronous context free grammar
WER word error rate
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