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ABSTRACT

This thesis presents different contributions in the fieldsitly-automatic statistical machine
translation and interactive statistical machine traistat

In the field of statistical machine translation there are¢hproblems that are to be ad-
dressed, namely, the modelling problem, the training mokdnd the search problem. In this
thesis we present contributions regarding these thredgimsb

Regarding the modelling problem, an alternative derivatib phrase-based statistical
translation models is proposed. Such derivation introgacset of statistical submodels gov-
erning different aspects of the translation process. litiatido this, the resulting submodels
can be introduced as components of a log-linear model.

Regarding the training problem, an alternative estimatexhnique for phrase-based
models that tries to reduce the strong heuristic componetiteostandard estimation tech-
nigue is proposed. The proposed estimation technique adenssihe phrase pairs that com-
pose the phrase model as part of complete bisegmentatidims sdéurce and target sentences.
We theoretically and empirically demonstrate that the psal estimation technique can be
efficiently executed. Experimental results obtained wiit dpen-source HOT toolkit also
presented in this thesis, show that the alternative estmatchnique obtains phrase mod-
els with lower perplexity than those obtained by means okthadard estimation technique.
However, the reduction in the perplexity of the model didaltdw us to obtain improvements
in the translation quality.

To deal with the search problem, we propose a search algosithich is based on the
branch-and-bound search paradigm. The proposed algogtmeralises different search
strategies that can be accessed by modifying the input Edeasn We carried out experiments
to evaluate the performance of the proposed search algorith

Additionally, we also study an alternative formalisatidrttoe search problem in which
the best alignment at phrase-level is obtained given thece@and target sentences. To solve
this problem, smoothing techniques are applied over thagghtable. In addition to this,
the standard search algorithm for phrase-based statistazhine translation is modified to
explore the space of possible alignments. Empirical reshibw that the proposed techniques
can be used to efficiently and robustly generate phrasedladismnments.

One disadvantage of phrase-based models is its huge sizethdaeare estimated from
very large corpora. In this thesis, we propose techniquedi¢wiate this problem during
both the estimation and the decoding stages. For this paymoeain memory requirements
are transformed into hard disk requirements. Experimertallts show that the hard disk
accesses do not significantly decrease the efficiency ofiflesystem.

With respect to the contributions in the field of interactstatistical machine translation,
on the one hand, we present alternative techniques to ingplemteractive machine trans-
lation systems. On the other hand, we give a proposal of andctive machine translation
system which is able to learn from user-feedback by meanslofelearning techniques.
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We propose two alternative techniques for interactivastieal machine translation. The
first one is based on the generation of partial alignmentshedse level. This approach
constitutes an application of the phrase-based alignmamgrgtion techniques that are also
proposed in this thesis. The second proposal tackles temttive machine translation pro-
cess by means of word graphs and stochastic error-comegtaxlels. The proposed ap-
proach differs from other existing approaches describélgariterature in the introduction of
error-correction techniques in the statistical framewafrthe interactive machine translation
process. We carried out experiments to evaluate the twoopesptechniques, showing that
they are competitive with state-of-the-art interactivechrine translation systems. In addi-
tion to this, such techniques have been used to implememiteractive machine translation
prototype following a client-server architecture.

Finally, the above mentioned interactive machine traisiatystem with online learning
is based on the use of statistical models that can be incitathempdated. The main difficulty
defining incremental versions of the statistical modelslved in the interactive translation
process appears when such models are estimated by meaeseaptrtation-maximisation
algorithm. To solve this problem, we propose the applicatibthe incremental version of
such algorithm. The proposed interactive machine trapslatystem with online learning
was empirically evaluated, demonstrating that the syste@ble to learn from scratch or
from previously estimated models. In addition to this, tbéained results also show that the
interactive machine translation system with online lezgrsignificantly outperforms other
state-of-the-art systems described in the literature.
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RESUMEN

Esta tesis presenta diversas contribuciones en los cangptsstchducdn autonatica es-
tadstica y la traducdn interactiva desde un enfoque e&stido.

En el campo de la tradudm autondtica estaibtica, se presentan contribuciones en
relacbn a los tres problemas fundamentales a abordar en dichiplisiac el problema del
modelado, el problema del entrenamiento y el problema dédqueda.

Respecto al problema del modelado, se propone una dénivalternativa de los mode-
los de secuencias de palabras. Dicha derrasitroduce un conjunto de submodelos prob-
abilisticos que gobiernan diversos aspectos del proceso dectiad. Adicionalmente, los
submodelos que se obtienen pueden introducirse como canfezde un modelo log-lineal.

Con respecto al problema del entrenamiento, se describéania alternativa de es-
timacion de modelos de secuencias de palabras que trata de redficarie componente
heuistica de lasécnicas de entrenamiento&@stlar. Laé&cnica de estimagn propuesta con-
sidera los pares de secuencias de palabras que componerl@brmomo parte de biseg-
mentaciones completas de las frases origen y destino. Seedéna tanto f&rica como
emgdricamente que la nuevadnica de estimagh puede ejecutarse eficientemente. Resulta-
dos experimentales obtenidos con la herramienta de estimde libre uso HOT presentada
en esta tesis, demuestran quedlenica de estimadn propuesta obtiene modelos con menor
perplejidad que los obtenidos con &chica de estimagn esandar. Pese a ello, no se han
conseguido mejoras en los resultados de traduacci

Para abordar el problema de ladgueda se propone el uso de un algoritmo basado en
el paradigma de ramificamn y poda. El algoritmo propuesto generaliza distintasaesgias
de lisqueda a las que se accede modificando Idanpetros de entrada. El rendimiento de
las distintas variantes de funcionamiento que presentga@itno de lisqueda generalizado
fue evaluado enipcamente.

Ademas de lo anterior, tambn se aborda una modificaai del problema de lailsqueda
gue consiste en la obtedci del mejor alineamiento a nivel de secuencias de palalaras p
un par de frases. Para resolver este nuevo problema sergfilim@icas de suavizado so-
bre los modelos de secuencias de palabras y se modifica etralgae hisqueda definido
inicialmente para que pueda explorar el espacio de posibfesamientos. Resultados expe-
rimentales demuestran que l&siicas propuestas son capaces de generar alineamientos de
forma eficiente y robusta.

Un inconveniente del uso de modelos de secuencias de paledrsu enorme tarfia
cuando se estiman a partir de corpus muy grandes. En la &eegi®ponenécnicas para
aliviar este problema, tanto en la fase de estigracomo en la fase de decodificaei Para
ello se transforman requerimientos de memoria en requemios de disco duro. Resultados
empricos demuestran que los accesos a disco no degradanadgeenente la eficiencia del
sistema.

En el campo de la tradudm interactiva desde un enfoque e$tido, se presentan, en



primer lugar, écnicas alternativas para implementar sistemas de traoutteractiva. En
segundo lugar, tambn se describe una propuesta de sistema de traduicteractiva capaz
de aprender de las traducciones validadas por el usuari@ntedecnicas de aprendizaje
online.

Conrespecto a laé¢tnicas alternativas de traduaeiinteractiva, se proponen déhicas
diferentes. La primera de ellas se basa en la gergralg alineamientos parciales a nivel de
secuencias de palabras. Este enfoque constituye unacifuticte la generadn de alinea-
mientos a nivel de secuencias de palabras tambescrito en esta tesis. La segunda de las
técnicas propuestas aborda el proceso de tradludnteractiva con la ayuda de grafos de
palabras y modelos correctores de errores astaws. El enfoque propuesto difiere de otros
sistemas de tradud@m interactiva basados en grafos de palabras en que ing@lipcoceso
de correcdn de errores dentro del marco esstido. Ambasécnicas de tradudan interac-
tiva se han evaluado mediante experimentos, demostrandorsgetitivas con sistemas de
traduccon interactiva del estado del arte. Adesndichasécnicas se han usado para imple-
mentar un prototipo de traduéai interactiva basado en la arquitectura cliente-servidor

Finalmente, el sistema de tradumeiinteractiva con aprendizaje online que se men-
cionaba anteriomente, se basa en el uso de modelodstisasl actualizables de manera
incremental. El principal obatulo a la hora de obtener versiones incrementales de los mo-
delos estaidticos involucrados en el proceso de tradaoaparece cuando dichos modelos
se estiman por medio del algoritregpectation-maximisatiofPara resolver este problema se
propone la aplicadin de la visbn incremental de dicho algoritmo. El sistema de tradarcci
interactiva con aprendizaje online fue evaluado experiaterente, demosindose que es
capaz de aprender tanto a partir de modelos previamenteaests como de modelos ves.

Los resultados de los experimentos ta@mbilemuestran que el rendimiento del sistema que
se propone es significativamente mejor que otros sisten@si@delo del arte descritos en la
literatura.
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RESUM

Agquesta tesi presenta diverses contribucions als campstdalucad autonatica estatstica
i la traducco interactiva des d’un enfocament estdid.

Al camp de la traducéi autonatica estatbtica, es presenten contribucions en rélads
tres problemes fonamentals a abordar en aquesta disciglimeoblema del modelatge, el
problema de I'entrenament i el problema de la cerca.

Respecte el problema del modelatge, es proposa una déraltainativa dels models de
sedlencies de paraules. Aquesta deri@aotrodueix un conjunt de submodels probatits
gue governen diversos aspectes del psaie traducéi. Addicionalment, els submodels que
s’obtenen poden introduir-se com a components d’'un modeineal.

Respecte al problema de I'entrenament, es descrivaamich alternativa d’estimaécte
models de sdiencies de paraules que tracta de reduir la forta componeristiea de les
tecniques d’entrenament astlard. Laécnica d'estimaé proposada considera els parells
de sediencies de paraules que componen el model com a part de bisegioas completes
de les frases origen i déstEs demostra tant dgica com empricament que la novatnica
d’estimaco pot executar-se eficientment. Resultats experimentdisgoits amb la ferra-
menta d’estimadi de lliures THOT presentada en aquesta tesi, demostren geenaca
d’estimacd proposada obtmodels amb menor perplexitat que els obtinguts amécaica
d’estimaco esandard. No obstant abx no s’han aconseguit millores en els resultats de tra-
duccb.

Per a abordar el problema de la cerca es prop@sallun algorisme basat en el paradigma
de ramificadd i poda. L'algorisme proposat generalitza distintes &sgias de cerca a les
quals s’accedeix modificant els panetres d’entrada. El rendiment de les distintes variants
de funcionament que presenta I'algorisme de cerca getzatadiavald empricament.

A més a nés, tamk s’aborda una modificatidel problema de la cerca que consisteix
en 'obtencd del millor alineament a nivell de ségncies de paraules per a un parell de
frases. Per resoldre aquest nou problema s’apligeemdues de suavitzat sobre els mod-
els de sefiencies de paraules i es maodifica I'algorisme de cerca defiitisiment perqa
puga explorar I'espai de possibles alineaments. Els egsidkperimentals demostren que les
tecniques proposade8rscapaces de generar alineaments de forma eficient i robusta

Un inconvenient de {is de models de ségncies de parauldgss el seu enorme tamany
quan s’estimen a partir de corpus molt grans. En la tesi ggopem écniques per a alleugerir
aquest problema, tant en la fase d’estirbamm en la fase de decodificani Amb aquesta
finalitat es transformen els requeriments de meanen requeriments de disc dur. Els resul-
tats emjirics demostren que els accessos a disc no degraden apeawab I'eficencia del
sistema.

Al camp de la traducéi interactiva des d’'un enfocament estiid, es presenten, en
primer lloc, &cniques alternatives per a implementar sistemes de t@dinteractiva. En
segon lloc, també es descriu una proposta de sistema de tradumm@ractiva capa d’aprendre
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de les traduccions validades per I'usuari mitjanashtques d’aprenentatge online.

Respecte a legtniques alternatives de traduzaiteractiva, es proposen duesniques
diferents. La primera d'elles es basa en la genéra&lineaments parcials a nivell de
sediencies de paraules. Aquest enfocament constitueix unaaaplide la generabi
d’'alineaments a nivell de sagncies de paraules tagllescrit en aquesta tesi. La segona
de les &cniques proposades aborda el psode traducéiinteractiva amb I'ajuda de grafs de
paraules i models correctors d’errades esstics. L'enfocament proposat difereix d’altres
sistemes de tradudinteractiva basats en grafs de paraules en que introdupio&s de
correccd d'errades dins del marc estatic. Ambdues &cniques de tradudtiinteractiva
s’han avaluat mitjanant experiments, demostrant ser ctitiipe amb sistemes de traduaci
interactiva de I'estat de I'art. A 8% a n&s, aquestegtniques s’han usat per a implementar
un prototip de traducbiinteractiva basat en I'arquitectura client-servidor.

Finalment, el sistema de tradugdnteractiva amb aprenentatge online que es mencionava
anterioment, es basa eri$ de models est&tics actualizables de manera incremental. El
principal obstacle a I'hora d’obtenir versions incremégalels models estedics involu-
crats en el prags de traducdiapareix quan aquests models s’estimen pearddjl’algorisme
expectation-maximisation. Per a resoldre aquest probEnmaoposa I'aplicabide la viso
incremental d’aquest algorisme. El sistema de traduitderactiva amb aprenentatge on-
line s’avalla experimentalment, demostrant-se §ae&apa d'aprendre tant a partir de models
previament estimats com de models buits. Els resultats dpksriexents tamé demostren
gue el rendiment del sistema que es propasaignificativament millor que altres sistemes
de I'estat de I'art descrits en la literatura.
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PREFACE

Natural language processing (NLP) is the computerisedoggprto generating and under-
standing human languages, both oral or written. The goal&f id to accomplish human-like
language processing for a range of tasks or application®? iNla field of artificial intelli-
gence, and its origins can be found in the disciplines ofdistics, computer science and
cognitive psychology. In the field of NLP there are two distifocuses, namely, language
processing and language generation. The first of thesesreféehe analysis of language for
the purpose of producing a meaningful representation,enthi latter refers to the produc-
tion of language from a representation. Natural languagegssing provides both theory
and implementations for a range of applications, includlirigrmation retrieval, information
extraction, question-answering, summarisation, macdhareslation, dialogue systems, etc.

This thesis explores the area of machine translation (Mhjclvwas the first computer-
based application related to natural language. The diseif MT investigates the use
of computer software to translate text or speech from onguage to another. The first
proposals for MT using computers dates back to the 1950&ware based on information
theory, expertise in breaking enemy codes during the seword war and speculation about
the underlying principles of natural language. Even afterenthan 50 years of research, MT
remains an open problem.

Current MT systems use different translation technolodiégse translation technologies
can be classified into two main approaches: rule-basedmsgsd@d corpus-based systems.
Rule-based systems use a set of translation rules creatbdrbgn translators to generate
their output. These rules determine how to translate fromlanguage to another. Corpus-
based systems make use of sets of translation examplesédlisd corpus or parallel texts)
from one language to another. The translation examplessa@ to infer the translation of
the source text.

This thesis approaches MT under the statistical framew8thtistical MT (SMT) sys-
tems are a kind of corpus-based MT systems that use paritsltb estimate the parameters
of the statistical models involved in the translation psseOnce the statistical models have
been estimated, they are used to infer the translation ofseences. Different statisti-
cal translation models have been proposed since the bagiefithe research in SMT. The
IBM models were the first statistical translation modelsdugeSMT. In these models, the
fundamental unit of translation is a word in a given languabies restricted conception of
the translation process does not allow to obtain good ta#insl results due to its inability to
capture context information. To solve this problem, singteds were replaced as the funda-
mental unit of translation by multiple words in a new familystatistical translation models.
Among the different multi-word statistical translation dets that have been proposed so far,
the so-called phrase-based models currently constitetsttite-of-the-art in SMT. Phrase-
based models work by translating sequences of words or ghraBhese phrases are not
linguistically motivated; instead, they are extractedrircorpora using statistical methods.

Xiii



Current MT systems are not able to produce ready-to-usse.tdxrideed, MT systems
usually require human post-editing in order to achieve fujghlity translations. This moti-
vates an alternative application of MT in which the MT systemiiaborates with the user to
generate the output translations. This alternative agiiin receives the name of computer-
assisted translation (CAT). The canonical example of CAStay is represented by the so-
called memory-based machine translation (MBMT) system®BMWI systems store user-
validated translations (translation memories) for itsseein the translation of similar texts.
These reused translations are post-edited by the user sqyasérate the target text. How-
ever, CAT is a broad and imprecise term covering a range d$.tda this thesis, we will
focus on a specific instantiation of the CAT paradigm whiaterees the name of interactive
machine translation (IMT). In the IMT framework, the usetaibs her desired translations in
a series of interactions with the MT system. IMT differs framst-editing CAT techniques
in its capability to take advantage of the knowledge of thenan translator (it should be
noticed that when applying post-editing CAT techniques, @AT system and its user work
in separated serial processes).

The scientific goals of this thesis can be divided into twaugoas follows:

1. Fully automatic phrase-based SMT We develop contributions regarding the three
problems that are to be addressed in SMT, namely, the modgethe estimation and
the search problems. With respect to the modelling probleerpropose an alternative
phrase-based model derivation that allows us to obtain afgetobabilistic models
governing different aspects of the translation procesgiaRing the estimation prob-
lem, we describe a new estimation procedure that tries tacesthe strong heuristic
component of the standard estimation algorithm. Both tlve awred the standard esti-
mation techniques were implemented in a publicly availédudkit called THOT which
is also presented in this thesis. With respect to the seaotiigm, we describe a search
algorithm that is based in the branch-and-bound paradidre.pfoposed search algo-
rithm generalises a set of search strategies that can besattby only modifying the
input parameters of the algorithm. In addition to this, weoadtudy a modification of
the search problem that consists in the generation of akgsrat phrase level. Finally,
one important disadvantage of phrase-based models ishihgér size when estimated
from very large corpora. We propose techniques to alletraseproblem during both
the estimation and the decoding stages.

2. Interactive phrase-based SMT We propose two novel IMT techniques. The first one
constitutes an application of the phrase-level alignmenggation techniques that were
studied for fully automatic phrase-based SMT. The second@ téthnique combines
phrase-based translation models and stochastic errmetimn models in a unified
statistical framework. In addition to this, we describe MTIsystem able to learn
from user feedback by means of online learning techniques.

This thesis is structured in four parts, containing a totaline chapters plus the bibliog-
raphy section. In the following figure we show the dependenbetween chapters:
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1. Introduction

v

2. Scientific and
Technologic Goals

II 3. Phrase-Based Statistical
Machine Translation

v

4. Search for Phrase-Based
Statistical Machine Translation | |——_

! I

5.PB-SMT Evaluation 6. Interactive Phrase-Based
Statistical Machine Translation

l

7. Online Learning for Interactive
Statistical Machine Translation

]

8. PB-IMT Evaluation

III

N

IV | 9. Conclusions |

| Bibliography |

The content of each chapter is as follows:

Chapter 1 introduces the disciplines of NLP and MT. Among the différeanslation
technologies used in MT, this chapter is focused on the Skiméwork, briefly intro-
ducing the main SMT techniques that have been describee ilit¢nature. In addition
to this, the discipline of IMT is also introduced. Finallyewpresent the automatic
evaluation measures and the main features of the bilingarabca that were used to
empirically evaluate the proposals presented in this shesi

Chapter 2 presents the list of scientific and technologic goals of thesis. These
goals are classified into fully automatic phrase-based Stéisgand interactive phrase-
based SMT goals.

Chapter 3 describes different proposals regarding both the modgdimd the estima-
tion problem in SMT. First, a novel estimation techniquegbrase-based models that
tries to reduce the strong heuristic component of the stanelstimation technique is
presented. Second, we describe techniques to deal witHasgigy corpora during the
estimation of phrase-based models. Finally, we show a fpeeirivation for phrase-
based models.
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Chapter 4 presents different proposals regarding the search prolle&MT. First, a
generalised search algorithm based on the branch-anditpawiadigm is defined. Sec-
ond we describe techniques to deal with huge phrase-baseelsmuring the search
stage. Finally, we study a modification of the search prolilegth consists in the gen-
eration of alignments at phrase level.

Chapter 5 presents the empirical results of the evaluation of thg fulitomatic phrase-
based SMT techniques presented in chaiensd4.

Chapter 6 describes two novel IMT techniques. The first one is basedhemphrase-
level alignment generation techniques described in Chaptdhe second one com-
bines phrase-based models and stochastic error-com@atidels in a unified statistical
framework.

Chapter 7 describes an IMT system able to learn from user feedback nmef
online learning techniques.

Chapter 8 presents the empirical results of the evaluation of the gghtmased IMT
techniques presented in chaptérend?.

Chapter 9 presents a summary of the work presented in this thesisidimg a list of
scientific publications, followed by a list of future direats for further developments
of the work presented here.

The previous content is complemented by a set of appendices:

Appendix A shows a detailed derivation of the incremental expectatiatimisation
algorithm for the HMM-based word alignment model. The r&sof this derivation
are used in Chaptét.

Appendix B presents the open-sourceldT toolkit for statistical machine translation.
The THOT toolkit has been used to carry out the experiments presémtbds thesis.

Appendix C describes the main features of a web-based IMT prototypgehtimbeen
developed following the techniques proposed in this thesis

Appendix D presents the list of mathematical symbols and acronymsingdéds the-
Sis.
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CHAPTER1

INTRODUCTION

1.1 Natural Language Processing

Natural language processing (NLP) is the computerisedoggprto generating and under-
standing human languages, both oral or written. The goalL&f ¥ to accomplish human-like
language processing for a range of tasks or application®? Nla field of artificial intelli-
gence, and its origins can be found in the disciplines ofdistics, computer science and
cognitive psychology. In the field of NLP there are two distifocuses, namely, language
processing and language generation. The first of thesesrefene analysis of language for
the purpose of producing a meaningful representation,enthit latter refers to the produc-
tion of language from a representation. Natural languagegssing provides both theory
and implementations for a range of applications, includlivigrmation retrieval, information
extraction question-answering, summarisation, macharestation, dialogue systems, etc.

This thesis explores the area of machine translation (MA)clvwas the first computer-
based application related to natural language. The diseigif MT investigates the use of
computer software to translate text or speech from one kggyto another.

1.2 Machine Translation

Multiplicity of languages is inherent to modern societyeRbmena such as the globalisation
and technological development have dramatically incretéise need of translating informa-
tion from one language to another. This necessity can badfoudifferent fields including
political institutions, industry, education or entertaient. A good example of multilingual-
ism can be found in the European Union (EU) political institns. The EU has 27 Member
States and 23 official languages. Translation in the Eurojresitutions concerns legislative,
policy and administrative documents. According@mO0§, in 2008 the EU employed 1750
translators working full time on translating documents andother language-related tasks.
To cope with a level of demand that fluctuates in response litigad imperatives, the EU
used external translation providers which generated appedely the fourth part of the EU
translation output. The EU also maintained a web transiatinit specialised in the trans-
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lation of web pages. As a result, in 2008 the EU translatiomises translated more than
1800 000 pages and spent about 1000 million Euros on translationraadpreting.

The high demand of translations cannot be completely sdisfiy human translators,
motivating a great interest in the development of machiaediation (MT) techniques. The
aim of MT is to carry out the translation process from one leagg to another by means of a
computer. MT techniques are specially useful to transtat@él documents such as manuals,
official reports, financial reports, etc. where the stridie@nce to layout and stylistic rules
is considered important to produce high quality transketiaM T has gained more and more
importance in the last years and is already being used by aoiepand political institutions.

The first proposals for MT using computers dates back to tf'$9and were based
on information theory, expertise in breaking enemy codesgduhe second world war and
speculation about the underlying principles of naturagleage. Early work in MT took the
simplistic view that the only differences between langsagsided in their vocabularies and
the permitted word orders. The results obtained followimggse principles were poor, since
the proposed MT systems simply used word dictionaries tecséhe appropriate words for
translation and reordered the resulting words following ord-order rules of the target
language. Even after more than 50 years of research, MT nsnaaiopen problem.

In the following sections we will briefly describe the mainagégies that have been his-
torically applied to tackle the problem of MT.

1.2.1 MT Systems Taxonomy
The different approximations to the MT problem can be cfassiusing different criteria:
1. Depending on the type input: text or speech.

2. Depending on the type of the application which uses thestations. These applica-
tions can be divided into four different groups: applicatidhat translate the input into
a database query; applications that produce an approxdnii@eslation of the input
for its correction in a post-edition stage by the user; agpidns that interactively gen-
erate the output in collaboration with the user; and findillify automated translation
systems. Currently, fully automated translation systears anly work on restricted
domains.

3. Depending on the translation technology. We can idettifymain approaches: rule-
based systems and corpus-based systems. In spite of thihdaithese systems use
opposite technologies, a number of proposals combininiy d&mbroaches can be found
in the literature.

The vast majority of the introductory works on MA@b92 HS92 Som98 Tru99, Lop0§|
classify MT systems depending on the translation techiyolbgt these systems use. In the
following sections, we will focus on the different trangtat technologies that have been
proposed so far.
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1.2.2 Rule-Based Systems

Rule-based systems use a set of translation rules creatbdrbgn translators to generate
their output. These rules determine how to translate from language to another. The
process of creating the translation rules is very costly raggires the knowledge provided
by expert linguists in both the source and the target langslaBegular rule-based systems
execute two different steps to generate their translatioamely, the analysis step and the
generation step. The analysis step extracts informatam the source text. Once the analy-
sis step has been executed, the generation step produdasgiteext. One extra step can be
introduced between the analysis and the generation stepdransference step. The trans-
ference step transforms the result of the analysis stepm#bstract, less language-specific
representation. A particular case of the transfer step arsggerlingua, i.e., an abstract lan-
guage representation. The target sentence is then gahéatethe interlingua. The use of
an interlingua requires a deep analysis of the source teztidition to this, there is no lan-
guage that is globally accepted for its use as an interlingyithese reasons not all rule-based
systems use it. To avoid the necessity of an interlinguar#msference step is executed. The
transference step allows to reduce the complexity of théysisestep. The previous consid-
erations can be depicted as a diagram by means of the sd-¥allguois triangldVVau79g
(see Figurel.1).

Rule-based systems can be classified according to the iamperassigned to the analysis
and transference steps. Under this criterion, we find thiéereht rule-based approaches,
namely, the direct approach, the transfer approach anatésingual approach.

Direct Approach

The direct approach is the translation strategy adopteldéofirst machine translation systems
that were proposed. The direct approach uses a word-totnamslation strategy including a

morpho-syntactic analysis of the source text. The morpimastic analysis tries to capture

grammar categories and other morphological informatiabekcludes relationships between
words or groups of words.

Transfer Approach

This approach first generates a logical representationeogdturce text. Once this logical
representation has been generated, a set of transfer sudgplied to obtain its equivalent
representation in the target language. Finally, the taidtis generated from the target
language logical representation.

Interlingual Approach

The Interlingual approach first performs a deep analysihiefsburce text. As a result of
this analysis, an abstract language representation ignebdtaThis representation is called
interlingua and is independent of both the source and tlgetdsnguages. After obtaining
this conceptual representation, the translation is géegran other words, the source text
is first understood and then translated. The interlingugr@xch has one advantage with
respect to the previous approaches, specifically, we ordy ne define a correspondence
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between each language and the interlingua instead of dgfioimespondences between each
language pair.

Source language Target language
Direct
Transfer
Analysis Generation
Interlingua

Figure 1.1: Vauquois triangle.

1.2.3 Corpus-Based Systems

Corpus-based systems make use of the so-called empiripadaghes to MT. The main fea-
ture of corpus-based systems is that they use sets of tianstxamples (also called corpus
or parallel texts) from one language to another. The tréinsl@xamples are used to infer the
translation of the source text. Once a corpus-based systerbden implemented, the soft-
ware can be quickly adapted for its use with different lagupairs or different domains, as
opposed to rule-based systems, which are specific for a tinguage pair.

Corpus-based systems can be classified into two groups: xdrapte-based machine
translation systems and the statistical machine translatystems. Additionally, there exist
other approaches that are different to the previous onesvdhdiso be mentioned in later
sections.

Example-Based Machine Translation (EBMT) Systems

The example-based approach to machine translation usesoé tsanslation examples as
its main knowledge base. EBMT systems execute two stepsrergie their translations,
namely, the comparison and the recombination steps: fiset, af hypotheses that are similar
to the source text is extracted from the whole corpus (coispa)y. Second, the hypotheses
are recombined to generate the final translation of the sdest (recombination).

One important translation technology derived from the gxanbased approach to MT
is the so-called memory-based machine translation (MBNMBMT allows to assist human
translators in the translation of texts. MBMT stores usaidated translations (translation
memories) for its reuse in the translation of similar texts.
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Statistical Machine Translation (SMT) Systems

The statistical approach to MT requires the availabilitagfreat amount of parallel text con-
taining relevant information for the translation proceBBis parallel text is used to estimate
the parameters of a set of statistical models involved inttaieslation process. Once the
statistical models have been estimated, they are useddoth translation of new source
sentences.

Some authors§om9§ classify the statistical approach into the example-baggmoach
because of the necessity of parallel text to estimate thestital models. However, the
statistical approach differs from the example-based amrdecause of the different way in
which the comparison-recombination steps described aamvémplemented. Specifically,
the statistical approach is focused on statistical paranestimation. By this reason, other
authors consider that the statistical approach can befitgsas a separate approach.

In the first works on SMT, the statistical models had to be $fieg. Specifically, a sim-
plified grammar was used instead of a complete grammar oétgettlanguage. The transfer
rules were replaced by two different statistical modelsnely, a model that captures lexical
relationships between source and target words; and a mioaletaptures the relationships
between the positions of the words of the source and targétisees.

More recently, and due to the great increase in the linguisgources, better and more
complex statistical models have been obtained. This wikkk@ained with more detail in
sectionl.3.

Other Corpus-Based Systems

There exit alternative approaches that can be followed feément corpus-based systems.
Examples of these alternative approaches are the connisttipproach, the finite state ap-
proach and the synchronous context free grammars apprddehconnectionist approach
uses artificial neural networks to tackle the problem of Mid aome authors consider that it
is a subclass of the statistical approach. The finite stgieoaph to machine translation uses
the mathematical tools provided by the automata theoryalljinthe synchronous context
free grammars approach applies context free grammars tdbth. the finite state approach
and the synchronous context free grammars approach cabeatdassified into the statistical
approach.

1.3 Statistical Machine Translation

The statistical approach to MT formalises the problem ofegating translations under a
statistical point of view. This approach is classified irfie torpus-based approaches, as was
explained in sectio.2.3 The availability of corpora, specifically parallel-texis required

to estimate the parameters of the statistical models ieebin the translation process. Such
statistical models can be described amahematical theorabout how a sentence in the
source language is translated into its equivalent in tlyetdanguage. It is worthy of note that
one important advantage of the SMT systems is their abdityark with different language
pairs if the corresponding parallel texts to estimate thampaters of the statistical models
are available.
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More formally, given a source sentenfg = fi...f;... f; in the source languagg, we
want to find its equivalent target senterée= ¢; ...¢,...e;2in the target languag®. From the
set of all possible sentences of the target language, waetamested in that with the highest
probability according to the following equation:

el = argmax{Pr(el|f{)} (1.2)

I
Iey

The early works on SMT were based on the usgesferative modelsA generative model
is a full probability model of all statistical variables trare required to randomly generating
observable data. Generative models decompbse! | f;) applying the Bayes decision rule.
Taking into account thar( f{ ) does not depend ar{ we arrive to the following expression:

ef = argmax{Pr(e}) - Pr(f{|e})) (1.2)
s€71

This equation can be seen as a representation of the procedsdh a linguist translate
a source sentence into its equivalent target sentencein®igtahe final translation requires
the exploration of all target language sentences, calogl#te probabilityPr(el) for each
sentence! and the conditional probability’r(f{ |el). After the exploration is completed,
we return the translatiod! of highest probability. This corresponds to the so-catietsy
channel model In the noisy channel model, the sentence€dé obtained by transmitting
the source sentence @f through anoisy channel This noisy channel has the property of
transforming the sentences &finto their equivalent in the language

Equation (.2) is the so-calledundamental equation of machine translati@DDM93],
where: Pr(el) represents the probability of generating the target seeteandPr( f{’|e!)
is the probability of generatingl given f{ . Since the real probability distributiorr(e!)
and Pr(f{|el) are not known, they are approximated by means of paramée#iistcal
models. Typically, the values of the parameters of suclistitsl models are obtained by
means of the well-knowmaximum-likelihoogstimation method.

Statistical parametric models have a set of param@&eassociated with either a known
probability density function or a probability mass functia@lenoted ag(-|0). Given a set of
training samplest’ = {x1, x2, ..., X }, thelog-likelihood functions defined as the logarithm
of the probability density associated with the given obsdrdata:

N
L(0,x) = log p(x1, X2, ... xy]|0) = > _ logp(x;|O) (1.3)
1=1

The method of maximum-likelihood estimatedy finding the value 06 that maximises
L(0,x). This is the maximum-likelihood (ML) estimator 6f:

© = argmax{L(0,x)} (1.4)
©

Typically, the two distributions that appear in EquatidnZf are modelled separately.
Specifically, the probability distributionPr(e!) is modelled by means of &anguage

af; ande; note thei'th word and thej’th word of the sentenceﬁ,{ ande{ respectively.
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modeland Pr(f{|el) is modelled by means of manslation model Therefore, we have
to find two sets of parametei®,, and ©r,; corresponding to the language and the
translation models respectively. Given the training sehposed of sentence paifé =
{(f1,e1), (f2,e2), ..., (fv,en)}, and following the ML criterion we arrive to the following
expressions:

N
Oy = argmaX{ZIng(en|®LM>} (1.5)

LM el

X N
Ory = argmax{Zlogp(fnen;QTM)} (1.6)

™ =1

It is worth pointing out that the translation process cam dis carried out by directly
modelling the posterior probability’r(ef|f{/). This is explained with more detail in sec-
tion1.4.4

SMT can be viewed as a specific instance of a classificatioblgmmowhere the object
to be classified is the source senterfgeto be translated and the set of possible classes are
the set of possible sentences in the target langudgdherefore, under this point of view
the decision rule stated in Equatioh %) is optimal under the assumption of a zero-one loss
function. In SMT, the zero-one loss function is better knaensentence error rate (SER)
and considers that there is an error if the translation glwerthe system is not identical
to the reference translation. Therefore, by applying Equafl.2) we are minimising the
probability of error using SER as a loss function. AlthoudtRehas been commonly used as
loss function in several works on SMT, alternative propssilloss functions can be found
in the literature (for more details se@FOMGVCO08).

Figure 1.2 shows the architecture of the translation process using Bhges
rule [NNO'0Q]. As it is shown in the figure, the translation process reggpiiiour differ-
ent modules:

e Translation modely(f{|el)): the translation model measures how goidis as a
translation ofe!. Regular translation models include a lexical submodeio(ahlled
statistical dictionary) which assigns probabilities te thanslation of target words;
by source wordsf;. Translation models also include an alignment submodethvhi
assigns probabilities to the relationships between thel\ositions of the source and
the target sentences.

e Language modelye!)): This model measures the well-formedness of the sentgnce
as a sentence of the language

e Global search: this module executes the translation psodesr this purpose, Equa-

tion (1.2) is solved, obtaining the target senteride of highest probability given by
both the translation and the language models.

e Pre/postprocess: the pre/postprocessing stages corapmsées of input/output trans-
formations that are useful to increase the performanceedfrimslation system.
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Source sentence

Preprocess

i

Pr(f{|el
(fl I 1) Translation model |

Global search

¢ = argmax{Pr(cf) - Pr(f{|ef)}

€1 Pr(e
<—|( 1) Language model |
J

I
€1

Postprocess

Target sentence

Figure 1.2: Architecture of the translation process using the Bayes rule.

The building process of an SMT system following the Bayeddiec rule involves ad-
dressing three problemblgy01]:

1. themodelling problemthat is, how to structure the dependencies of source agdttar
language sentences.

2. thetraining problem that is, how to estimate the model parameters given theirigi
data.

3. thesearch problenthat is, how to find the best translation candidate amorngpatible
target language sentences.

1.4 Statistical Models for Machine Translation

The above mentioned modelling problem involves finding gapgroximations for the two
probability distributions that are shown in Equatidng).

To approximate the probability distributioRr(e!) which is shown in Equationi(?),
the vast majority of the works on SMT in the literature use ghecalledstatisticaln-gram
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language modelsRegarding the probability distributioRr(f;’|e!), it is approximated by a
statistical translation model. In the following sections will briefly explain the statistical
models that are commonly used in SMT.

1.4.1 n-gram Language Models

Statistical language models are formulated as a probalitribution p(x) for stringsx.
This probability distribution tries to reflect how frequintloes the string appear.

The most widely used statistical language models are, byhfarn-gram language mod-
els. We will introduce thex-gram language models considering that 2; these models
are the so-calleBligramlanguage models. Let us consider the sentencemposed of the
WOI’delxz...x‘x‘b, we can expresfr(x) without loss of generality as follows:

x|

Pr(x) = p(z1) -p(wa|r1) -p(es|zizs) - ... p(@)x| |21 25 —1) = Hp(xi\xl...xi_l) 1.7)
i=1

Bigram models assume that the probability of a given wordeddp only on the immedi-
ately preceding word:

x| |

Pr(x) = Hp(bLl\xlbLl_l) ~ Hp(xl|xl_1) (1.8)
i=1 i=1

The special toke®BOS which denotes the begin of a sentence is introduced sacthiat
BOS. Additionally, to maked ", p(w) = 1 is necessary to add another special tok€b
which denotes the end of a sentence.

To estimatep(z;|z;—1), the frequency of the word; given the previous word;_;, we
count the number of occurrences of the bigram,z; in the training text and normalise,
which corresponds to a ML estimation:

p(xi|zio1) = Zc(gji_lxi) (1.9

2, C(Tim17;)
Wherec(z;) is the count of the number of occurrences of the wayréh the source text.
For n-grams withn > 2, instead of conditioning the probability of a word on theritiy

of just the preceding word, we condition this probability thie identity of the last — 1
words. Here we take_,, - throughz, to beBOS andz 4|, to beEOS. Thus, the sentence
probability is calculated as follows:

|x]+1
p(X) = H p(mi|xi—n+1-~xi—2xi—l) (110)
i=1
Regarding the estimation of thegram probabilities, the corresponding equation is very
similar to Equation 1.9) for bigram models:
c(x;}:}z-&-l)

i1
|2 = ondl/ 1.11
p(s|zi_, 1) Zx (@ ir) ( )

b|x| represents the length of the strirg
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Wherez~} ., denotes the segment of the source sentence which stare atth+1)'th
word and finishes at thg — 1)’th word.

The wordsz~},, ; are usually calledistory of the n-gram. n is calledorder of the n-
gram. In the literature on SMT, the value ofhas typically been set t8. These are the
so-calledtrigram language models. More recently, and due to the availalafitarger and
larger training corporay is set to5.

A wide variety of then-gram language model estimation techniques describedein th
literature are implemented in the SRILM toolkB§03. The SRILM toolkit also provides

tools and code to access the parameters of previously estrfzaguage models.

Complexity Measures

Some measures to judge the performance of a language mogebbkan proposed in the
literature (seeRos0Q). The simplest one of this measures is #neerage log-likelihood

of the test samples. The average log-likelihood for the $estis given by the following

expression:

L(x|©) = Zlogp x©) (1.12)

whereX = {x1, %2, ..., x5 } are the test samples a@dis the set of language model param-
eters. This measure can be seen as an empirical estimattbe abss entropyof the real
probability distribution (but unknownr with respect to the model distribution given By

N
H(Pr;p(-|©)) ZPr x;) - log p(x;|0©) (1.13)

i=1

The most widely used performance measure for statisticguage models is the so-
calledperplexity
PR Pr; p(-|©)) = 2HEre(1©) (1.14)

The perplexity of a language model given a test set can bpietieed as the geometric av-
erage of the branching factor of the given language witheetsto the model. The perplexity
measures both the model performance and the language cdtyple

An alternative way to measure the language model perforenerto measure its impact
in the specific application in which this language model isdusTypically, the lower the
perplexity the lower the error rates of the application. Asrdormal rule, Ros0(Q states that
a 5% perplexity reduction does not produce significant improgats; a reduction between
10% and20% may produce an appreciable improvement and finally, a reztuabove30%
usually produces a great improvement in the error rates.

n-gram Model Smoothing

The above described-gram language models cannot assign probabilities grézderzero

to events that have not been seen during the training processolve this problem, the
n-gram language model probabilities are modified using shiogttechniques. The term
“smoothing” comes from the aim of these techniques. Spedijyiche smoothing techniques
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try to obtain more uniform probability distributions, irasing the probabilities equal or al-
most equal to zero and decreasing the probabilities equalnoost equal to one. For this
purpose, a certain probability massdiscountedfrom certain events and added to others.
The smoothing techniques not only allow to avoid events with probability, but also sig-
nificantly improve the performance atgram language models.

Several smoothing techniques have been proposed in thatlite such as the Jelinek-
Mercer smoothing, the Katz smoothing, the Witten-Bell sthow, etc. (see@G9qg for
more details). Although we will not describe the smoothiaghniques in detail, the vast
majority of them can be summarised by means of the followiession KN95]:

1—1

i—1 , ;
ofxi|z;—, if c(ai_,411) >0
ps(zilzi) ) = (il i) i1 , ( : +1>_ (1.15)
V(@ 1) Ps(@al @iy p0) i e(@i_nyq) =0

According to Equationi(. 1@ if a givenn-gram has been seen during the training stage,
we use the distribution(z; |2} ., ); otherwise, we use the lower ordeackoffdistribution
ps(zi|ziZ) ), where the scale factor(zi~) , ;) is introduced to make the conditional dis-
tribution sum up to one. All the models that can be describettlis way are calletbackoff
models and the scale factoy is usually callecbackoff weight The canonical example of
backoff smoothing is the so-called Katz smoothing.

Finally, there is another kind of smoothing algorithms tbah be expressed as a linear
interpolation of higher and lower ordergrams:

ps(xi‘mﬁiiwrl) = )\“’i:iﬂ 'pML(l’i|-r§:}1+1) + (1 - /\l'ijlﬂ) -ps(xi|l’§:}l+2) (1.16)

WherepML( ) is then-gram probability estimated by means of the ML criterion and-:

i—n+1

and(1 — A_i- . ) are the interpolation weights. This kind of language modetgives the
name ofinterpolated language models

1.4.2 Single-Word Alignment Models

The IBM models BDDM93] were the first alignment models used in SMT. The IBM models
were developed at the IBM T.J. Watson research institutibnspite of the fact that the
IBM models no longer constitute the state of the art in SM&ythre still used in statistical
machine translation for different purposes. There are fifferdnt types of IBM models,
ranging from the IBM 1 Model to the IBM 5 Model. The IBM modelseabased on the
concept of alignment between the words of the source andtbettsentencesy, e!).
Formally, an alignment is a correspondence between woriligres of the source and
the target sentence’ andel: a C {1---J} x {1---T}. However, in BDDM93], the
alignments are restricted to be functions {1--- J} — {0--- I}, wherea; = i if the j'th
source position is aligned with thiéh target position. Additionallyaz; = 0 notes that the
word position; of f{ has not been aligned with any word positieh(or that it has been
aligned with thenull Word eo) Let A(f{,el) be the set of all possible alignments betwegn
andf{, and letPr(f{,a{|el) be the probability of translating by e! given the alignment
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hidden variable:{. We formulatePr (f{ |e!) as follows:

Pr(f1J|e{) = Z Pr( 1,1 ‘61) (1.17)

af €A(f{ el)

Under a generative point of view?r(f{,a{|el) can be decomposed without loss of
generality as follows:

<

Pr(f{,aflel) = Pr(Jlel) - H r(filfi " al el) - Priag|fi ™t al " e])  (1.18)

Given this general equation and depending on the specifecdf/fBM model, we make dif-
ferent assumptions. The first assumption is common to thenfiveel types. Specifically,
the probability distributionPr(f;|f{ ™", af, e]) is approximated by( f;|ea,) (which consti-
tutes an statistical dictionary of words). The differenMBnodels differ in the assumptions
that are made over the alignment probabilitlé:s(aj|f-17_1 ~*,el). These differences are
briefly described here:

¢ |IBM 1 Model: uniform alignment probabilities are assumed.

e IBM 2 Model: Pr(a;|fi~" a)~", el) is approximated by(a;li, J, I), a zero-order
model which establishes dependencies between absolutepesitions of the source
and the target sentences.

e IBM 3 Model: afertility modelp(¢|e) is added (representing the probability that the
word e generateg) source words). The alignment probability for the IBM 3 Model
is approximated by a zero-order model callgidtortion modelp(i|a;, J, I), which
establishes dependencies between absolute word pogifitims source and the target
sentences.

e |IBM 4 and IBM 5 models: they use a distortion model with first-order dependencies
between the relative word positions of the source and tigetaentences.

IBM model parameter estimation is carried out by means oéMpectation-maximisation
(EM) algorithm (refer to sectiof.5.1for more details). The specific details of the application
of the EM algorithm to estimate the IBM model parameters aafolind in BDDM93]. In
addition to this, there exists a publicly-available softevéool that allows to estimate IBM
model parameters. This package is the so-called GIZA+kitda@dch0(.

The search problem using IBM models is formalised followkguation (.2); alterna-
tively, the so-callednaximum-approximatiooan also be used:

e1 = argmax {Pr (e Z Pr(f],alleD)} ~ arg m:}x{Pr(e{) - max Pr(f],alel)}
€1 ay
a‘l
(1.19)
In the maximum-approximation, the maximisation processaigied out obtaining the
probability of the best alignment for the source and thegbsgntences. The best alignment
for a given sentence pair is often referred to as\iterbi alignment
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Apart from the IBM models, other single-word alignment misdeave been proposed.
The most important of those single-word alignment modetsthe hidden Markov model
(HMM) based alignment model&/NT96]. The HMM-based alignment models are similar
to IBM models, specifically, they use a statistical dictignaf words and a first order align-
ment modelp(a;|a;—1,I). HMM-based alignment models have been extended in differen
works [TIM02, DBO03).

1.4.3 Multi-Word Alignment Models

The main disadvantage of the single-word alignment modeilssir inability to capture con-
text information. Because of this, when single-word modets used, the responsibility of
capturing context information exclusively lies on the laage model. One possible solution

to this problem consists in the definition of translation mlsdhat establish relationships
between groups of words of the source and the target wortksaith®f single words. This so-
lution has been tested in the literature in different waysltirword joint probability models

are described inNIW02]; the so-called alignment templates approach is define@TiNO9;
Finally, the estimation and application of the so-calledaBh-based models is discussed
in [TCO1, MWO02, ZON02 Tom03. Phrase-based models are the standard translation mod-
els used in regular SMT systems.

A key concept used by these models is the concephadse Specifically, a phrase is a
set of one or more consecutive words of the source or thettsegéences. For example, given
the source senteng® = f f-f3f4 composed of four words, the following are examples of
valid phrases of: f1, f2 = fife, £3 = fofs, fi = fifof3f1, €tc. We will use the symbols
f ande, to denote an unspecified source or target phrase, resglgcthshould be noted that
in this context, phrases are not linguistically motivated.

Joint Probability Models

Joint probability alignment models were proposedMiN02]. Joint probability alignment
models assume that lexical correspondences can be estabhs phrase-level (the concept
of phrase has been explained above). This assumption isatlie &f a model which is able
to capture sets of equivalent phrase-pairs.

The joint probability model does not assume that the tamgetesices are generated from
the source sentences. Instead, it is assumed that the sandcthe target sentences are
generated simultaneously. This allows to estimate a jaiolbgbility model. Once the joint
probability model has been estimated, it can be easily atedénto a conditional probability
model.

The model is based on the so-callealy of conceptg’, where each concept € C de-
termines a phrase paﬂgﬂ, ¢;) of the source and the target sentences. This bag of concepts
defines a phrase partition of the source and the target smste@nly those bags of concepts
that allow to obtain both the source and the target senteaftazsapplying the corresponding
reordering operations will be considered. Since a bag ofepisC' may or may not be suc-
cessfully used to generate the sentence [f4lire!), the predicatd.(f{, e, C) is defined to
test this property. Once the bag of concepts has been gedeestry concept; contained in
the bag of concepts is analysed, determining its assogete pai(ﬁ é;) which is gen-
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erated according to the probability distributiphﬁ-, é;) ( f; andé; have at least one word).
Finally, the phrase pairs are reordered in order to obtaih tiee source and the target sen-
tences. Under this model, the probability of a given serdquair (f{, e!) is obtained by
summing over all possible bags of concepts C:

p(flel) = > ] e(fi.é) (1.20)

CECIL(.fi]7€1 aC) ci€C

The joint probability model that we have described abovegmes a major drawback due
to its inability to impose constraints on the reorderings.sdlve this problem, an absolute-
position distortion model is includedqwW02].

The estimation of the model parameters is carried out by mebtine EM algorithm. To
simplify the estimation process, certain heuristic prgsiare introduced. The details of the
estimation process can be found M\[V02].

Alignment Templates

The key concept of this approach is the concept of alignnenptate DTN99 Och03. An
alignment template is a phrase pair of the categorised saurd target sentences plus an
alignment between the words contained in this phrase pair.

Alignment templates model decomposes translation préibhably the introduction of
two hidden variables: the alignment templates sequeifteand the word alignments
between the templates.

Pr(f{ler) = Z Pr(aglet) - Pr(z*|ay, e1) - Pr(fi|={, a1 e1) (1.21)

Zl ,al

It should be noted that the vectaf® determines a partition of the source and the target
sentences intd phrases. This allows us to define the phrase vegtfrs= fi andélt =
el. Taking this into account, the probability distributiétr(f{’|e!) can be approximated as
follows:

HEEDS Hpak|ak 1) - p(zklér) - p(fil 2k, éx) (1.22)

K K
2§ af k=1

Thus, we have three different statistical models that abetestimated:
e Phrase alignment modgl{ay|a;—1)

e Alignment template model(zx|éx)

e Statistical dictionary of phrase paipsfk|zk, ér)

The estimation of alignment templates models has the fatigwteps: first, single-word
alignment matrices for the sentence pairs contained irréin@ing corpora are generated; sec-
ond, bilingual word classes are trained and third, a set cfgghpairs that are consistent with
the previously obtained word alignment matrices is colldciThe exact details of alignment
templates model estimation can be found@th03.
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Phrase-Based Models

Phrase-based models constitute another alternative tomwve the limitations that the single-
word models present. Phrase-based models also use s#htittionaries of phrase pairs, as
well as the alignment templates model.

The translation of the source sentengg into its equivalent target senteneé using
phrase-based models can be explained under a generatitepoiew as follows:

1. The source sentence is divided ititophrasesf; = f/
2. We choose the target phrase translations for each solrasep

3. The target phrase translations are reordered to compesarget sentened = &€

Similarly to IBM translation models (see sectidn.?), phrase-based models assume
that the relationships between the source and the targas@bhiare explained by means of a
hidden alignment variableX = @,a-...ax. This hidden alignment variable summarises all
the decisions made during the generative process.

According to the generative process explained above, #imslation using phrase-based
models implies the generation of a compleieegmentatiof the source and the target sen-
tences. A bilingual segmentation or bisegmentation oftlerdg of a sentence pairf{, el),

A(f],el), is defined as a triplef{<, ek, ak), where the hidden variableX can be seen
as a specific one-to-one mapping betweenihsegments/phrases of both sentendes
K <min(I,J)). A bisegmentation can be seen as a phrase-level alignmehtase-based
alignmentbetween two sentence pairs.

The hidden variabl&€ allows us to reexpress the probability distributié (f;|e!)
without loss of generality as follows:

f1 |31 ZPT ay ,f |€1 ZPT |€1 (~1K|a1 ae{() (1.23)

Different assumptions can be made to model the previousapility distributions. Mono-
tonic alignments and uniform segmentation probabilitiesassumed infONO0Z, obtaining
the following expression:

p(filef) = ale] Zp (ff1er) (1.24)
where:
K ~
p(f1ef) = T] p(fxléx) (1.25)

k
Jedis Tonas [Tom03 does not assume monotonic alignments:

1

p(file1) ZHpaual - p(frléa,) (1.26)

ak k=1
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A simple distortion model is proposed ilKQMO03], this distortion model replaces
p(&k|d’f*1) with d(ar, — bx—1), Whereay, notes the starting position of the source phrase
which was translated by the-th target phrase andl,_; notes the ending position of the
source phrase which was translated by the- 1)-th target phrase. The distortion model
can be estimated by means of a joint probability mod&N02] or implemented using the
formula: d(ay — by,_1) = alex=be-1=1,

The search problem using phrase-based models is formalisied) the maximum-
approximation, where the segmentation lenftishould also be maximised:

>
=~

= argmax {Pr(e{) . ZPr(df,ffﬂéf)}

I,e{ a{(
~ argmax{Pr(el)- max Prak, fElefn (1.27)
I,el K,ay

where it should be noted that = &X.

The main disadvantages of these models are their poor disaticn capability and the
high space complexity of the phrase translation tablesn03. Different solutions to deal
with the problem of the space complexity have been proposetbs literature CBBS05
Z\V05, OMGVCO08,.

Regarding the estimation of phrase-based model paramdiffesent proposals can be
found in the literature. The most commonly used phraseebasmiel estimation technique
is based on the relative frequencies of the phrase pairathatxtracted from word align-
ment matrices Qch03, the details of this estimation technique are similar tattbf the
Alignment Templates model described in sectiof.3 This estimation technique has been
implemented in the publicly-available open-source THOGVCO0] toolkit. Additionally,
different techniques that try to reduce the heuristic congm that the standard estimation
technique present have been definedli@()1, OGVC05 BCBOKO06, AFJCO07. In addition
to this, there are proposals that try to combine phrasedhaselels with linguistic informa-
tion, such as the factored models describedid(Q7].

1.4.4 Log-Linear Models

In the early days of SMT, the translation process was fosadlias a maximisation of a
function with two terms, namely, the statistical languagmlel and the statistical translation
model (this is the fundamental equation of statistical maeltranslation, see sectidn3).
The use of a language and a translation model is beneficialusecur estimates for each
model are errorful. By applying them together we hope to tenbalance their errors. More
recently, alternative formalisations have been propoSedh formalisations are based on the
direct modelling of the posterior probabilityr(e!|f;), replacing the generative models by
discriminative modelsDiscriminative models are a class of models used in madbaraing
for modelling the dependence of an unobserved variable ovbaarved variable and they
differ from the generative models in that the former ones aofoatiow to randomly generate
samples from the joint distribution of the unobserved anskoked variables. The so-called
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log-linear modelsPRW98 ONO0Z| constitute an example of discriminative models:

exp (Sh_ b (7 €]))
Ze/{/ exp (Z%:l )‘mhm(fi]a el{l))

Log-linear models use a set of feature functidng(f;,e!) each one with its corre-
sponding weight,,,. In the previous equation, the denominator depends onlh@sdurce
sentencef;, so it can be omitted during the search process. As a resiitteoprevious
considerations, we arrive at a new expression which cansist log-linear combination of
individual modelsh(-, -):

Pr(ef|fi) = (1.28)

M
é] = arg max{ > Amhm(fi el )} (1.29)

Ief m=1

The direct optimisation of the posterior probability in tBayes decision rule is referred
to asdiscriminative training[Ney95. Since the features of regular SMT log-linear models
are usually implemented by means of generative modelstimisative training is applied
here only to estimate the weights involved in the log-line@mbination. Given the training
setX = {(f1,e1), (f2,€2), ..., (f~, en)}, and following the ML criterion:

N
MM — arg max{ H plen|fn; )\{w)} (1.30)
)\{u n=1

To solve the maximisation problem shown in Equati@r8() the so-called generalised
iterative scaling algorithm is used (see sectibf.2 for more details). Alternatively, the
ML criterion can be replaced by a criterion based on autaretluation methods. In this
case, we assume that the best model is the one that prodeces#fiest overall error with
respect to a given error function. This new optimisationbem can be solved by means
of the minimum error rate training algorithm (see sectioh.3for more details). The so-
called Moses toolkitKHB07] (as well as its predecessor, the Pharaoh decdt@M03])
implements a SMT system based on log-linear models. Thkitgobvides the functionality
of training the log-linear combination weights by meansha minimum error rate training
algorithm and phrase-based model estimation using stdmddéimation techniques.

Discriminative modelling is useful because it frees us fiibia generative modelling re-
quirement that each term in our translation model must ha\asaociated event in the trans-
lation process. Generative models are often chosen for atatipnal reasons rather than for
their accuracy. By contrast, discriminative models allevtol define a set of features that
may help to improve translation. One crucial aspect in disicative modelling is defining
useful features.

1.5 Parameter Estimation Techniques

Once the statistical models have been completely definednét step is to estimate the
set of parameters of these statistical models. This is thealled training problem (see
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sectionl.3). In previous sections we have mentioned three well-knoaraimeter estimation
techniques, namely, the expectation-maximisation algar,ithe generalised iterative scaling
algorithm and the minimum error rate training algorithm.tte following sections we will
briefly describe these three estimation techniques.

1.5.1 The Expectation-Maximisation Algorithm

The expectation-maximisation (EM) algorithd[R77, Wu83 is used for finding ML esti-
mates of parameters in statistical models (please referctiosn1.3for an explanation of the
ML criterion), where the model depends on unobserved hiddeables.

The EM algorithm has two different applications. The firstuws when the data has
missing values, due to problems with or limitations of theevation process. The second
occurs when optimising the log-likelihood function is aptedally intractable but when the
log-likelihood function can be simplified by assuming théstence of additional but missing
(or hidden) parameters.

We assume that dat¥ is observed and generated by some distribution governeleby t
the set of parametef8. In addition to this, we assume thatamplete dataet existsZ =
(X,)). The complete data comprises the incomplete data and afsssangor hidden data
set). Finally we assume a probability density function for thenpbete data:

p(2|0) = p(x,¥|0) = p(ylx, ©)p(x|O) (1.31)

We use the previous equation to define a new expression asghékklihood,£(0,z) =
L(0,x,y). This is the so-calledomplete data log-likelihood functiotit is worth mention-
ing that this new log-likelihood is a random variable sir)¢és also randomly distributed.
The original log-likelihoodZ (0, x) is referred to as the incomplete-data likelihood function.

EM algorithm first finds the expected value of the completeadaig-likelihood,
log p(x,y|©), with respect to the hidden data given the incomplete dadaagsrevious esti-
mation of the model parameters:

Q(6,0' 1) = Ellogp(x,y|0)[x, 0] (1.32)

Where© 1) are the currently estimated model parameters@ace the new parameters
that are being optimised to increage The evaluation of th&) function is the so-called E
step of the EM algorithm.

The M step finds the set of parametérshat maximises thé) function computed at the
E step.

ol = argmaxQ(®7@(t_1)) (1.33)
e

The EM algorithm estimates the set of parameéisf a model iteratively, starting from
some initial guess. Each iteration executes the E and theepsstAs shown inDLR77],
each EM iteration improves the log-likelihood of the incdetp datal(©, x) or leaves it
unchanged. Indeed for most models the algorithm will cogwdp a local maximum of
L(©,x).

The M step of the EM algorithm may be only partially implenehtwith the new esti-
mate for the parameters improving the likelihood but notessarily maximising it. Such a
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partial M step always improves the likelihood as well. Detepst al. DLR77] refer to such
variants as generalised EM (GEM) algorithms.

1.5.2 Generalised lterative Scaling

The generalised iterative scaling (GIS) algorithbR[72 can be used to find a ML estimate
of the log-linear combination weights)’ shown in Equation.29. The application of the
GIS algorithm is very costly due to the necessity of computhre normalisation factor that
is shown in Equation1(28. Och and Ney QNOZ greatly reduce the computation costs
by constraining the calculation of the normalisation fad¢tothe set of N-best translations
generated by the SMT system.

1.5.3 Minimum Error Rate Training

Log-linear model weights can also be adjusted by means ahthenum error rate training
(MERT) algorithm Pch03. The MERT algorithm uses a given translation quality measo
estimate the above mentioned log-linear weights. The MEBdrdghm can be implemented
by means of different optimisation algorithms. O€hch03 proposes the use of the Powell’s
conjugate gradient descent meth@&b{v64. Alternatively, the so-called downhill-simplex
algorithm [NM65] can also be used.

1.6 Search Algorithms

Once the statistical models involved in the translatiorcpss have been estimated, the re-
maining step consists in defining how the target sentencerisrgted from the source sen-
tence. This is the so-called search problem (see settinin the purely statistical approach
to MT (see section.3), the search problem is expressed formally by means of tidsfmen-

tal equation of machine translation (see Equatib@)f or, alternatively, by means of Equa-
tion (1.29 corresponding to the use of log-linear models. The searghlgm as presented
in equationsl.2and1.29was demonstrated to be an NP-complete problkmd9, UMO06].

The vast majority of the search algorithms that have beepgs®d so far share the same
basic idea. Specifically, the search process starts froolldaypothesigthat is, a hypothesis
that does not contain any words) and works by iterativelgeding partial hypotheses. The
extension of a partial hypothesis adds new words to this tingsis. In typical search algo-
rithms, the translations are built from left to right. Thisrative process is repeated until a
completehypothesis has been generated. The hypothesis extensitetire is driven by the
statistical models involved in the translation processchHzartial hypothesis has an associ-
ated score. The score associated to a hypothesis gives anmeffow good this hypothesis
is as a partial translation of the source sentence.

Different search algorithms have been proposed in thetitee. These search algorithms
can be classified into four groups: the branch-and-bounctisedgorithms, the dynamic
programming based algorithms, the search algorithms basepgeedy techniques and the
search algorithms based on linear programming.
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Branch-and-bound algorithms for SMT include search DUNO1] and the so-called
stack-decoding algorithm®8BD 96, WW97, GIJK™01, OUNO01]. A* search and stack de-
coding algorithms use a stack data structure to incremgmteend partial hypotheses. The
stack orders the hypothesis by ascending order of the sesigned to the hypotheses by the
statistical models involved in the translation proce$ssearch algorithms are optimal, since
the search problem has been demonstrated to be NP-convpdet@nnot expect to obtain an
efficient search. Branch-and-bound algorithms typicailiofv a best-first search strategy. A
depth-first search strategy has also been adopteRBBD{ 96].

The DP-based algorithmgil01, ZON02 GV03] decompose the problem of translating
the source sentence into a set of sub-problems that aredsedymrately. The final solution
is computed as a combination of the sub-problems. This pgroeds based on the Bellman
optimality principle Bel57. The DP-based algorithms for MT use a breadth-first search
strategy.

The greedy algorithms for MT were described BBD 94, Wan98 GJK*01]. These
algorithms differ from the previous ones in that they do notkiby incrementally extending
an initial null-hypothesis. By contrast, the greedy altjori first heuristically generates a
complete hypothesis that is iteratively improved by theligppon of different operators.
The greedy algorithms are not commonly used in MT due to thaditgjuof the results that
they obtain, which are worse than those obtained by otheclséachniques. The main and
only advantage of the greedy decoding algorithms is thairtime complexity.

Finally, a different search strategy based on linear prognang, and more specifically
in integer programming has been describedddit01]. This search strategy obtains high
quality results but has a high computational complexity.

1.7 Alternative Techniques for Corpus-Based MT

The corpus-based techniques mentioned in sedti@r8 not only includes the purely sta-

tistical approach described above, but also a number aihalige approaches. The most
commonly used of these alternative approaches are the diaitie approach and the context
free grammar approach. These approaches can also be ethgsifi the statistical approach

to MT.

1.7.1 MT based on Stochastic Finite State Transducers

One alternative corpus-based approach to MT is based on dbeofli stochastic finite
state transducers (SFSTs) for MTR92 CGV94, LIS 95, Als96h, Als963 AX97, Vid97,
KAO98, ABCT0Q].

SFSTs can be trained from bilingual corpora, obtaining atjprobability model. An
SFST is a finite-state automaton which accepts sentences githe source language and
returns sentences given in the target language.

A particular kind of SFST is the so-called subsequentialsdacer DGV93. Subse-
quential transducers are deterministic SFST’s. The maimargidge of the subsequential
transducers consists in their capability delay their output until a sufficient number of
source symbols has been seen. This is done to ensure thetnes® of the output. The
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search problem when using SFSTs is commonly solved by mdahe well-known Viterbi
algorithm [Vit67].

The OSTIA [ODGV93 (onward subsequential transducer inference algorithna) the
OMEGA [Vil00] (from spanish: OSTIA mejorado empleando garasty alineamientos)
algorithms allow to automatically generate SFST’s. The (dSilgorithm exclusively uses
finite-state automaton techniques and the OMEGA algoritbmhines finite-state automa-
ton techniques with additional information extracted byameeof statistical methods. Finally,
an additional technique that allows SFSTs inference isdheatied GIATI technique@V04]
(grammatical inference and alignments for transducerénfes). The GIATI technique has
been implemented in the publicly-available GREAIJCO0§ toolkit.

1.7.2 MT based on synchronous context-free grammars

Context-free grammars (CFG) applied to MT confers two athges with respect to the MT
techniques described in previous sections. First, theglasely tied to some linguistic rep-
resentations of syntax. Second, in their synchronous faynohronous CFG, or SCFG),
they can easily represent long-distance reordering wittih@iexponential complexity of per-
mutation. However, these advantages comes with new modeilhallenges that are to be
solved. Because of this, the context free grammar appraabhiltis currently an area of

active research.

Different approaches to SMT can be expressed in the SCFGafisnm  One important
advantage of this is that the search problem with SCFG maslelquivalent to CFG pars-
ing [Mel04]. In the following sections we will briefly describe threepdipations of SCFGs
that are representative of their use in SMT, namely brasgeirammars, syntax-based trans-
lation and hierarchical phrase-based translation. For i@ metailed review of the literature
on SCFGs applied to MT, please refer tmp0§].

Bracketing Grammars

One reason to use SCFGs is efficient expression of reordeltindpe previously described
techniques, long-distance reordering is difficult to mod&he most permissive approach
(arbitrary permutation) is exponential in sentence len& contrast, SCFGs can represent
long-distance reordering while remaining polynomial inteace length. This motivates the
use of bracketing grammars. They represent all possibldeeags consistent with a binary
bracketing of the input stringfu9qg.

Stochastic inversion transduction grammars (SITGs) aserdeed in Wu97]. Arecursive
statistical translation model with some similarities witle SITGs is proposed ifVj/05]. A
lexicalised bracketing grammar, in which non-terminal bpis are annotated with words
is described inZG0Y. A related formalism is the head transduction gramn#eBD0Q].
Additionally, Xiong et al. KLL0O6] adapted bracketing grammars to phrase translation.

Syntax-Based Translation

Syntax-based translatiod{W98, YKO01] tries to capture syntactic information from both the
source and the target languages. Typically, a translagistes using syntax-based models
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works as follows: first, the system is given a source senteastaining syntactic labels and
hierarchically represented by means of a tree data steictirom this tree, a set of node
reordering operations is applied obtaining a new labelied.tThe structure of the resulting
tree is equivalent to that of the source sentence, but it Bas built according to the syntax
rules of the target language. Finally, the source wordsainat! in the tree are replaced by
their corresponding translations in the target language.

Additional works on syntax-based translation can be fountheé literature GHKMO04,
KGO05, GGKT06]. A slightly different proposal of syntax-based trangatisystem can be
found in I[ma03, where a method to hierarchically extract equivalent pasgpairs from an
aligned bilingual corpus is described. According to thipraach, two phrases are equivalent
if they can be directly translated by means of an EBMT system.

Hierarchical Phrase-Based Translation

SCFG models, since they enable only word-to-word trarsiatre not able to capture con-
text information. As it was explained above, one way to @ty this problem is to use
multi-word translation models such as the phrase-basecisiodeally, we would like to
benefit from the insights behind both hierarchical model$ girase-based models. This is
accomplished in hierarchical phrase-based transla@tiOp, Chi07).

1.8 Interactive Machine Translation

Current MT systems are not able to produce ready-to-use 8606, CBFK*07]. Indeed,
MT systems usually require human post-editing in order toeae high-quality translations.

One way of taking advantage of MT systems is to interactieeljnbine them with the
knowledge of a human translator, constituting the Intéradvlachine Translation (IMT)
paradigm. This IMT paradigm can be considered a special ¢fplee so-called computer-
assisted translation (CAT) paradighCp7].

An important contribution to IMT technology was carried ethin the TransType (TT)
project FIP97, LFLOO, LLLO2, FLLO2, Fos02. This project entailed a focus shift in which
interaction is directly aimed at the production of the tatggt, rather than at the disambigua-
tion of the source text, as in former interactive systems itlea proposed in that work was
to embed data driven MT techniques within the interactigegtation environment.

Following these TT ideas, Barrachina et &8BC™09] proposed a new approach to IMT.
In this approach, fully-fledged SMT systems are used to medull target sentence hy-
potheses, or portions thereof, which can be partially orpletely accepted and amended by
a human translator. Each partially corrected text segnoemiefix, is then used by the SMT
system as additional information to achieve improved sstiges. Figurel.3illustrates a
typical IMT session. In interaction-0, the system suggadtanslation€,). In interaction-

1, the user moves the mouse to accept the prefix composed fifstheight characters “To
view " (e,) and presses tHe| key (k), then the system suggests completing the sentence
with “list of resources(a newe,). Interactions 2 and 3 are similar. In the final interaction,
the user completely accepts the current suggestion.

Figure1.4 (inspired from YRCGVO07) shows a schematic view of these ideas. Hgre,
is the input sentence ard is the output derived by the IMT system frofy. By observing
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Figure 1.3: IMT session to translate a Spanish sentence into English.

sourcgf): Para ver la lista de recursos
referencgél):  To view a listing of resources
€p
es | To view the resources list
e, | To Vview
interaction-1 | k [a]
es list of resources
e, | To view a list
interaction-2 | g m
es ng resources
e, | To view a listing
interaction-3 | k [o]
€s f resources
acceptance | e, | To view a listing of resources

interaction-0

fi andel, the user interacts with the IMT system, validating prefiaad/or pressing keys
(k) corresponding to the next correct character, until tesired outpué! is produced. The
models used by the IMT system are obtained through a clad$giteh training process from
a previously given training sequence of patis, €,) from the task being considered.

—

I
f i] €

k feedback/interactions

J Interactive éf
—
SMT System
fi,e;
f5,e2

Batch
Learning

Figure 1.4: An Interactive SMT system.

In the IMT scenario we have to find an extenséerfor a given prefixe,,:

&, = argmax {p(es | flJv ep)} (134)
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Applying the Bayes rule, we arrive at the following expressi

é, = argemax {p(eS lep) p(fi | ep,es)} (1.35)
where the ternp(e,) has been dropped since it does not depend,on

Thus, the search is restricted to those sentea¢eshich containe, as prefix. It is
also worth mentioning that the similarities between Equrafi..35 and Equation.2) (note
thate,e, = e!) allow us to use the same models if the search proceduresdargiately
modified BHV 05, BBC*09].

It should be noted that the statistical models are definedoad Wevel while the IMT
interface described in Figufe3works at character level. This is not an important issueesinc
the transformations that are required in the statisticadetofor their use at character level
are trivial.

1.9 Evaluation

In this section we will review the automatic evaluation mgas that are commonly used
in three different tasks: MT, word-alignment generatiod 8dT. Among all the automatic
measures that have been described, we will pay speciatiati¢n those that will be used to
evaluate the techniques proposed in this thesis.

1.9.1 MT evaluation

In recent years, various methods have been proposed to atitaity evaluate machine
translation quality by comparing hypothesis translationth reference translations. Ex-
amples of such methods are word error rate (WER), positidegandent word error rate
(PER) JABCT00, CNO™04], generation string accuracy8RWO0Q, multi-reference word
error rate NOLOQ], BLEU score PRWZ01, NIST score pod03, METEO [BLO5] and
TER [SDS"06]. All these criteria try to approximate human assessmeditsame works re-
port a high degree of correlation to human evaluat®R\[VZ01, Dod02. By contrast, other
authors such asOBFK™07] report substantial differences between human and automat
evaluations. Because of this, automatic MT evaluatiohrstihains an open problem.

In this thesis, the BLEU score will be used to measure thestaéion quality. The BLEU
(bilingual evaluation understudy) score computes the gdoenmean of the precision of-
grams of various lengths between a hypothesis and a setasénefe translations multiplied
by a factor BR-) that penalises short sentences:

N

BLEU = BP(-) exp <Z long”>

n=1

Herep,, denotes the precision afgrams in the hypothesis translation. Typically, a value of
N = 4is used.
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1.9.2 Word Alignment Evaluation

The generation of word and phrase alignments is strongiteelto the SMT framework,
since statistical alignment models constitute one key aomapt of regular SMT systems.
The performance of statistical alignment models can be oredsy means of automatic
methods, such as precisioff), recall (R), F-measure ) and alignment error rate (AER)
(see PNOQ). In a word alignment task we are given a parallel text aneference alignment
G which is compared with the system alignmentBoth A andG are sets whose elements are
alignments between the words of the parallel text. Bé#ndG can be split into two subsets
Ag,Ap andGg, Gp, respectively representingureand Probablealignments. Precision,
recall, F-measure and alignment error rate are computedllaw$:

ArnNG
P = | TATT|
ArnG
Rr [Ar 0G| T|GT|T|
2Pr- R
= it el
AsNGs|+|ApNG
AR — 1152 AIS»||+|GZ| :

whereT is the alignment type, and can be set to eithier P. In this thesis all the previously
described alignment quality measures will be used.

1.9.3 IMT Evaluation

The IMT framework has its own evaluation measures sinceigcise, the main goal of auto-
matic assessment is to estimate the effort of the humariatang~or this purpose the follow-
ing measures have been proposed: key-stroke ratio (KSR)s@raction ratio (MAR), key-
stroke and mouse-action ratio (KSMR) (these three measweedescribed ingBC*09])
and word-stroke ratio (WSR)YCO06].

The above mentioned IMT evaluation measures are based coiticept oflongest com-
mon character prefi{_LCP). The LCP is obtained by comparing the translationgivg the
IMT system with the reference sentence that the user hasnd.r&ipecifically, the first non-
matching character of the system translation marks the éttted_CP. The user moves the
mouse pointer to this first non-matching character and teplaces it with the corresponding
reference character. After this, a new system hypothegiowuced. This process is iterated
until a full match with the reference is obtained. Each cotafion of the LCP would cor-
respond to the user looking for the next error and moving thiatpr to the corresponding
position of the translation hypothesis, increasing the Imemof mouse-actions. Each charac-
ter replacement, on the other hand, would correspond to -atkelge of the user. If the first
non-matching character is the first character of the nevesyblypothesis in a given iteration,
no LCP computation is needed; that is, no mouse-actions ade oy the user.

In this thesis, the following three IMT evaluation techréguwill be used:

o Key-stroke ratio (KSR): Number of key-strokes divided by the total numberedér-
ence characters.
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e Mouse-action ratio (MAR): Number of pointer movements plus one more count per
sentence (aimed at simulating the user action needed tptaiteefinal translation),
divided by the total number of reference characters.

e Key-stroke and mouse-action ratiof KSMR): Number of key-strokes plus number of
mouse-actions divided by the total number of referenceacttars.

When we evaluate an IMT system, it is also important to eséntfa@ human effort re-
duction that can be obtained using this IMT system with resfmeusing a conventional SMT
system followed by human post-editing. For this purpose,KBR measure defined above
can be compared with theharacter error rate(CER) measure. The CER measure is de-
fined as the minimum number of characters that are to be atsadeleted or substituted to
transform the sentences generated by the translatiomsyste the reference translations.
However, the CER measure constitutes a rough estimationeopast-editing effort, since
professional translators typically use text editors witihoaompletion capabilities to gener-
ate the target translations. To solve this problem, we carnthepost-editing key stroke ratio
(PKSR) measure defined iRTV10]. This measure has been applied in the field of computer-
assisted transcription of text images, but can also be useddithout any modification. The
PKSR measure is calculated as the number of keystrokeshaser of the post-editing sys-
tem must enter to achieve the reference translation, diviigethe total number of reference
characters. When the user enters a character to correct soorecict word, the post-editing
system automatically completes such word with the mostaistebword contained in the task
vocabulary.

1.10 Corpus

This section describes the different parallel corpora Wilitbe used to test the techniques
proposed in this thesis. Available corpora is usually dididn two parts: the training and
the test parts. The training part is used to train statisticadels and the test part to obtain
quality measures like those defined in sectigh Additionally, some corpora also include a
development part which is used to adjust specific parametehe statistical models such as
the log-linear combination weights described in secfigh4

1.10.1 EuTrans-I Corpus

The EuTrans-1 task\id97, ABCT00] comes from a limited-domain Spanish-English ma-
chine translation application for human-to-human comroation situations in the front-desk
of a hotel. It was semi-automatically built from a small dathof sentence pairs collected
from traveller-oriented booklets.

Table1.1shows the main figures of the EuTrans-I corpus. As can be He=EuTrans-|
corpus is a very simple corpus with small vocabularies amgl k@v perplexities. By this
reason, the EuTrans-I corpus is no longer used in the SMT. fidlavever, it is described
here because it will be used to test certain techniques peapio this thesis.
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Table 1.1: EuTrans-| corpus statistics.

Spanish [ English
Sentences 10000
Training Running words 97131 99292
Vocabulary 686 513
Sentences 2996
Test Running words 35023 35590
Perplexity (trigrams) 49 3.6

Table 1.2: Europarl corpus statistics for three different language pairs.

Spanish | English || French | English ][ German [ English

Sentences 730740 688031 751088

Training Running words 15.6M 15.2M 13.8M 15.3M 15.2M 16.0M
Vocabulary 113886 72742 69034 86803 205378 74711
Sentences 2000 2000 2000

Dev Running words 60276 57945 65029 57945 54247 57945
Perplexity (trigrams) 66.5 62.8 45.0 62.8 113.7 62.8
Sentences 3064 (2000+1064)|| 3064 (2000+1064)|| 3064 (2000+1064)

Test Running words 91650 85226 98720 85226 82351 85226
Perplexity (trigrams) 91.9 103.3 61.5 103.3 177.8 103.3

1.10.2 Europarl Corpus

Europarl corpus{oe0] is extracted from the proceedings of the European Parligmdich
are written in the different languages of the European Un&pecifically, this is the version
which was used in the shared task of the NAACL 2006 Workshojstistical Machine
Translation KM06]. Table 1.2 shows some statistics of this corpus, which includes garall
texts for three European language pairs, specifically SpalBnglish, French-English and
German-English. As it can be observed, the Europarl corpotamns a great number of sen-
tences and great vocabulary sizes. These features are cotorother well-known corpora
described in the literature.

Itis worthy of note that the test data is not only composecaofence pairs extracted from
the European Union government records, but also from theréls of the Project Syndi-
cate Websitewhich are published in all the four languages of the sharskl téccording
to [KMO06], this new test data differs from the Europarl data in vasiatays. The text type
are editorials instead of speech transcripts. The domagengral politics, economics and
science. However, it is also mostly political content anthimm.

In summary, the test corpus is composed 600 in-domainsentence pairs antd064
out-domainsentence pairs. This feature makes this corpus speciathctive for testing
statistical model adaptation techniques.

The NAACL 2006 version of the Europarl corpus also providascHic data to train the
language models. Table3 shows the main figures of the monolingual texts. There isdwic

Chttp://www.project-syndicate.com
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as much language modelling data, since training data fomtehine translation system is
filtered against sentences of length larger than 40 words.

Table 1.3: Europarl language model data.

English Spanish French | German
Sentences 1003349 | 1070305| 1066974 | 1078141
Running words 27.4M 29.1M 31.6M 26.5M
Vocabulary 86698 151111 109597 277197

1.10.3 Hansards Corpus

The Canadian Hansards corp@ef0] consists of a set of aligned texts in the French and the
English languages extracted from the official records ofGheadian Parliament. A subset
of this corpus was used in the HLT/NAACL 2003 workshop on “Bing and Using Parallel
Texts: Data Driven Machine Translation and Beyond” to camay alignment experiments
(see MPOJ for more details). The main figures of this corpus are showiable 1.4.
The corpus has a development set consisting7omanually aligned sentence pairs and a
development set o047 manually aligned sentence pairs. The manual alignmentgrass
two different confidence degrees: Sure (S) or Probable (B)yiag to obtain the automatic
alignment quality measures described in sectidh

1.10.4 Xerox Corpus

The Xerox corpus$diflvV+01] consists of translation of Xerox printer manuals involyin
three different pairs of languages: French-English, Sgmhinglish, and German-English.
The main features of these corpora are shown in Talile Partitions into training, devel-
opment, and test were performed by randomly selecting Quitleplacement) a specific
number of development and test sentences and leaving ttaéniagones for training.

The Xerox corpus has been typically used to test IMT techesqseeBBC09]) and is
also used in this thesis for the same purpose.

Table 1.4: Hansards corpus statistics.

French | English
Sentences 1130104
Training Running words 22.9M 19.9M
Vocabulary 86591 68019
Sentences 37
Dev Running words 704 661
Perplexity (trigrams) 66.2 83.4
Sentences 447
Test Running words 7559 7011
Perplexity (trigrams) 52.1 71.6
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Table 1.5: Xerox corpus statistics for three different language pairs.

Spanish | English French | English ]| German | English
Sentences 55761 52844 49376
Training Running words 657172 | 571960 || 573170 | 542762 440682 | 506877
Vocabulary 29565 | 25627 27399 | 24958 37338 | 24899
Sentences 1012 994 964
Dev Running words 13808 12111 9801 9480 8283 9162
Perplexity (trigrams) 34.0 46.2 74.1 96.2 124.3 68.4
Sentences 1125 984 996
Test Running words 9358 7634 93805 9572 9823 10792
Perplexity (trigrams) 59.6 107.0 135.4 192.6 169.2 92.8

Table 1.6: EU corpus statistics for three different language pairs.

Spanish | English [| French | English [ German | English
Sentences 214473 215216 222644
Training Running words 5.8M 5.2M 6.5M 5.9M 6.1M 6.4M
Vocabulary 97444 83738 91307 83746 152 696 86 185
Sentences 400 400 400
Dev Running words 11471 10080 12250 11106 10730 11106
Perplexity (trigrams) 46.1 59.4 34.3 42.6 60.8 41.7
Sentences 800 800 800
Test Running words 22631 19944 23945 21906 20791 21906
Perplexity (trigrams) 45.2 60.8 36.2 44.7 63.6 43.9

1.10.5 EU Corpus

The EU corpora was extracted from the Bulletin of the EuropBaion, which exists in
all official languages of the European Unidd@G03] and is publicly available on the Inter-
net. Tablel.6 shows the main figures of this corpus, which includes pdrtdids in the
language pairs Spanish-English, French-English and Geinglish. The main features of
these corpora are shown in Table 2. The training, the demaop and the test sets were
obtained in a similar way as with the Xerox corpus (see sectid0.4. As well as the
Xerox corpus, the EU corpus has also been typically used iy caut IMT experiments
(see BdIflvT01, BBCT09]).

1.11 Summary

In this chapter we have introduced the field of MT, classifythe main MT systems that
have been proposed so far according to the specific tramsleachnology that these MT
systems use. We have paid special attention to the statisfiproach to MT since it is the
approach in which this thesis is focused. Three differenbj@ms are to be solved when
building SMT systems, namely, the modelling problem, tlaéning problem and the search
problem. We have described the main approaches to defineaitigtisal models involved
in the translation process, including the statisticajram language models, the single-word
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alignment models and the phrase-based alignment modeish w&te of special importance
in this thesis. Regarding the training problems we haverds=t the ML criterion and the
well-known EM training algorithm, as well as other trainiatgorithms, such as the GIS
algorithm and the MERT algorithm. Finally, we have providelrief overview of the search
problem, describing the main search algorithms that haga bpplied to SMT.

The output of fully automatic MT systems is not error freec8ase of this, an alternative
framework in which the MT system and its user collaboratednegate correct translations
was proposed. This is the so-called IMT framework. In thiaptker we have provided a brief
introduction to the IMT framework since this thesis alsogaems contributions on this topic.

Finally, we have also described the parallel corpora as agthe evaluation measures
used to test the techniques proposed in this thesis.
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CHAPTER 2

SCIENTIFIC AND TECHNOLOGIC
GOALS

This thesis is focused on the statistical approach to MT,raate specifically on statistical
phrase-based machine translation. The scientific ([SQ]technologic ([TC]) goals of this
thesis can be classified into two groups, namely, fully-anatic phrase-based SMT goals and
interactive phrase-based SMT goals:

1. Fully-automatic phrase-based SMT goals

e Improved phrase-based model estimatiofiSC]

The standard phrase-based model estimation techniquesahstvong heuristic
component. The generative process of phrase-based moghilstly involves
the bisegmentation of the source and the target sentenes®rtNeless, phrase-
based models are commonly estimated without taking intowtcany infor-
mation about bisegmentations. We propose an alternativesptbased model
estimation technique which considers phrase pairs as peohaplete bisegmen-
tations of the source and the target sentences.

e Phrase-based model estimation from very large corporfT C]

Phrase-based models have huge memory requirements wheatestfrom large
corpora. These high memory requirements often make theatsbin unfeasible.
To solve this problem we propose a specific estimation teglnthat allows us
to transform main memory requirements into disk space rements.

e Development of open-source software for phrase-based SMTC]

Open-source software constitutes a valuable resourckdaesearch community.
In this thesis we present thedOT toolkit for SMT. The THOT toolkit allows to
estimate phrase-based models using two different estmtgchnigues, namely,
the well-known, standard phrase-based model estimat@migue and the im-
proved phrase-based model estimation technique propogbiithesis.
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e Specific phrase-based model derivatiofiSC]
Standard phrase-based models are composed of a set ohti@mgirobabili-
ties between phrase pairs. Typically, these statisticdiatiaries of phrase pairs
constitute the key features of the log-linear combinatiossd by current SMT
systems. In addition to this, some extra features are addeelp improving the
translation quality. These extra features usually lackfofmal justification. We
give a specific phrase-based model derivation that, aftéingdahe appropriate
assumptions, allows us to obtain a set of statistical suletsaggbverning differ-
ent aspects of the translation process. These submodelalstate added as
individual features of a log-linear combination. The sfie@hrase-based model
derivation proposed here is used as a key component of atbgogals presented
in this thesis.

e Branch-and-bound search for phrase-based SMTSC]
The branch-and-bound search paradigm constitutes onéblgosgy to tackle
the search problem in SMT. SMT search algorithms make a-#deetween
efficiency and translation quality. Here we propose a braarafibound algorithm
for phrase-based SMT. This search algorithm offers sevegs to make such a
trade-off by modifying its parameters.

o Efficient decoding with large phrase-based modelfT C]

Since phrase-based models basically consists in statisliictionaries of phrase
pairs, their estimation from very large corpora yields adwgmber of parameters
which are to be stored in memory. The handling of millions afdel parame-
ters has become a bottleneck in the field of SMT. We proposeydasolve this
problem which is strongly inspired by a classic concept ofipater architecture:
cache memory. The proposed technique allows us to transfaim memory re-
guirements into disk requirements. In addition to this, \ge @ropose a specific
data structure with very low memory requirements to repreee phrase pairs
that compose the phrase models.

e Generation of phrase-based alignmentfSC]

The problem of finding the best alignment at phrase level babeen extensively
addressed in the literature. This problem is interestingesa range of different
applications from phrase-based SMT systems to machiresaitLP tools can

benefit from the availability of phrase-based alignmentse pibpose the use
of smoothed phrase-based statistical alignment modetttiegwith a specific
search algorithm to compute the best phrase-to-phrasenadigt for a pair of

sentences.

2. Interactive phrase-based SMT goals

e Alternative IMT techniques [SC]
Common IMT techniques rely on a word graph data structurerémesents pos-
sible translations of the given source sentence. DuringdMieprocess for the
source sentence, the system makes use of the word graplatghfar that sen-
tence in order to complete the prefixes accepted by the hurmasiator. A com-
mon problem in IMT arises when the user sets a prefix which aiabe found
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in the word graph. The common procedure to face this prob&eto perform

a tolerant search in the word graph based on the well knownegirof Leven-

shtein distance, allowing us to obtain the most similangtfor the given prefix.

This tolerant search is not included in the statistical faligation of the IMT sys-
tem. In this thesis we propose an alternative formalisatfcthe IMT framework

in which the tolerant search is conducted by a stochastiz-eorrection model.
This new IMT framework can also be applied to other machide&éNLP tools.

Alternatively, we propose a new IMT technique which is nosdzhon the use
of word graphs. This new IMT technique modifies the phrassedalignment
generation techniques also proposed in this thesis torotitaisuffixes required
in the IMT framework.

Online learning for IMT [SC]

The vast majority of the existing work on IMT makes use of thellsknown
batch learning paradigm. In the batch learning paradigmtréining of the IMT
system and the interactive translation process are castieth separate stages.
This paradigm is not able to take advantage of the new knaelgidoduced by
the user of the IMT system. In this thesis, we propose thdetjan of the online
learning paradigm to the IMT framework. In the online leamparadigm, the
training and prediction stages are no longer separated.f@aiure is particularly
useful in IMT since it allows the user feedback to be takea adcount.
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CHAPTER 3

PHRASE-BASED STATISTICAL
MACHINE TRANSLATION

3.1 Introduction

Since they were proposed, phrase-based models have rkagiveasing attention from the
SMT community and they currently constitute the statehafart in this discipline. One
of the most interesting properties of phrase-based modédleir ability to capture context
information in contrast with single-word alignment modgkspresented by the IBM and the
HMM-based alignment models). Typically, very strong asptioms are made during the
derivation of standard phrase-based models, reducing themere statistical dictionaries
of phrase pairs (also called bilingual phrases). In spit¢thefe strong assumptions, the
estimation of phrase-based models is a challenging issaiéodts computational complexity
both in terms of time and space. In the last years, this prnolilas become even worse due
to the availability of larger and larger corpora.

This chapter is devoted to the study of different issuesrdigg the modelling and the
training problems in phrase-based SMT (PB-SMT): as andiction, the standard estima-
tion technique for phrase-based models is described ifogetP. We propose an alternative
way to carry out the estimation of phrase-based models itiope8.3. A specific phrase-
based model estimation technique which is able to work wétty large corpora is proposed
in section3.4. We give an alternative phrase-based model derivationdticse3.5. Finally,
we provide a summary of the chapter in sectiof

In addition to the previously described content, the majaf the techniques proposed
in this chapter have been implemented into the open-souscer Toolkit for phrase-based
statistical machine translation. Thei®T toolkit is described in Appendii.

3.2 Standard Estimation of Phrase-Based Models

As mentioned above, PB-SMT systems are based on statidiatainaries of phrase pairs,
also called phrase tables, that must be previously estihratader to perform the translation.
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Different techniques have been proposed in the literatuoatry out this estimation process
(we will give more details on this in sectiohi3). Among these techniques, there is one
that has become the standard technique implemented irard@BFSMT systems due to its
efficiency and good performance. This standard estimadohntique first extracts a set of
bilingual phrases from a training corpus according to a gfiedd extraction criterion. After
this extraction process, a probability distribution isrestted for the resulting bilingual phrase
dictionary following standard ML estimation techniques.

According to KOMO3], there are three ways of obtaining the bilingual phrasesifa
parallel training corpus:

1. From word-based alignments.
2. From syntactic phrases (seééq01] for more details).
3. From sentence alignments, by means of a joint probakildgel (see1\WO02]).

The standard phrase-based model estimation techniquéhesst method, in which the
bilingual phrases are extracted from a bilingual, wordnadid training corpus. The extraction
process is driven by an additional constraint: each bilahgunrase must be consistent with
its corresponding word alignment matri®, as shown in equatior8(1) (which is the same
given in [Och03 for the alignment template approach).

BP(f],el, A) = {(fIT™ et V(i ') € A:
J<i<j4+m = i<i <i+n} (3.1)

Hence, the set of consistent bilingual phrases is constithy those bilingual phrases where
all the words within the source phrase are only aligned toatbrsls of the target phrase and
viceversa. Figur&.1shows a word alignment matrix example along with its coroesiing
set of consistent bilingual phrases. The phrase pair (cdsause) is an example of a con-
sistent phrase pair, since the word “casa” is aligned wigwibrd “house”. By contrast, the
phrase pair (casa — green) is not consistent with the alighmatrix, since the word “casa”
is aligned with the word “house”, which is not included in fhierase pair.

The word alignment matrices are supposed to be manuallygieay linguistic experts;
however, due to the cost of such generation, in practisedheybtained using single-word
alignment models. This can be done by means of the GIZA+kiip@hich generates word
alignments for the training data as a by-product of the esdton of IBM models.

Since word alignment matrices obtained via the estimatfdBi models are restricted
to being functions (each word of the source sentence canidreedlwith one and only one
word of the target sentence), some auth@sH03 have proposed performing operations
between alignment matrices in order to obtain better algmin The common procedure
consists of estimating IBM models in both directions andigrening different operations
with the resulting alignment matrices such as union or g#etion. Figures.2aand3.2b
show the result of the union operation and the intersectperation, respectively, executed
on two alignment matrices.

One issue that may arise during the estimation process lms&8M-generated word-
alignment matrices is the occurrence of words that are nghed into the matrices (the
so-calledspuriousand zero fertility words, see BDDM93]). These special words are not
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: |:| |:| |:| . Source phrase| Target phrase
la the
house D . D D casa house
green [ 1| [] verde green

casa verde green house
the . D D la casa verde | the green house
” ” O - . .
= E casa verde . green house .
© g la casa verde .| the green house|.

Figure 3.1: Set of consistent bilingual phrases (right) given a word alignmentixnatr
(left).

iy -Jodm - m
house ][] Il [] house [ ][] [] house [ ]Il []
green [ [ ][] U green [JJM[] ~ green [JWME[]

the I [ the I [ ][] the I [

ol - ol - ol -0

2 (S 2

(a) Union operation

-JOom -poom -gom
house [J[ ][] house [ ]I [][] house []
green [l ][] N green [J[ ][] ~ &reen []

the I ][]0 the I (][] the H
<88 < =
2

o -

—

casa
verd

(b) Intersection operation

Figure 3.2: Example of the execution of different operations between two alignment
matrices.

taken into account by equatioB8.() and must be considered separately. A simple way to
solve this problem consists in modifying the consistenaadit@n given by equation3(1)

to exclude those words that are not aligned at all ($2€hDZJ). In addition to this, only
those phrase pairs with at least one aligned word may formnaistent phrase pair. For
instance, let us consider the alignment matrix that is alethibby means of the intersection
operation in Figure3.2h where the source words “casa” and “verde”, and the targedsvo
“green” and “house” are not aligned. Under these circunt&#snsome extra phrase pairs
would be consistent with the alignment matrix, including flollowing: (La casa — the),
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(la casa — the green), (la casa — the green), (casa verden),ggée By contrast, the phrase
pair (casa — house) would not befiP, since it would not contain any aligned words.

Once the phrase pairs are collected, the phrase transfatiability distribution is cal-
culated via relative frequency (RF) estimation as follows:

Fl~ C(f7 é)
p(fle) = === (3.2)
Zf’ C(f/, 6)

We will refer to this standard estimation method for phreased models as RF estima-

tion.

3.2.1 Implementation Details

In this section we will show the implementation details of #igorithm implemented by the
standard estimation technique to extract the set of camisilingual phrases. This will be
useful to compare the algorithmic complexity of the staddzstimation technique and that
of the alternative estimation technique presented in L@sis.

Algorithm 3.1shows thephrase _extract algorithm. Thephrase _extract algo-
rithm allows to extract the set of consistent bilingual @@sgiven the source and the target
sentences and their corresponding alignment matrix. Tigagighm is identical to that pro-
posed in Pch03. The first twowhile loops (lines3 and5) iterates over the set of possible
source phrases. Thgiasi _consecutive  predicate is introduced here to appropriately
handle unaligned words. Specifically, this predicate idumtad to true if the aligned source
positions contained in the s&(P are consecutive, with the possible exception of words that
are not aligned at all. At ling, the source phras)éj’}” is completely determined. After that,
two innerwhile loops (lines13 and15) are used to iterate over the target phrasﬁgs,that

can be used to obtain consistent phrase pairs of the (fgﬁﬁﬁ ejf).

The time complexity of thephrase _extract algorithm given the input parameters
(fi,el, A)isin O(I?J?) (the first twowhile loops are executed i@ (1?) and the two inner
while loops have a time complexity i@ (J?)).

3.3 Bisegmentation-based RF Estimation

The standard estimation method presented in the previa®iseas heuristic for two rea-
sons. First, the bilingual phrases are obtained from a ghiegle-word alignment matrix,
which forces us to impose a heuristic consistence regtriati order to extract them. Second,

as was previously explained, the translation process ygingse-based models involves the
generation of a bisegmentatfohetween the source and target sentences; however, the ex-
tracted bilingual phrases are not considered as part of lstenpisegmentations during the
estimation of the model. The first problem cannot be solvédauit changing the whole esti-
mation method. By contrast, an alternative estimationrtigre that tries to solve the second

aThe concept of bisegmentation was explained in sedtiér§ a bisegmentation is basically defined as a one to
one mapping between the source and the target phrases thats®thp sentence§ andfi’.
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input el fi,A
output : BP
auxiliar: SP (set of source positions), P (set of target positions)
1 begin
2 i1:=1
3 | whilei; < Ido
4 19 1= 11
5 while i3 < I'do
6 SP = {j|Fi:i1 <i<iaAA(i,5)}
7 if quasi _consecutive  (SP) then
8 j1 := min(SP)
9 J2 := maz(SP)
10 TP :={i|3j: j1 < j <ja ANA(i,5)}
11 if 7P C {i1,41+1,...,i2} then
12 i =5
13 while ;' =51 vV (j' > 0AVi: A(s,5") = 0) do
14 7" = ja
15 while j” = jo v (" < JAVi: A(4,5") = 0) do
16 BP:=BPU{(f} e2)}
17 j// — j// + 1
18 j=4 -1
19 io =12+ 1
20 i1 : =11 +1
21 end

Algorithm 3.1: Pseudocode for thehrase _extract algorithm.

problem while maintaining the use of single-word alignmenattrices can be proposed. We
will refer to this new estimation technique bisegmentation-based RBRF) estimation.

In the following sections we describe the details of our psgal alternative estimation
technique. Specifically, in sectioh3.1 some complexity issues regarding the estimation
of phrase-based models are reviewed. The algorithm thdements our proposed tech-
nigue is described in sectich3.2 Some implementation details are given in secBah3
Finally, some possible extensions and applications of thpgsed algorithms are given in
section3.3.4

3.3.1 Complexity Issues

The translation of a given sentence into another sentertbe itarget language using phrase-
based models is a complex task. According to the generatbaeps of phrase-based models,
a complete bisegmentation of both the source and the tagtrsces has to be generated. To
illustrate the complexity of this task, we will calculatesttotal number of bisegmentations
for a given sentence pair.

Before calculating the number of bisegmentations for aeser@ pair, it is illustrative to
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Table 3.1: Set of all monolingual segmentations for a source sentendenairds and
their representation as a binary numbeB difits.

Segmentation Code
fifafsfa 000
fifofs — fa 001
fifo— fafa 010
fifo—f3—fa 011
f1— fofsfa 100
J1—fafs — fa 101
fi—fo— f3fa 110
H—fo—fa—fa] 111

calculate the number of monolingual segmentations for glsisentence. For this purpose,
we will show that, given a sentence composed @fords, any monolingual segmentation of
this sentence can be represented by a binary number-of bits.

Let us consider that we are given a sentence in the sourceadgagcomposed of four
words: fit = f1 f2f3f1. The monolingual segmentation of lengtlwvhere the first wordf; is
in the first phrase and the rest of the worflgs f4 are in the second phrasey (— f2f3f4),
can be represented as a binary numbe3 bits: 100. In this binary number, the'th bit® is
set tol if the »'th word and the(n + 1)’th word of the sentence belong to different phrases.
Table3.1shows a complete example of the set of all possible mondihgggmentations for
the sentencé;' and how these segmentations are represented by meansryfrinabers. As
can be seen in the table, the number of monolingual segnamtas equal to the number of
possible bit combinations. Thus, we conclude that the numb@onolingual segmentations
of a sentence composedwoivords is2" 1.

Since a bisegmentation of two sentences is a one-to-oneinggpptweenk” source and
target phrases, we are interested in the total number of limgnal segmentations of a given
length, because only those segmentations with the samihleag be combined.

If we represent the monolingual segmentations with binamloers as was explained
above, the segmentation length will be given by the numbdbitsfthat are set td. The
number of monolingual segmentations of lengttwill be given by all those binary numbers
with K — 1 bits set tol andJ — K bits set to0. This number is given by the number of
permutations o2 elements where the first one is repeatéd- 1 times and the second is
repeated/ — K times, and we will note it a@(ﬁ;_ll)(J_K).

LetMSflJ’e{,K be the set of all possible monotonic segmentations of leAggfiven the
source sentencg and the target sentene¢. The total number of monotonic bisegmen-
tations of lengthX™ (with 1 < K < min(/, J)), IMSyy .1 |, is given by the following
expression:

IMS 1.1l = Piic 1y om0y Pl a0 (3-3)

Hence, the total number of monotonic bisegmentations foh gssible value off,

PHere we assume that the first bit is the leftmost bit.
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|IMS.1 ;1. is given by:

min(I,J)
(MS gy erl = Z IMS 57 o1 il (3.4)
k=1
LetS;. .1 i be the set of all possible non-monotonic bisegmentatiotsnafth K™ given

fi ande!l. The total number of non-monotonic bisegmentations oftlerg,
given by:

Sfi],e{,KL IS

Sp7.et k| = IMSyy o1 |- K! (3.5)

where the factorial term comes from the fact that a monolhgegmentation of length’
can be permuted iK! different ways.

Let Sf{f)e{ be the set of all possible non-monotonic bisegmentatiome tdtal number
of non-monotonic bisegmentations for each possible vefiu€,dS; 1|, is calculated in the
same way as it was shown for the monotonic case:

I
s€71

min(I,J)

Spyerl = D 1Ssycril (3.6)
k=1

The huge number of non-monotonic bisegmentations for &eeatpair constitutes a se-
rious challenge if phrase-based models are intended toteag¢sd by means of the EM
algorithm, since the E-step has to compute sufficient $itzifor each possible bisegmenta-
tion. According to our previous calculations, a brute faatgorithm implementing the E-step
would have factorial complexity.

The calculation of the expectation during the estimatioplufase-based models using
the EM algorithm has long been suspected of being NP-hard.ciMand Wong [MWO02]
proposed an approximated E-step based on the Viterbi aigtsrof the training pairs. An
exponential-time dynamic program to systematically espliie set of possible bisegmen-
tations was proposed iD[GZKO€]; in practise, however, the space of alignments has to be
pruned severely using word alignments to control the rumtime of EM. More recently, the
computation of the E-step for phrase-based models has leseonstrated to be an NP-hard
problem DKO08]. Finally, a proposal based on sampling is applied to egénaaBayesian
translation model inPBCKO§].

We propose an alternative estimation technique for phibased models which is also
based on word alignments as well as the standard estimatmijue described in sec-
tion 3.2 In contrast to the standard estimation technique, ourgsalpextracts the phrase
counts from the space of possible bisegmentations. The alazdments are used here to
constrain this space of possible bisegmentations, makiggtimation process feasible. Our
proposal does not use the EM algorithm, but the techniquesoged here can be applied to
greatly simplify the time requirements of the E-step. Isthénse, our proposal can be seen
as the predecessor of the work presentedi@ZK06], where the EM algorithm is used to
estimate phrase-based models and the set of possible leis&gions is constrained to those
that can be obtained using consistent phrase pairs. Howewbat work, the authors claim
that even if this constraint is imposed, the problem is stilactable. To reduce the compu-
tational cost, De Nero et alDIGZKO0§] introduce a maximum phrase length of three words
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during the training. In addition to this, different factarause their estimation algorithm to
rule out more than one half of the training set. As will be destoated in sectio.3.3 The
proposal presented here does not have such disadvantages.

3.3.2 Algorithm

In this section we give a new proposal for model estimatione €stimation procedure has
three steps that are repeated for each sentence pair amdriégsmonding alignment matrix

(fi el, A):
1. Obtain the seBP(f{,el, A) of all consistent bilingual phrases.

2. Obtain the sefp (s .1 4) Of all possible bilingual segmentations of the paiy, el)
that can be composed using the extracted bilingual phrases.

3. Update the counts (actually fractional counts) for edifferent phrase pai(’f ,€) in
the setSpp (7 o1 4y, aS:

o(f,&) = ¢ (f, &) + c(f,1Spp(s7.e1.n))

SBp(s7 el )l

wherec/(f, é) is the previous count off, é), c(f, é[Sgp(s7 c1.4)) iS the number of
times that the paitf, ¢) occurs iNSpp (s 1 ), @nd| - | denotes the cardinality of the
SeLSsp(f7 ef,4):

Afterwards the probability of every phrase p(afr, €) is computed again by relative frequency
estimation as follows: ~
p(fle) = <229
Zf/ C(f/a 6)

Step 2 implies that if a bilingual phrase cannot be part ofl@eggmentation for a given
sentence pair, this bilingual phrase will not be extractedr this reason, BRF estimation
extracts fewer bilingual phrases than the RF estimation.

Figure 3.3 shows all possible bisegmentations for the word alignmeairisngiven in
Figure3.1 Phrase alignments are represented here using boxes. Thts @nd fractional
counts for each extracted bilingual phrase will differ fack estimation method, as shown in
Table3.2for the RF and the BRF estimation methods, respectively.

3.3.3 Implementation Details

The key aspect of the BRF estimation algorithm describechéngrevious section is the
generation of the S&fzp (7 el a) containing all those bisegmentations for a sentence pair
that can be composed using consistent phrase pairs.

Algorithm 3.2 shows the pseudocode for thg _phr _extract  algorithm. Such algo-
rithm calculates the phrase counts for a given sentencdrpairthe set of bisegmentations
composed of consistent phrase pairs. The algorithm takéspas the sentence pair and
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Figure 3.3: Possible bisegmentations for a given word-alignment matrix.

Table 3.2: Bilingual phrase counts and fractional counts for RF and BRF estimation,
respectively, for the sentence pair shown in Figiite

f-é RF | BRF
la — the 1 3/5
casa — house 1 1/5
verde — green 1 1/5
casa verde — green house 1 1/5
la casa verde — the green house| 1 1/5

- 1 3/5
casa verde . — green house . 1 1/5
la casa verde . —the green house . 1 1/5

its word alignment matriX f;, el, A), the set of consistent phrase pai® and the set of
source positions that are to be align&f). The setSP initially contains every position
of the source sentence, that&P = {j|1 < j < J}. Similarly, the set7P initially con-
tains every position of the target sentence, thafiB, = {i|1 < ¢ < I'}. Given these input
parameters, the algorithm recursively obtains phrasetsdtom the constrained set of biseg-
mentationsSBp(fifye{’A). The algorithm works by extending partial bisegmentatiosisng
consistent phrase pairs from the 882, only those extensions that do not cause overlapping
alignments are considered (the target positions to beedigmust be contained iAP). The
recursion ends when all the source and the target sentesaeops have been aligned (the
setsSP and7 P are empty).

It is worthy of note that Algorithm3.2 works by exploring the tree of possible biseg-
mentations. Considering the example depicted in Figudethe tree containing the set of
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input : f.el,A,BP SP (set of source positions that are to be aligned),
TP (set of target positions that are to be aligned)

output : C (set of phrase counts .lﬂBp<fiI’e{7A)),
S (bisegmentation sizlé‘BP(f{’e{’A) )]

1 begin

2 | if SP # (then

3 j1 := min(SP)

4 jo = maz(SP)

5 J=n

6 while j < j» do

7 forall (f7,,ei2) € BP A{ir,i1 +1,...,i2} € TP do
8 SP = SP—{jl,jl—‘rl,...,j}

9 TP = TPf{il,i1+1,...,i2}

10 (C’,8") :=brf _phr extract (f{.el,ABP.SP TP
11 C:=Ccul U{( jfl,elﬁf)xs’}

12 S:=5+5

13 ji=j+1

14 | else

15 C:=0

16 if 7P :=(then

17 LS =1

18 else

19 LS =0

20 end

Algorithm 3.2: Pseudocode for therf _phr _extract  algorithm.

possible bisegmentations has the form given in Figude In the tree of possible bisegmen-
tations, each bisegmentation is given by a path from the abdie tree to one of its leafs.
The node numbers show the order in which the nodes are visjtetebrf _phr _extract
algorithm. Each edge of the tree represents a bisegmantiimsion and is labelled with the
corresponding phrase pair implied by this bisegmentatemisibn. The set of possible labels
for each edge of the tree is the #5° of consistent phrase pairs.

The computational complexity of thierf _phr _extract  algorithm is given by the
number of nodes of the bisegmentation tree. This size maydepending on the given word
alignment matrixA. If the word alignment matrices do not contain unalignedeamwords,
then there is at most one consistent ma]rf, eﬁf) € BP for a given source phra#ejf. Under
these circumstances, in the best case scenario, where albtials of the source and the target
sentences are mutually aligned, the complexity of the &lgoris linear with the length of
the source sentencd, By contrast, in the worst case scenario, where each souroe ig/
aligned with only one target word and the word alignmentdacated in the main diagonal
of the alignment matrixi, the complexity is irO(27~1). This exponential complexity comes
from the fact that, in the above described conditions, eashatmgual segmentation of the
source sentencg’ is contained iBpp(s7 1, 4), resulting in a bisegmentation tree containing
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la-the la casa verde—the green house asa verde .—the green house .

casa—house casa verde—gfeen house casa

verde—gre¢n

Figure 3.4: Tree of possible bisegmentations for a sentence pair.

271 |eafs (each leaf corresponds to one complete bisegmemgalibere are a great number
of possible situations between the best and the worst casmigos. One example of these
situations is the word alignment matrix given in Fig®&, which presents a non-monotonic
alignment. This non-monotonic alignment reduces the nurabpossible bisegmentations
to only five (see Figur8.3). The existence of unaligned words in the word alignmentimat
ces may vary the number of bisegmentations, but the upperdooiithe complexity is still
exponential.

Efficient Estimation Algorithm

The exponential complexity of Algorithi®.2, although it is far from the factorial complexity
of the brute force algorithm to enumerate the set of non-rtwno bisegmentations, is not
acceptable when the algorithm is to be applied to long seetenHowever, the time com-
plexity can be greatly improved if certain results obtaideding the exploration of the tree
of possible bisegmentations are reutilised. Specifictlgse partial bisegmentations with
the same set of aligned source and target positions can beletma in the same way. As a
result of this, we can establish a set of equivalence cldss#® partial bisegmentations. For
each equivalence class representing a set of partial besgigtions, the number of possible
completions,S, and the set of phrase coungs, that corresponds to these completions are
computed. For example, in the example given in Figu¥enodest, 6 and9 represent three
partial bisegmentations belonging to the same equivalelass.
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input : f.el,A,BP SP (set of source positions that are to be aligned),
TP (set of target positions that are to be aligned)
output : C (set of phrase counts .lﬂBp<fiI’e{7A)),
S (bisegmentation SiZ&yp ;7 1 4)l)
auxiliar: £C (Set of equivalence classes),
C(sp,7p) (set of phrase counts for the equivalence cl@&sB, 7P)),
S(sp,7p) (bisegmentation size for the equivalence cla$®, 7P))
1 begin
2 | if SP # (then
3 j1 := min(SP)
4 jo = maz(SP)
5 Ji =7
6 while j < j» do
7 forall (f7 ,e?) € BP A{i1,i1+1,....i2} € TP do
8 SP = SP—{jl,jl—‘rl,...,j}
9 TP = T’P*{’il,i1+1,...,i2}
10 if (SP',TP’) ¢ EC then
11 (C’,S") :=brf _phr _extract (f{.el,ABP.SP TP’
12 C(S'p/y'r'p/) =
13 S(Sp/g*p/) =9
14 EC:=ECU{(SP', TP}
15 C:=CUCsp,7py U{(f],,e}) X Sispr P}
16 %S =S+ S(S’)D/)Tp/)
17 ji=j4+1
18 | else
19 C:=0
20 if 7P := (0 then
21 | S:=1
22 else
23 | S:=0
24 end

Algorithm 3.3: Pseudocode for therf _phr _extract _dp algorithm.

The previous considerations allow us to propose a recudsimamic programming algo-
rithm to extract phrase counts using BRF estimation. Atyani3.3 shows the implementa-
tion details of the new proposal. The proposed algorithmestthe number of bisegmenta-
tions and the phrase counts associated to each equivalesseaod reuses it when possible.
The equivalence class for a given partial bisegmentatigivisn by the set$SP, 7P) of
source and target positions to be aligned.

Again, the complexity of Algorithn8.3is given by the number of nodes contained in the
bisegmentation tree. Since now the equivalent nodes ofiegimentation tree are processed
only once, we have to calculate the number of equivalensseta Each equivalence class
may be reached from different father nodes. Thus, the codtypleill be given by the number
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of equivalence classes multiplied by a constant represgtiie maximum number of father
nodes that reach to an equivalence class. Since in the bésegtion tree, two nodes can
only be connected with edges labelled with phrase pairseos#t5P, an upper bound for

the maximum number of father nodeg&P|.

The number of equivalence classes is given by the numbergdilfle combinations of
the values for the setS§P and 7P. Given a source sentengd, there are onlyJ + 1
possible values foSP, from SPy to SP;: SPy = {1,2,...,J}, SP1 = {2,3,...,J},
SPy = {3,4,...,J},....SP;_1 = {J} andSP; = {}. Let EC be the set of equivalence
classes andCsp be the set of equivalence classes for a givebget Then, the total number
of equivalence classes is given by the expression:

J
£Cl =" [ECsp, | (3.7)

To calculate the number of equivalence classes for th&Bet |ECsp, |, first we define
two auxiliary subsets of the s&P: BP;, ;, andBP,,;,. The setBP;, ;, is composed of
those phrase palr(g” e2) € BP where the wordge;,, ..., e;,} do not appear in phrase

J17? T

palrs(fj, ,el)) € BP wherej” < j;:

B,Pjhjz = {( 3127 2) € BP|ﬁ3( i’ 762’ ) € BP : (j// <nA
{611,~~-,612}ﬂ{eiw--,ew} #0)} (3.8)

BP..in is defined as the set of phrase pe(|f§ , “ e BP Wherefjf is the shortest
source phrase ending in positignfor which there exists (if; > 1) at least one phrase pair

’

in BP of the form(f7} ", el/'):

Bp’rnin = {( 72 12) € BP|

Ji? 21

(~3(f2,)eBP : j' > AL =1V (5", ) € BP)V
(2, € BP = ' > juA(fl ) ¢ BP)} (3.9)

Once we have defined the sé&®;, ;, and BP,,.in, |ECsp,| is given by the following
recurrence:

1 if j=0
|gc,spj‘ =40 if j>0AN —\H(fJ 12) € BPmin (3.10)

/, i1

|5CS7’;'/71| X |BPji 5l if j>0A El(fj 12) € BPmin

/7 i

In the previous recurrenc&Csp, | is equal tol since givenSP, = {1,2, ..., J}, there
is only one possible value faFP: {1,2, ..., I} (these values are set during the initialisation
of Algorithm 3.3). Regarding the values ¢£Csp, |, with j > 1, the setBP,,.;,, is used to
determine if there are consistent phrase pairs whose sphbrases end in position If there
are no phrase pairs iP,,,;, whose source phrases end in positjorthen |ECsp,| = 0.
Otherwise, 3P, also provides the starting positigh of the shortest source phrase end-
ing in positionj. Under this circumstance&Csp, | is given by the number of equivalence
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classes foSP; _1, [ECsp,,_, |, multiplied by|BP;: ;|; where|BP;. ;| represents the num-
ber of values that the s§tP can take when we align the source positidps ..., j}. Note
that the definition of P ;| given by Equationg.8) allows us to avoid counting overlapping
alignments for the target positions when we align the sebofee positiondj’, ..., j} after
having aligned the set of source positidnis..., ;' — 1}.

According to the previous considerations, AlgoritBriis able to achieve great savings in
the computational cost with respect to the implementatieergby Algorithm3.2, specially
if the word alignment matrices do not contain unaligned wortlet us consider the case
in which we are given a source sentence composed wbrds, where each source word
is aligned with one and only one target word, and the wordnatignts are located in the
main diagonal of the word alignment matrk Under these circumstances, there are a total
of 27/~1 possible bisegmentations and only+ 1 equivalence classes, since according to
Equation §.10, |ECsp,| = 1,Vj|0 < j < J (note that|BP; ;| = 1 for all possible
values ofj’ andj). Since this is the worst case scenario, we can concludgittiaé word
alignment matrices do not contain unaligned words, the tiomaplexity of the algorithm is
in O(J - |BP|) (as was explained abovg3P| is an upper bound for the maximum number
of father nodes that reach to an equivalence class). If taereinaligned words in the word
alignment matrices, the situation is completely differesmice now|BP ;. ;| may be greater
than one. Under these circumstances and according to Bgu@tiL0), |[ECsp,| may grow
geometrically with respect t¢fcs7>j_l |. In spite of the fact that this may substantially
increase the time complexity of the algorithm, a low rate péligned words in the word
alignment matrices can be expected (this will be empijaddimonstrated in sectidnb).

3.3.4 Possible Extensions and Applications of the Proposedgdrithms

Thebrf _phr _extract _dp algorithm allows to efficiently obtain the number of possibl
bisegmentations and the set of phrase counts extractengq;&iz’eL A) for a given sen-
tence pair(f;, el) and its corresponding alignment matrlx The algorithm can be straight-
forwardly modified to obtain more detailed information abthe bisegmentation process,
including information about phrase lengths or about rends. In addition to this, given a
previously estimated phrase model, the proposed algogdmalso be modified to obtain the
Viterbi alignment or the sum of the probability for each pgbksphrase alignment contained
in SBP(f/ el ,A)- These modified versions of the initial algorithm can be usegartially
compute the E step of the EM algorithm. This partial compaotetan be justified by means
of the sparse version of the EM algorithm proposed\NRi9g].

Typically, the estimation techniques for phrase-basedeaisothat can be found in the
literature rely on word alignments. This results in phrasmglation tables composed of
phrase pairs which are contained in the/SEtof consistent phrase pairs. This may constitute
an important limitation, since desirable phrases can beirdited due to errors in the word
alignments. Breaking this limitation is not trivial due teethuge size of the sétfiz’e{. One
possible solution to this problem would consist in obtagngnuniform random sample of the
restricted set of bisegmentatiofg £ el A) combined in some way with the unrestricted
set of bisegmentationS, 1. From the resultlng set of random samples, a phrase-based
model could be built by collectmg counts or using a betteotletically founded estimation
technique such as the Monte-Carlo EM algorithm describd®di90]. It is easy to obtain
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asa verde .—The green house .

casa—house casa verde—gfeen house casa

&

Figure 3.5: Tree of possible bisegmentations including the required information to
generate random walks: each edge of the tree is labeled with the numisercbfble
leafs.

random samples from the S8 1 due to the regularities that this set presents. By contrast,
the generation of random samples from the&@,;(fz 1,4) Is not easy, since this set does
not present such regularities.

Thebrf _phr _extract _dp algorithm obtains the number of bisegmentations for each
equivalence class (or, in other words, the number of bisaetptiens that can be reached
following a given edge of the tree) as a by-product. As it wélshown, this information can
be exploited to obtain random samples from the%gst ;s .1 4)-

Since the set of possible bisegmentations presents a tuetuse, our problem of gener-
ating random samples is equivalent to the problem of geingreandom paths in the biseg-
mentation tree. One way to generate such random paths toimgistarting from the root
of the tree, randomly select which one of the edges of theentirode is added to the path.
This is often referred to asrandom walk Unfortunately, this straightforward technique pri-
orizes the random walks with smallest lengths (or, in otherds, the bisegmentations with
smallest lengths). To solve this problem, we can assignh®ig each edge depending on
the number of bisegmentations that can be reached fromrithiopurpose, we would need
a labeled bisegmentation tree as the one presented in FHdunehere each edge is labeled
with the number of leafs that can be accessed from it. Thésdslaan be efficiently obtained
by means of thérf _phr _extract _dp algorithm.

After labeling the bisegmentation tree, Algoritlinl generates random walks with uni-
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input : fi el ABP,
Sv(sp,7P) (bisegmentation size for each equivalence cl&B, TP)),
SP (set of source positions that are to be aligned),
TP (set of target positions that are to be aligned),
s (partial partition of the source sentence),
7.1 (partial partition of the target sentence)
output : I1, (partition of the source sentence),
IL.; (partition of the target sentence)
auxiliar : = (random number irf0, 1])
1 begin
2 | if SP # () then
3 j1 := min(SP)
4 Jj2 := maz(SP)
5 ] = jl
6 n:=0
7 while 5 < j» do
8 forall (f7 ,e;2) € BP A{i1,i1+1,....i2} € TP do
9 n:=n-+1
10 SP" =8P —{ji,j1 +1,...,5}
11 TP" = TP—{il,il—‘y-l,...,ig}
12 = (mppi fh)
13 71'5{ = (ﬂ.e{;ei?)
14 ji=j+1
15 x :=rand()
16 N:=n
Yl tSspn,ren SnIl Sspr.ren
w7 | | RS S N A g e < TS SiE N Sigpn oy
18 bisegm _random walk( f{ e, ABP,Sysp 7p) ,SP’“,TP"‘,W;IJ ,wf{)
19 | else
20 Hfi] =Ty
a | | Her=me
22 end

Algorithm 3.4: Pseudocode for theisegm _random _walk algorithm.

form probability for the set of possible bisegmentations:. this purpose, at each step of the
generation of the random walk, if there are a totaNotandidate edges to be extended, the
k'th edge of the tree is chosen by generating a random numieebe zero and one. Each
one of theN candidate edges is assigned a probability equal to the nuofileafs that can
be reached from it divided by the number of leafs that can aelved from theV edges.
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3.4 Phrase-based Model Estimation from Very Large Cor-
pora

The translation of a given source sentence using phrasstbhasdels requires that all its
constituent phrases have been seen during the traininggsod his requirement is hard to
achieve in practise, since the number of phrases to be laratgiven language is huge. As
a result of this, phrase-based models have a poor gendi@aiisapability.

A common strategy to overcome the lack of generality thatpghese-based models
present consists in the acquisition of larger and largémitrg corpora. Recently, very large
corpora have been made available, as for example, the Bliooppus, or the Arabic-English
corpus used in the annual NIST machine translation evalnaimpaigns. These corpora are
composed of millions of sentence pairs and tens of millidnsiening words.

However, the use of larger corpora extraordinarily incesathe number of parameters
to be learnt and the memory size required to store them. Fample, Callison Burch et
al. [CBBSO041 report that the storage of the parameters of a phrase-imasdel for the above
mentioned NIST Arabic-English corpus may require up to 3¢/teB of memory if standard
lookup tables are used. Therefore, dealing with very lamggpara has become a bottleneck
in SMT, as has happened in other well-known pattern recimgniasks.

One typical way to reduce the number of parameters containadohrase model is to
impose a constraint over the length of the phrases. Suchstraont does not affect negatively
the translation quality if the maximum phrase length alldvsesufficiently high. However,
this constraint is not enough to solve the above-mentiopaldhkility problems of the phrase-
based models, as it will be shown in sectidd. 1

Most of the authors of works on PB-SMT have shown the impaeanf dealing with
larger corpora and longer sentences in order to build statisnachine translation systems.
For example,KOMO03] concludes that longer phrases results in better translagiality but
at the cost of managing huge translation lookup tables. ,AfspTil03, VVWO03, VZH 03]
this problem is also apparent.

3.4.1 Some Model Statistics

To illustrate the huge size of the phrase tables we have camtpome statistics for different
phrase models estimated from the Europarl cdipiiable 3.3 shows the number of phrase
pairs, Spanish words and English words contained in eigtaggimodels ranging over the
maximum phrase length for both languages. As it can be obdettie size of the models
may become huge if the maximum phrase length is increased.

3.4.2 Training Procedure

Even if very efficient data structures in terms of space cexipl are used, important prob-
lems arise when phrase models are to be estimated from veyy trpora. In order to
overcome this limitation, we propose an algorithm whiclingghrase models from corpora
of an arbitrary size.

®We used the standard estimation technique described imsé&cfito obtain the phrase-based models
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Table 3.3: Statistics of different phrase models estimated from the Europarl sorpu
ranging over the maximum phrase size (denotechhy

28928 890 122136 760 118917 366
31227305 159525055 157425528
39456451 198444311 197 636 688

m Phrases | English words | Spanish words
1 937433 2085329 937433
2 4313219 10840699 7689005
3 9969817 29078625 24658799
4 | 16500370 55378535 50781011
5 | 22935135 87051762 82954836
6
7
8

One possible way to solve this problem, which allows to tr@inpora of an arbitrary
size, is given by the algorithrftag _by _frag _training given in Algorithm 3.5. This
algorithm is based on the use of phrase counts instead opildles and works as follows:

1. First, it splits the corpus (given in the filéign_file) into fragments of a fixed number
of aligned sentence pairgfagment_size). The splitting technique that is used here
is very simple and corpus independent. In addition to thgsfunctionality is imple-
mented by standard tools as for example the "split” commahithvcan be found in
UNIX-like operating systems.

2. Then, a phrase model estimation process is carried owafth fragment. Theub-
modelfor each fragment will be composed of a series of phrase sdabelled with
an identifier associated to the corpus fragment from whiehctbunts were extracted
(fid); by this reason, such identifier is required by the trairafgprithm.

3. Finally, once the submodels have been generated, theypenged into a single file.
This file is lexicographically ordered and the phrase cotimi$ compose the model
are then merged. The lexicographical ordering of the inpaiafiows us to merge the
counts without having to store the whole model in memory.

The labelling process which has been mentioned above istda@lew a correct merging
of the phrase counts. FiguBet shows an example of a file containing sorted counts with their
corresponding labels.

The details of the merging process can be found in the algoriterge _counts given
by Algorithm 3.6. Such an algorithm takes a file with sorted counts and rettimadinal
phrase-based model. Theerge _counts algorithm takes advantage of the lexicographical
ordering of the input file to merge the counts without haviagstore the whole model in
memory. Specifically, the algorithm reads a block of modéties sharing the same target
phrase (lined). After that, the contribution of each entry of the block e ttarget (lin€L0)
and joint counts (linel2) are processed. Finally, the counts for each phrase paiwréten
to file (line 15).

The above mentioned process yields a phrase model compbaexkbof phrase counts
that is identical to the one obtained from the whole corpusis Wvorth noticing that the
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input : fragment_size, align_file (alignment file)
output : phr_model (phrase-based model)
1 begin

2 | fragments :=split(  align_file, fragment_size)

3 | open( counts_file,’a’) /|l open for appending

4 | fid:=1

5 | forall f € fragments do

6 train  (f, fid) >> counts_file/l * >>" means append to file
7 L fid == fid+1

[ee]

sorted_counts_file :=sort _counts( counts_file)
9 | phr_model := merge _counts( sorted_counts_file)
10 end

Algorithm 3.5: Pseudocode for thieag _by _frag _training  algorithm.

trg-phrl ||| src_phrl |
trg_phrl ||| sreophr2 ||| c(trg-phrl, fidl trg_phrl, src_phr2), fidl) fidl
trg_phrl ||| srcophr2 ||| c(trg-phrl, fid2 trg_phrl, src_phr2), fid2) fid2

|| c(trg-phrl, fidl) c(( ) )
IR ) e(( ) )
IR ) e(( ) )
trg-phrl ||| srcophr3 ||| c(trg-phrl, fid3) c((trg-phrl, src_phr3), fid3) fid3
IR ) e(( ) )
IR ) e(( ) )
|| e( ) e(( ) )

trg_phrl, src_phrl), fidl) fidl

trg_phr2 ||| srcophr3 ||| c(trg-phr2, fid2 trg_phr2, src_phr3), fid2) fid2
trg_phr2 ||| srcophr3 ||| c(trg-phr2, fid3 trg_phr2, src_phr3), fid3) fid3
trg-phr3 ||| src-phr3 ||| c(trg-phr3, fidl trg_phr3, src_phr3), fidl) fidl

Figure 3.6: Example of a file containing sorted counts.

obtained set of counts allows us to efficiently generatectiiad inverse phrase model prob-
abilities if appropriate data structures are used. One phaof the data structures that allow
us to efficiently calculate direct and inverse phrase pribitiab from phrase counts will be
presented in sectiof 3.

The proposed algorithm introduces time overhead becausieeofiecessity of sorting
and merging the phrase counts. This overhead will be enaflirimeasured in sectiof. 1
However, it is important to stress that the training andisgrsteps executed by the algorithm
can be parallelised, resulting in a very efficient methoddamtphrase models.

It is worth pointing out that our proposed estimation altfori constitutes an application
of the MapReducesoftware framework[DG04]. MapReduce builds on the observation that
many tasks have the same basic structure: a computatiorpie@dmver a large number
of records (e.g., parallel sentences) to generate paesallts (map step), which are then
aggregated in some fashion (reduce step). The MapReduteasefframework has been
applied to estimate phrase-based models and word alignmedéls in other works, such
as DCMLO08, GV0g]. The estimation methods described in these works areaintlthe
one described above.
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input : sorted_counts_file (sorted counts file)
output : phr_model (phrase-based model)
auxiliar: BE (block of entries of the file with sorted counts)
F (set of fragment identifiers)
JCs (joint count for source phrasg
(t, s, fte, fic, fid) (entry of the file with sorted counts)
S (set of source phrases)
begin
open( sortedcountsfile,r’) ; open( phr-model;w)
while not end _of( sortedcountsfile) do
BE :=read _block _with _same_trg _phr (sorted_counts_file)
/I The BE variable stores the next block
/I of entries which shares the same target phrase
tc:=0
F:=0
JCs :=0,Vs
forall (¢, s, ftc, fjc, fid) € BE do
/I An entry of BE includes: target phrase ( t),
/I source phrase ( s), target count ( fto),
/I joint count ( fjc), fragment identifier ( fid)
9 if fid ¢ F then
10 tc:=tc+ ftc
11 L]—' =F U fid

12 JCs := JCs + fje
13 if s¢ SthenS:=SUs

14 forall s € S do
15 | write(  phr_model,(t,s,tcJCs))

A W DN P

0o N o O

16 end

Algorithm 3.6: Pseudocode for thmerge _counts algorithm.

3.5 Specific Phrase-Based Model Derivation

The assumptions that are typically made during the deomaif phrase based models reduce
them to mere statistical dictionaries of phrase pairs pkisple distortion model. These are
very strong assumptions, since the translation procesg psirase-based models requires the
generation of bisegmentations of the source and the taggétisces, and the bisegmentation
process can be carried out in a huge number of ways, as wasregin sectior3.3.1

In this section we propose a phrase-based model derivditadratiows us to incorporate
specific probability distributions governing the basicextp of the bisegmentation process.
As will be shown in sectior8.5.3 the resulting submodels that are obtained by means of
our proposed model derivation can also be added as individumaponents of a log-linear
translation model. In this sense, our model derivation joies a well-founded criterion to
add certain components to log-linear translation models.

Additionally, the model derivation presented here is sipeadly designed for its use by
standard search algorithms. As it was explained in sedti6nsearch algorithms for SMT
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typically generate their translations by adding words &tthnslation hypotheses from left to
right. Informally, the generative process followed by #hesarch algorithms has three steps:

1. Choose the next word or group of words of the source seatienoe translated.

2. Choose the target translation of the untranslated souvotds, and append it at the
right of the hypothesis.

3. If there still are untranslated source words, ghto

This generative process contrasts with the standard gamrepaocess for phrase-based
models described in sectiah4.3 In such generative process, the source sentence is first
divided into phrases, then, the target phrases that ttaereda&h source phrase are chosen, and
finally, the target phrases are reordered to compose thettsegtence. As will be shown,
our proposed generative process reflects the way in whicldatd search algorithms work,
allowing a more natural implementation of such algorithms.

3.5.1 Generative Process

Given the probability distributioPr(f{|e!), we define the generative process of our pro-
posed phrase model as follows:

1. ChooseK as the length of the bisegmentation, where K < min(7, J)
2. Fork =1to K do:
(@) Choose the ending position of thé&h phrase ine!, a;, determining thek’th
target phrasegZ’;le, whereag = 0 anday, > an_1
(b) Choose the number ekippedwords for thek’th phrase inf{, by, with respect to
the ending positiors;,_; of the previous source phradeg, (s an integer number)
(c) Choose the length of the'th phrase off/, c;, determining thek'th source
phrase f%+, wherec, should be greater than zero and:

Q!

ar = PBr—cp+1
Br = Br—1+bp+ck
Bo = 0

(d) Choose thé'th phrase off{, ff;;, as translation of the'th phrase ok!, €ar 11

The bisegmentation decisions made during the generatbeeps are summarised by the
hidden variablesy, af, b andc!t, which store the bisegmentation length, the ending posi-
tions of the target phrases, the number of skipped sourcdsmmith respect to the previous
source phrase and the length of the source phrases fértthbisegmentation step respec-
tively.

At each step of théor loop of the generative process, the hidden variabfesh andc
are extended with a new value. The newly added values hawe ¢bdsen so as to generate
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correct bisegmentations of the source and the target sargeCorrect bisegmentations are
composed of a set of phrases containing all the words of thees@nd the target sentences
without overlappings. This can be formally stated as folow

a as _ I
el ealJrl CLK 1+1 = el (3'11)

L(f2 82 0 [(ar, B1), (a2, B2), -ons (i, Bi)]) 1 (3.12)

where the functior.(-) takes the concatenation of the source phrases obtaineagdine
generative process and their associated indices as inpditieéurns a linearisation of such
concatenation of source phrases (for instance, given tvessentencé; f f3, the concate-
nationfgfl and the indiC€$(2v 3)(1a 1)]' L(.fQSflv [(27 3)7 (1v 1)]) = f1f2f3)'

As an example of how the above explained generative procedssywigure3.7 shows
a bisegmentation example for a sentence pair and the conéspy values of the hidden
variables according to the generative process.

[]

house | |

K=4
green D ai ={1,2,3,4}
the [ | bf ={0,1,-2,1}
) ci={1,1,11}
S 8.3
Sl
>

Figure 3.7: Bisegmentation example for a sentence pair (left) and the set of values fo
the hidden variables according to our proposed generative pro@gss. (

3.5.2 Model Derivation

The generative process described in the previous sectiobeaore formally expressed as
follows:

Pr(filel) =Pr(Jlel)- Y Pr(fl Ko bf, cflef, ) (3.13)
K,a{(,b{(7c{(

r(Jlef) - Y Pr(Klel,J)- > Pr(f],af,b{,cflel, ] K) (3.14)
K

bK K

K
ap ;01,61

In the previous equation, the probability distributiBn(.J|e!) is introduced for complete-
ness and the terdar(f{, af<, b5, cK|ef, J, K) can be decomposed without loss of generality
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as a product for each step of the bisegmentation process:

Pr(fi . b, e lel, I K) = H [Pr (aplel, J, K ab =1 WL L )
Pr(bglel, J, K,af, bf 1, ’H,fﬂl o f2)
ck|el7JKa1,b1,cl , al,. . 5: ;)
Brlel, J, K, af,bf, cf, f2r, .., f3-1)| (3.15)

The previous decomposition @tr(f{ |el) exactly reflects the generative process given
in section3.5.1 From this point, we are forced to make a series of assungptmobtain a
tractable expression of the model:

Pr(Jlef) = p(J|I) (3.16)

Pr(K|el, J)~ p(K|I,J) (3.17)

Pr(aglel, J K, ak ! bk v , al"" aﬁ’; 1)~ plaglag—1) (3.18)
Pr(bylel, J, K, af 0§~ i1 8 L By &~ p(by) (3.19)
Pr(cglel, J, K, ahb’f, R T o i)%p(ck\ak,ak 1) (3.20)
Pr(firlel, J, K, af b, cf, f50, L f2 1) m p(F2F et L) (3.21)

The resulting model is composed of the following submodels:

Source length submode(p(.J|I)): generates probabilities for the length of the source
sentence given the length of the target sentence.

Bisegmentation length submode(p(K|I, J)): assigns probabilities to each segmen-
tation length given the lengths of the source and the tarygesces.

Target phrase length submodel(p(ay|ax—1)): assigns probabilities to the ending po-
sition of a target phrase given the ending position of theiptes target phrase. This
submodel can be seen as a submodel for the length of the pdmgestes.

Distortion submodel (p(br)): this submodel assigns probabilities to the number of
skipped source words with respect to the ending positiorheflast aligned source
phrase. This submodel can be seen as a distortion model.

Source phrase length submodelp(c|ax, ar—1)): assigns probabilities to the length
of the source phrases given the ending positions of the muared the previous target
phrases. This submodel can be seen as a source phrase lehgthde!l given the
length of the target phrase.

Phrase translation submode(p( 5k |ez: )): this submodel constitutes a statistical
dictionary of phrase pairs.
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After making the above explained assumptions, the expmegsi our proposed phrase
model is as follows:

p(flel) = p(JIDY

K

K
> (M ptala-
k=1

K pK K
ag* bt ey

p(KI[L,J) -

1

p(b) - plexlak, ap—1) -

o ak|ezzl+1>>} (3.22)

We make additional assumptions to generate probabilibiesdch submodel:

p(J|I) = ¢r(J +0.5) — ¢pr(J —0.5),

whereg;(-) denotes the cumulative distribution function (cdf) for ti@mal distribu-
tion (the cdf is used here to integrate the normal densitgtfan over an interval of
length1). We use a specific normal distribution with meapy and standard deviation

o|.1| for each possible target sentence length.
that is, we use a uniform probability distribution.

plarlag—1) = 6(1 — &)™ o171,

where we propose the use of a geometric distribution witlgiodity of success on
each trial to assign probabilities to the length of the tapigases. The use of a geo-
metric distribution penalises long target phrases. Aligvely, a uniform distribution
can be usedp(ag|ar—1) = Irmia , Wherel,,,, IS a constant representing the
maximum target sentence length. Roughly speaking, suttibdison would penalise
the length of the bisegmentations.

plbi) = 725001 — )0

where we propose the use of a modified geometric distribukitth probability of
succes® on each trial to assign probabilities to the number of skippeurce words.
The original geometric distribution, which is defined forsfitve numbers, is modified
here becausk;, takes integer values. Specifically, the scaling fagﬂ_@g is added. The
use of a geometric distribution penalises longer reorgderin

plerlak, ap—1) = p-8(1 — f)ebster=(oe—ei)

wherer = Y 7k T ! §(1 — §)t. We again propose the use of a modified geometric
distribution with probability of success on each trial to assign probabilities to the
length of the source phrases given the length of the targeisph. The original geo-
metric distribution is modified here because the tefm- (ax — ar—1) takes integer
values ¢; and(a, — ax—1) are greater than zero). In this case, the scaling faiekgr
was introduced. The use of a geometric distribution peeslike difference between
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the source and the target phrase lengths. Alternativelgjssén distribution or a uni-
form distribution (in this case, the length of the bisegratinhs would be penalised)
could have been used.

Regarding the phrase translation submogglf{:|e2* . ,)), its probabilities are ob-
tained by means of the RF or the BRF estimation techniquesitied in section8.2and3.3
respectively.

In the final expression of our model, some of the resultingredels aradeficient We
say that a statistical model is deficient if it has the prgpefnot concentrating all of its prob-
ability on events that can be explained by the generativeqa® As it is noted irgDDM93],
deficiency is the price we pay to obtain tractable model esgloms. In our case, the source
phrase length submodel, the target phrase length submodéha distortion submodel are
deficient. Specifically, the target phrase length model nssyga probabilities greater than
zero to bisegmentations that do not satisfy the conditivargby Equation¥.11). The defi-
ciency of the target phrase length model can be correctetightlyg relaxing the modelling
assumptions, obtaining the following submodelu|I, K, k, ar—1). Regarding the source
phrase length submodel and the reordering submodel, thgyassgn probabilities greater
than zero to bisegmentations that do not satisfy the camgiven by Equation3.12). In
this case, the required modifications to obtain non-defigiedels are more complex since
zero- or one-order dependencies do not add enough infam@atiensure that the correctness
condition holds.

3.5.3 Log-Linear Model

As stated in sectioi.4.4 log-linear models constitute the state-of-the-art itistiaal ma-
chine translation. In this section we will show how our pleréimsed model derivation can be
used as a criterion to add components to a log-linear mod &NoT.
According to Equation3.13, and following the maximum-approximation, the funda-
mental equation of machine translation (see secti@Gncan be reframed as:
éf margmax {Pr(ej)- max Pr(f], K,af,bf cf|e])} (3.23)

K pK K
Il aps;bit ey

Following the log-linear approach, EquatichZ3) can be rewritten as follows:

gl S d b Kl ) @20
According to Equation3.24), we mtroduce a set of seven feature functions in our log-
linear model (fromh; to h;): ann-gram language modeh(), a source sentence-length
model (2), inverse and direct phrase-based modeisandh, respectively), a target phrase-
length model §5), a source phrase-length modék), and a distortion modelh). The
details for each feature function are listed below:

e n-gram Ian%uri\ge model &)
hl(e{) = Hli_l p(@‘el n+1) d

dey denotes thebegin-of-sentenceymbol BOS), er4+1 denotes theend-of-sentenceymbol EOS), ef =
€;...€;5
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e source sentence-length modehg)
ha(ef, f{') = log(p(J|I))

e inverse phrase-based modeli) .
h3(€{, K7 a{(7 b{(a C{<, flJ) = 1Og(]._[k:1 p(fg: ez:,l-&-l))

e direct phrase-based model,) .
ha(ef, K, af",bf, it , f{1) = log(ITp—y p(eqr_, 41l f51))

e target phrase-lengtrll( model {5)
hs(K, i) = log(ITj;_y plalar—1))

e source phrase-length modelXg)
ho(K, aff, ef) = log ([T, p(exlar, ax-1))

e distortion model (hQ
he (K, b1) = log(I Ty, p(bx))

It is worthy of note that, except,, all the above described log-linear components have
been obtained from a proper decomposition of the probghilgtribution Pr(ef|f{).

3.6 Summary

In this chapter we have studied different aspects of the thngend the training problems
in PB-SMT. We have proposed an alternative technique to plaiase models which we have
called BRF estimation. BRF estimation tries to reduce thengt heuristic component that
the standard estimation technique presents by countinfgeeencies of the phrase pairs in
the set of possible bisegmentations. Since the set of peds#egmentations has a huge size,
we prune it by means of the set of consistent phrase pairs ichvthe standard estimation
technique is based. Specifically, only those bisegmemstibat are compatible with the
set of consistent pairs are considered when collecting ilhrgbal counts. As it has been
shown, our BRF estimation technique can be efficiently imgeted by means of dynamic
programming techniques.

We have described an estimation technique able to work weitharge corpora. Our pro-
posed technique allows to transform main memory requirésriato hard disk requirements.
In contrast with existing estimation techniques, our psgubtechnique is able to obtain the
necessary information to generate direct and inverse etpas probabilities by executing
the estimation algorithm in only one translation direction

Finally, we have given a specific phrase-based model denvalhe generative process
associated to this derivation generates the translations Ieft to right as well as the regular
decoding algorithms described in the literature do. Ouppsed phrase model includes a set
of submodels governing different aspects of the bisegrtientprocess, such as the length of
the source and the target phrases, reordering of the phetse$n addition to this, we have
described a log-linear model which includes all these sud@isoas components, resulting in
a fully-fledged state-of-the-art statistical translatioadel.
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CHAPTER4

SEARCH FOR PHRASE-BASED
STATISTICAL MACHINE
TRANSLATION

4.1 Introduction

As was already explained in sectidn3, the building process of an SMT system involves
addressing three problems, namely, the modelling, theitrgiand the search problems. In
the previous chapter, different solutions for the modglléimd the training problems in PB-

SMT were proposed. In this chapter we study the search proinéB-SMT.

The goal of the search, also referred to as generation odaexas to find the best trans-
lation candidate for a given source sentence among alllplesarget language sentences. For
this purpose, search algorithms explore a graph-struttearch space which represents the
set of possible translations. This search space explaretiguided by the statistical models
involved in the translation process. A specific translatiba source sentence is given by a
path in the graph representing the search space. The besiatian is given by the path of
highest probability.

The rest of this chapter is organised as follows: a branchkbmund search algorithm
for PB-SMT is described in sectiof.2. Specific decoding techniques to deal with large
phrase-based models are described in seeti@nIn section4.4 we formalise the concept
of phrase-level alignment for a sentence pair. Also, a mzatifin of the branch-and-bound
search algorithm to find the phrase-level alignment of hégpeobability is proposed. Finally,
we provide a summary of the chapter in sectiof

4.2 Branch-and-Bound Search for PB-SMT

In this section we propose a specific way to solve the seamgm in PB-SMT based on
the well-known branch-and-bound paradignDp0].
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The search problem in SMT is formally defined as a maximisagimblem where the
goal is to find the target translatied of highest probability given the source senterf¢e
As was explained in sectidh 3, the most basic formulation of this probability is given bt
product of the language and translation model probatsilitie

The language and translation models can be instantiateiffénet ways. Here we pro-
pose the use of am-gram model as language model and a phrase-based modeisiatitm
model. This phrase-based model is defined according to theatlen presented in sec-
tion 3.5. In such derivation, the translation process fora sentpa'crds explained by means

of a specific set of hidden alignment variab{és, o <, b, cX). The meaning of each hidden
variable is the following:

e K bisegmentation length.
e af: vector of ending positions of th& target phrases.

e bX: vector with the number of skipped source positions withpees to the ending
position of the previously aligned source phrase.

e ci¢: vector of lengths of thé( source phrases.

Given the previous assumptions and following the maximypraximation, the search
problem can be formally expressed as follows:

é{ = argmaX{Pr(el) Pr(fl |el}
I e1

Q

I
arg n}ax{ Hp(ei\eﬁjlﬂ) p(JII) -
I,eq i=1

T ﬁ[<ak|ak_1>-p(bk>~p<ck|ak,ak_1>-< et )|}

161k1

(4.1)

where the following submodels are included: raigram language modeh(e;|e! n+1) a
source sentence length submodgl/|I), a bisegmentation length submode( K1, J),

a target phrase length submodela|ar—1), a reordering submodelp(b,), a source
phrase length submodep(ci|ar,ar—1), and an inverse phrase translation submodel,
p(f5rlesr 1) thea and variables are defined as follows:

ap = Br—c+1
Br = Br—1+bp+ck
Bo = 0

The maximisation problem given by Equatich ) can be solved using different search
algorithms. Since the search problemin SMT has been denadedto be NP-complet&hi99,
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UMO06], we cannot expect to develop efficient search algorithras abtain the optimal so-
lution. In the search algorithms that have been proposedrsahe well-known technique
of dynamic programmingHel57] is combined with techniques that introduce certain restri
tions in the search space, such as beam sedet®dd. As a consequence of the introduction
of such restrictions, the resulting search algorithm dazsgaarantee finding the optimal
solution.

As was explained in sectioh 6, the vast majority of the search algorithms start from a
null-hypothesis and iteratively extend partial hypotlselsg adding words from left to right.
This iterative process is repeated until a complete hysigheas been generated. The hy-
pothesis extension procedure is driven by the statisticadeats involved in the translation
process.

For the sake of simplicity, we will work with the maximisatidollowing the Bayes rule
given by Equation4.1). However, this formulation can be straightforwardly exted to the
log-linear model defined in sectidh5.3

The remaining part of this section is structured as follows: present a dynamic pro-
gramming algorithm to solve Equatiod.() in section4.2.1 The definition of the dynamic
programming algorithm will help us to define and study theperties of our proposed basic
branch-and-bound algorithm for PB-SMT in sectiér2.2, including the necessary exten-
sions that are required to perform hypotheses recombmat®o monotone version of the
previously presented algorithm is described in sectich3 Stack pruning techniques and
multiple-stack algorithms are introduced in sectibB.4 Required modifications to obtain a
breadth-first search algorithm are presented in seétidra Generalised multiple-stack algo-
rithms for best- and breadth-first search are explaineddtises4.2.6and4.2. 7respectively.
Additional pruning techniques to restrict the search spaealescribed in sectigh2.8 Rest
score estimation techniques are presented in seétib@ Finally, the concept of word graph
and how are they generated is described in seetigri0

4.2.1 Dynamic Programming Algorithm

The search problem in PB-SMT was formalised as a dynamiaanagning problem inZen07.
In this section we apply this formalisation to the searctbfgm defined by Equatiort(1).
As will be shown in the following sections, the formalisatiof the search problem in PB-
SMT as a dynamic programming problem will help us in defining branch-and-bound
search algorithm as well as in analysing its time complexity

Dynamic Programming Equations

The search space can be represented by a directed acyglit igravhich the states repre-
sent partial hypotheses and the edges represent exten$itiese partial hypotheses. Given
a sentence paiifi, e!), a complete translation is determined by a path of lerdgtn the
search graph, wherf is the length of the bisegmentation. Th&h edge within a path
adds thek'th target phrase to the partial translation and thet+ 1)'th state represents the
current partial translation along with a valid set of valeéshe bisegmentation variables,
(af, bK, cI). Figure4.1 shows an example of a path of lengttin the search graph when
translating the Spanish source sentence “la casa verdeto’Eimglish. Starting from the
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fi:la casa verde .

((1,1), “the”)

A 4

:la casa verde .
el:the
ap {1}
by {0}
e {1}

((2,3), “green house’)

Y

fi:la casa verde

el :the green house
af:{1,3}

by :{0,0}

e {1,2}

((4,4),"")

\ 4

fi:la casa verde
el:the green house .
af:{1,3,4}
bK:{0,0,0}
cf{1,2,1}

Figure 4.1: Example of a path in the search graph. The path determines a posible
translation of the Spanish source sentence “la casa verde .” along waétlidaset of
values for the bisegmentation variableg®, b1, ci*).

null hypothesis, a complete hypothesis is built by adding parase pairs to the hypothe-
sis. Each arc of the path is labelled with a pair of elemeffisy’), ¢), where(j, ;') rep-
resents the boundaries of the source phrase to be aligned r@pdesents the newly added
target phrase. Each node of the path reflects the sourcensenfg, with its aligned source
phrases (underlined words ¢f'), the partial translationg!, and the current values of the
bisegmentation variablegg &, b, cK). After three hypothesis extensions, the final transla-
tion “the green house . is obtained.
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Each possible hypothesis extension of a partial hypothélibe assigned a probability
given by the language and translation models. Among alliplespaths of the search graph,
we will be interested in that of the highest probability. Aashbeen explained above, a
state of the graph represents a partial hypothesis whictaicendetailed information about
the bisegmentation process and the target words that cantpeartial translation of the
source sentence. Itis worthy of note that only a subset sitifiormation is relevant to assign
a probability to further extensions of the partial hypotee3he minimum information that
is required to assign probabilities to hypothesis exterssig called state of the language
and translation models. This minimum information may alsdude information required
to guarantee that the generated hypotheses can be explainbe generative process of
the statistical models. Two partial hypotheses sharingsdme state of the language and
translation models can be completed in the same way and thwsilionly be interested in
the hypothesis of higher probability. The state informafior the language and translation
models is determined by the specific modelling assumptions.

For the statistical models that appear in Equatibd)( the state information is composed
of the following elements:

e SP: represents the set of currently unaligned positions ofsth&ce sentenceSP
allows to check that the constraints of the bisegmentatiesatisfied (all source words
have to be aligned without overlapsyP is also involved in the generation of phrase
translation probabilities.

e m: represents the number of target words that compose thialgeasihslation e, of
the source sentence.

e o represents the last— 1 target words that has been added to the partial translation,
e, wheren is the order of the:-gram language model. In other words,is the
language model history of the current partial hypothesis.

e j. represents the rightmost source position of the last soptrase that has been
aligned.j is required to appropriately generate distortion proliidssl.

According to the previous considerations, the search gdafihed above can be greatly
simplified. Specifically, a state of the graph can be repttesny a quadrupléSP, m, o, j).
We define the quantit®)(SP, m, o, j) to denote the maximum probability of a path leading
from the initial state to the stateSP,m,o,j). In addition to this, we also defin@ as
the probability of the optimal translation. We obtain thddaing dynamic programming
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recursion equations:

Q({1,..,J},0,B0S,0) = 1 (4.2)
Q(S,P7 m7 U’ j)

max
37,33 <G<IAG" G 1,5 INSP=0

m’,é,0’'|m’+|é|l=mAo=tail (n—1,0"¢)

{Q(SP UL T + Lo ghamt ol §7) -

m .
H P(eiHjLH) :

i=m’+1
p(m|m’ +1)-p(" —j") -
=1+ b+ 1) w70} (4.3)

@ = wox{Q.m.0.0) p(EOSI0) p(Jlm) | (49
whereBOS denotes the begin of sentence mark#®S denotes the end of sentence marker
andtail (x,s) is a function that returns the lastwords of the strings.

Implementation Details

The solution to the dynamic programming problem given by &igm 4.4) can be imple-
mented in many ways. To avoid repeated computations we bavaverse the search graph
in atopological order, that is, before we process a stateave to make sure that we have vis-
ited all predecessor states. Richard Zeten[07 proposed a breadth-first algorithm which we
have adapted here to our maximisation problem. Algorithfnrshows our proposed search
algorithm. The algorithm works in a similar way as the dynapriogramming recursion pre-
sented above does: for every given state, the probabitlifigse extensions of the predecessor
states arriving to the given state are computed, keepingxtension of highest probability.
The first five loops of the algorithm (lin€s 4, 5, 6 and9) allow to iterate over the predecessor
states(SP — {j’,....5  + 1},-,-,-) that arrive to successor statgsP, -, -, -) by aligning the
source position$;’, ..., 7' +1}. Theforall loop in line L0iterates over the set of target phrases
that are contained in the &} ;,, whereT;. ;4 is composed of the target phrase transla-
tions for the source phrag‘g“ that are present in the phrase table. Given a fully deteminine
predecessor stat&P’, m’, 0’, j"), and a target phrasec 7; j1;, we compute the proba-
bility p of the successor state determined by the$®, m’ + |é|, tail(n — 1,07¢),j' +1). If
the resulting probability for the successor state is greater than the current bestlgtity
we update it. In addition to this, we also update the vargHle, -, -,-) andB(-, -, -, -), that
for a given state represents the best target phrase artivihgnd the best predecessor state,
respectively. Once the search process has been comptetsd Mariables allow us to retrieve
the target sentence of highest probability.

It is worth pointing out that the first and the secdied loops of Algorithm4.1 are in-
troduced to ensure that the search graph is traversed irobotigal order. Specifically, the
first loop guarantees that the states corresponding taphypotheses with a lower number
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input : f{, el, n (order of then-gram language model),
p(el) (n-gram language model)( i’ |el) (translation model),
Tiv.gas Vi1, 92]d1 < j2 Aj1 > 1 A g2 < J (set of translations for every
phrase 7]12 of f{ in phrase table)

output : Q(SP,m,a,j),
A(SP,m, o, 7) (best target phrase arriving to state),
B(SP,m,o,j) (backpointer to the best predecessor state)

auxiliar: tail ~ (z,s) (returns last: words of strings)

1 begin

QG,+, ) = —o00; Q({1,...,J},0,B0S,0) :=1
forc=J—1to0do
/I ¢ is the cardinality of SP
4 fori=1toJ —cdo
/I 1 is the length of the source phrase

5 forall SP’ c {1,...,J} A|SP'|=c+1do
6 forall 5/ € {1,....,J} A {4, +1,....,57 +1—1} CSP' do
7 ji=g +l-1
8 SP: =8P — {5, +1,..,5}
9 forall (m',o’,;") € Q(SP',-,-,-) do
10 forall € € 7;/ ; do
11 m = |é| + m/
12 o:=taill (n—1,0'¢)
13 p:=Q(SP,m' o, ")
14 Hy;m'-u p(e¢|e;:i+1)~
15 p(mm’ +1) - p(j" = j")
16 p(j — 3"+ 1m,m’ +1) - p(f][€)
17 if p> Q(SP,m,o,j)then
18 Q(SP,m,0,j) :=p
19 A(SP,m,o,7):=¢
20 B(8P,m,0,5) = (SP',m/,o’,j")
21 end

Algorithm 4.1: Pseudocode for thdp _search algorithm.

of aligned source positions are visited first. Regardingsieond loop, it guarantees that the
hypothesis extensions that align a lower number of soursgipos are visited first.

Regarding the computational complexity of Algorithh, the first four loops (lines,
4, 5 and6) have a complexity i (27 - J?), where the exponential tereY comes from the
number of possible subsets.bfunaligned source words. The loop in liidhas a complexity
in O(M - E,—, - J) where M is the highest target sentence length that can be obtained
using phrase translations contained in the phrase tableZgng is the maximum number
of target language model histories. Finally, the loop irli) has a complexity irO(T),
whereT is the maximum number of phrase translations for a sourcasghin summary, the
computational complexity of the algorithm is@(2”/ - J3 - M - E,,_, - T).
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Hence, the proposed dynamic programming algorithm presanexponential complex-
ity. This exponential complexity can be avoided by intradgcrestrictions in the search
space. One example of these restrictions is not to allowdegrgs of the target phrases
during the search process. This kind of search is knowm@asotonic searcland will be
explained in the following section.

Monotonic Search

The dynamic programming search algorithm proposed abavéeaasily modified to per-
form monotonic search. The search is monotonic if no reandsrof the phrase translations
are allowed. To avoid reorderings we have to ensure thas §ren partial hypothesis, there
are no unaligned source positions between two aligned sqasitions.

Algorithm 4.1requires little modifications to perform monotonic sear@pecifically, the
loop in line5 is replaced by the assignme$iP’ = {1,2,...,c + [}; and the loop in lined
is replaced by the assignmejit= ¢ + 1 (this ensures that there are no unaligned source
positions between two aligned ones). Monotonic searchwvallo significantly reduce the
computational complexity of the translation process. As eiplained above, the complexity
of the non-monotonic search algorithm can be decomposedlinge terms: the first four
loops in Algorithmé4. 1 contribute with the terni2”-.J2), the loop in lined contributes with the
term(M - E,,_1 - J) and the loop in lineL.0 contributes with the terri’. If monotonic search
is performed, the first term is no@/?), since the third and the fourth loops has been replaced
by assignments. The second term is ndw - E,,_;), sincej” in line 9 can take only one
possible value. Finally, the third complexity term remaimshanged. Therefore, the final
complexity of the monotonic dynamic programming algoritisim O(J% - M - E,,_; - T)).

It is worth noticing that, when performing monotonic searitte probability of the dis-
tortion submodep(by,) for each possible extensionlissinceby is equal tol in all cases.

4.2.2 Branch-and-Bound Search for PB-SMT

The branch-and-bound search algorithm that we proposesisdban the well-knowm*
search algorithm. The basit* search algorithmHNRG6§ (or sometimes, stack decoder) is
an iterative algorithm that can be described as follows:

initialise the stack with the null hypothesis
remove the hypothesis with the highest score from théstac
if this hypothesis is a goal hypothesis, output this higpsis and terminate

produce all extensions of this hypothesis and push tlensiins into the stack

o M w N oPRF

goto step 2

One key aspect of thd* search algorithm is the use of a stack data structure to izgan
the search space. The term stack does not imply here a |d#tstrout (LIFO) container.
Instead, this stack data structure stores the hypothesescénding order of their scores (it
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is actually a priority queue), allowing the best hypothemgserated so far to be extended at
each iteration.

A* search uses an additive scoring function of the fgtm) = f(h) + r(h), wheref(h)
is the score to arrive from the null hypothesis to hypothesendr(h) gives a heuristic esti-
mation of the rest score fromto a complete hypothesis. This heuristic estimation fuomcti
is calledadmissibldf it never underestimates this score. If the heuristioneation of the rest
score is admissible, then thE search algorithm is optimal (sedINR68 for more details).

The A* search algorithm was introduced in the field of speech reitiogrby Jelinek
et al. PMB75, and later imported for its use in SMT with single-word tséation models
in [BBD*96, WW97, GJK™01, OUNO1]. As far as we know, the application of* search
in PB-SMT has not been extensively addressed. 8®and CasacubertaC01] proposed an
A*-based search algorithm, but their algorithm does not tekarstage of dynamic program-
ming techniques to efficiently implement the search pracess

Search Algorithm

We propose to solve the search problem given by Equatidrfollowing the A* search
procedure described above. Before introducing the sedgchithm, we will explain the
specific representation for the partial hypotheses that awe ladopted. A hypothesis

is represented as a vector of elements containing infoomatbout each hypothesis ex-
tension. Each individual element consists in a pair of seyositions determining the
aligned source phrase plus the target phrase that is chestnarslation of the aligned
source phrase. Thus, according to our proposed representathypothesis has the form:
h=1[((5,7),€),((5",5"),¢€),...], where the target sentence is generated from left to right
by concatenating the target phragég'’...) and there are no overlaps in the aligned source
positions (the search path example given in Figlifeshows how a complete hypothesis is
built by adding new elements to the above mentioned vecthypbthesis extensions; in the
figure, the newly added elements are the labels of the arcs).

Algorithm 4.2 shows the pseudocode of our branch-and-bound searchtatgdor PB-
SMT. The proposed algorithm works by expanding hypothesgis & complete hypothe-
sis is found. A hypothesis is complete if it has not unaligsedrce positions, that is, if
SPr = 0, whereSP,, is the set of unaligned source positions for the hypothesighe
obtain _trg _sent function returns the partial translation associated torarghypothesis
and theback function returns the last element of the vector that is usedepresent the
hypotheses. The top of the stack is extracted by means giapeunction and hypotheses
are inserted into the stack using fiesh function. If the hypothesis in the top of the stack,
h, is not a complete hypothesis, it is expanded by means aftpand function which is
described below. The results of the expansion are stordueisét?{. Each hypothesia’
contained inH is assigned a score which is calculated incrementally flioenstore of the
predecessor hypothesisand the information about the last extension. It should Hedo
that, in the scoring functiog(h) = f(h) + r(h) that we have usedf(h) is given by the
logarithm of the probability of (A* search was developed for additive scoring functions),
andr(h) (the rest score function) is zero in all cases. Fl¥) function can be specifically
defined to improve the performance of the search algorithmwill return on this point in
sectionst.2.5and4.2.9
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input : fi, n (order of then-gram language model),
p(el) (n-gram language modely( fi |el) (translation model),
Tiv.das Vi1, d20d1 < j2 Aj1 > 1 A g2 < J (set of translations for every
phrase 7]12 of f{ in phrase table)
output : &l (optimal translation)
auxiliar : s (stack),
SP, (set of unaligned source word positions of hypothésijs
‘H (set of expanded hypotheses)
1 begin
2 | hy:=1((0,0),B0OS)]
3 | push( s,0,hg)
4 | end :=false
5 | while lend do
6 (q,h) :=pop (s)
7 if SP, = 0 then
8 él.=obtain _trg _sent (h)
9 end :=true
10 else
11 H =expand (h,T;,,5,)
12 e’f“ :=obtain _trg _sent (h)
13 m = e}
14 o' :=tail (n—1,BOSe")
15 ((-,3),-) :=back (h)
16 forall " € H do
17 ((4',4),€) :=back ()
18 m:=|é|+m'
19 po=T1" 1 pleile )
20 p(m|m’ +1) - p(j" — j")-
21 p(j ="+ 1m,m’ + 1) - p(f}€)
22 if SP,, = 0 then
23 Lp :=p-p(EOS|tail( n—1,0'¢))-p(J|lm)
24 q :=q+logp
25 push (s,q',h)
26 end

Algorithm 4.2: Pseudocode for thigb _search algorithm.

The expansion algorithm works by aligning source phrasdtipos, (j1,72), from
the set PP(SP;), where the functionPP(-), given a set of word positions re-
turns the set of all possible phrase positions that can bairsst using these
word positions.  For instancePP({1,3,4,5}) would contain the phrase positions:
{(1,1),(3,3),(4,4),(5,5),(3,4), (4,5),(3,5)}. Given a set of word positionsSP,
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input : h (hypothesis to be expanded)
Ti1 2> Vi1, 32l71 < j2 A j1 > 1 A j2 < J (set of translations for every
phrasef]]fl2 of f{ in phrase table)

output : H (set of expanded hypotheses)

auxiliar: SPy, (set of unaligned source positions/of,
PP(SPy) (set of all possible unaligned source phrase positiorig of

1 begin

2 | forall (j1,72) € PP(SPs) do

3 forall € € T;, 4, do

4 | # :=H U{append( h, ((j1,j2),€)) }
5 end

Algorithm 4.3: Pseudocode for thexpand algorithm.

PP(SP) can be formally defined as follows:

PP(SP) ={(j.i") | {4, iy eSPAj<j'} (4.5)

Algorithm 4.3 shows the pseudocode of the expansion algorithm. For eamligoed
source phrase positiofyi, j2) € PP(SP}), the expansion algorithm generates new ex-
panded hypotheses by adding new eleméis, j-), €) to the vector representing the hy-
potheses to be expanded. Givgn, j2), the target phrasesare extracted frorff}, ;,, which
represents the set of translations ﬁ;?f in phrase table. The new elements are added by
means of theppend function, which given a vector representing a hypothests anew
element, simply appends the new element at the end of thervect

Hypothesis Recombination

As was explained in sectiofi2.], the search space can be represented as a directed acyclic
graph in which the states represent partial hypothesistamédges represent extensions of
these partial hypotheses. This search space can be grieapljfied by taking into account
that two partial hypotheses are equivalent if they sharestimee state information for the
language and the translation models. Dhesearch algorithm described above does not
take advantage of these considerations and thus carriespetessary calculations. To solve
this problem, it is crucial to performecombination of search hypothe$€8JNO1]: every two
partial hypotheses that share the same state informatitiredanguage and the translation
models can be recombined, keeping only the hypothesis héthighest score.

To efficiently implement hypothesis recombination, we agplthepush function in Al-
gorithm4.2 by thepush _rec function. Hypothesis recombination requires the intrdigunc
of three new data structures, namely, a set of hypothedisss(&7), a table that stores
the highest score for each hypothesis st&&\sp ,,;)) and another table that for each
hypothesis state stores a pointer to the position of thethgsts having this state informa-
tion in the stack P71y (sp,m,o,5))- Algorithm 4.4 shows the pseudocode for thash _rec
function. Thepush _rec function, given a hypothesis, first obtains its state information,
(8P, m,0,j). If (SPy,m,o,j) is contained in the s&T, h is only inserted in the stack
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input s (stack),
q (score of the hypothesis to be pushed into the stack),
h (hypothesis to be pushed into the stack),
ST (set of hypothesis states),
HSy(sp,m,s ;) (Highest score for states),
PTy(sp,m,o,5) (Pointer to stack position for states)
output :s,ST,HSy(sP,m,0,j) PTv(sP,m,0,;) (Updated variables)
auxiliar: SP, (set of unaligned source positions/of

1 begin

2 | el":=obtain _trg _sent (h)

3 | m:=|el"

4 | o:=tail (n—1,B0SeT")

5 ((7])7 ) :=back (h)

6 | if (SPr,m,0,j)€ ST then

7 if ¢ > HS(sp, m,o,;) then

8 remove( s,PT(sp, m,o,5))
9 \;HS(S’Ph,m,o',j) =q

10 PT(S”P;,,,m,o,j) ::pUSh( S,q,h)
1 | else

12 HS(S’Ph,m,o',j) =q

13 PT(sp, m,o ) =push( s,q,h)
14 ST :=8T U(SPn,m,0,7)

15 end

Algorithm 4.4: Pseudocode for theush _rec algorithm.

if its probability is higher than the highest score that hasrbseen so farti S sp, m,qs,5)-
The remove function is used to remove the recombined hypothesis fragnstack. The
stack pointerPT(sp, m.s,5), IS Used to increase the speed of temove function (we as-
sume that the conventionpush function returns a pointer to the hypothesis inserted into
the stack). If(SPy,m,o,j) is not contained irST, then no hypothesis recombination is
required.

Our proposed branch-and-bound algorithm with hypothesiembination explores the
same search space as the dynamic programming algorithm igivectior4.2.1. The main
difference between these two search algorithms is thatrdrech-and-bound algorithm uses
best-first search to obtain the solution while the dynamigmmming algorithm uses breadth-
first search. Therefore, the complexity of the branch-amagirbl algorithm with hypothe-
sis recombination is bounded by the complexity of the dymapnbgramming algorithm:
0Q’-J*M-E,_-T).

4.2.3 Monotonic Search

The branch-and-bound search algorithm proposed in thégquggection can be easily mod-
ified to perform monotonic search. As was explained in sacti@.1 for dynamic pro-
gramming search, the search is monotonic if no reorderiideeophrase translations are
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input : h (hypothesis to be expanded)
Ti1 2> Vi1, 32l71 < j2 A j1 > 1 A j2 < J (set of translations for every
phrasef]]fl2 of f{ in phrase table)
output : H (set of expanded hypotheses)
begin
((-+4), ) :==back (h)
for j' =7+ 1to Jdo
Lforall € € Tjy1,, do

g A~ W N PP

| H:=H U {append( h,((j +1,5),€)) }

6 end

Algorithm 4.5: Pseudocode for thmon.expand algorithm.

allowed. To avoid reorderings, tlexpand algorithm given by Algorithni.3is replaced by
themon.expand algorithm given by Algorithmd.5. Themon.expand algorithm does not
allow unaligned source positions between two aligned sopositions.

The complexity of the monotonic branch-and-bound algarithith hypothesis recom-
bination is bounded by the complexity of the monotonic dyitaprogramming algorithm
discussed in sectioh2.X O(J?-M - E,_1-T).

4.2.4 Stack Pruning and Multiple Stacks

The branch-and-bound search algorithm presented abovargeas that the optimal solution
is obtained. Due to the high complexity of the search, we otarpect to efficiently obtain
this optimal solution. The stack used by our proposed bramthbound search algorithm can
be pruned to reduce the computational complexity. Typicalllimitation in the maximum
number of hypotheses that can be stored into the stack issistpdf this maximum number
of hypotheses is exceeded, then the stack is pruned.

It should be noted that for a given hypothesis, the more atiggource words, the lower
the probability. This constitutes a problem when stackaemrapplied, since those hypothe-
ses with a higher number of aligned source words will be pduseoner due to the stack
length limitation. One possible solution to this problemnsists in introducing the use of
multiple stacks instead of only one. The key idea of multigtigck search algorithms con-
sists in assigning hypotheses to stacks such that theraiistfmpetition” within each stack,
i.e., hypotheses stored in the same stack should align hptgs same number of source
words (and the same words) if possible.

Multiple-stack search algorithms for single-word tratisia models store those hypothe-
ses with different subsets of aligned source words in difiestacksGer0]. That is to say,
given an input sentencg’ composed off words, multiple-stack search algorithms employs
27 stacks to translate it. Such an organisation improves theipg of the hypotheses when
the stack length limitation is exceeded, since only thogmtheses with the same aligned
source positions can compete with each other. Howevere thredtiple-stack algorithms
have the negative property of spending significant amouitime in selecting the hypothe-
ses to be expanded, since at each iteration, the best hgimthe set o2’ stacks must be
searched forQGVCO03.
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Additionally, certain PB-SMT systems, e.g. the Moses decddHB07], use an al-
ternative approach which consists in assigning to the saack,shose hypotheses with the
same number of aligned source words (the Moses decoder isaarty programming-based
translation system with beam search, but it also uses stackganise the search space).

The required modifications in Algorithd2to perform multiple stack search include the
following:

e The single stack used by the algorithm is replaced by a collection of stasksthat
are created on demand.

e The push function call no longer receives the staskas input parameter. Instead,
it receivess;. Given a hypothesi#, the stack into whiclh is stored is given by a
mapping functionu(h). The mapping function(h) takes the hypothesis as input
and returns the identifierof the stack into whictk is to be inserted.

e Thepop function now has to find the hypothesis of highest probatsliteach iteration
among all stacks;.

The key aspect of a multiple-stack search algorithm is the wavhich the mapping
function u(h) is defined. The mapping function determines a set of equicalelasses for
the partial hypotheses. We note this set of equivalenceetaas:[#], where?H represents
the space of partial hypotheses. The number of stacks usdidebmultiple-stack search
algorithm is given by|u[#]].

4.2.5 Breadth-First Search

Let us suppose that we are using a multiple-stack searchithligowith maximum stack
length equal tal.;. The stack length limitation guarantees that a stack wileneontain
more thanL, hypotheses. However, during the execution of the algorittia number of
hypotheses that can be chosen for expansion from a givekatade greater thah,. This

is due to the best-first nature of the search: after extrgaire or many hypotheses from a
given stack, new hypotheses can be inserted into the sacieistaubsequent iterations of
the search algorithm.

The pruning due to the stack length limitation can be moraesgive if we force the
search algorithm to expand first those hypotheses with arlomeber of aligned source
positions. That is, if the search algorithm performs a hitedidgst exploration of the search
space. Under these circumstances, it is guaranteed theganeh algorithm will only expand
at mostL, hypotheses from each stack, since after extracting thénfipgithesis from a given
stack, no new hypotheses will be inserted into it.

Our proposed multiple-stack search algorithm can perfobreadth-first search by only
modifying its scoring functiong(h) = f(h) 4+ r(h). Specifically, the algorithm will perform
a breadth-first search if the following condition is satidfie

F(h)+ (k) > () + v () W, | [SPA| = |SPw ] +1

One way to ensure that the previous condition holds is to fia@propriate value for the
rest score estimation functiotih), which has to verify the following inequality:

r(h) > F(B') + (W) — f(h) ViK' | |SPy| = [SPw | + 1

78 DOM-DSIC-UPV



4.2. Branch-and-Bound Search for PB-SMT

f(r') and f(h) can be bounded by the highest and the lowest log-probahiéspec-
tively, that can be assigned to a hypothegigh’) < 0 and f(h) > loge, wheree is a very
small positive number. Taking into account the previouss@grations, a trivial recurrence
relation can be obtained. From this recurrence relatioa,vatid definition ofr(%) to obtain
a breadth-first search algorithm is:

r(h) = |SPp| - (—loge) (4.6)

It is worth of notice that the previous definitionofh) constitutes an admissible heuristic
since it never underestimates the rest score of a hypothesis

If we perform breadth-first search, tim@p function executed at each iteration of the
search no longer needs to explore the whole set of stackstéinotme best hypotheses.
Instead, thepop function returns the top of the stack containing the hypstethat are
nearest to the null hypothesis.

To calculate the complexity of our proposed breadth-firsttiple-stack algorithm, we
need to calculate the complexity of the expansion algorithhe complexity of the expansion
depends on the number of unaligned phrases for the hypstttese expandedPP(SP)|
(see Algorithm4.3). In the worst case, where there are no aligned source pasjtive have
to align a total of% phrases|PP({1,...,J})| = ijl J). In addition to this, for each
unaligned phrase position there are at nidgthrase translations. Therefore, the complexity
of the expansion algorithm is i®(J2 - T)).

If the hypotheses are stored.rstacks, then the breadth-first search algorithm executes a
total of J- L, expansions, thus obtaining a complexity®.J3- L,-T'). It should be noted that
the resulting complexity is no longer exponentialiidue to the combination of stack pruning
techniques and breadth-first search. By contrast, thefiosssearch algorithm executes a
less aggressive pruning of the stacks and therefore its leaitypcannot be bounded by the
complexity of the breadth-first algorithm. However, in e@mtcases, the time cost of best-
first search may be lower than that of breadth-first searatediest-first search complexity
is closely related to the ability of the statistical modelgtiide the search. More specifically,
the lower the perplexity of the statistical models involethe translation process, the lower
the time cost of the search algorithm. This will be empiticdemonstrated in sectidh 2.

4.2.6 Generalised Multiple-Stack Algorithm for Best-First Search

The stack search algorithms for SMT described in the litgeattypically usel, J or 27 stacks
to perform the search. As was explained in sectidh4 the use of multiple stacks allows to
improve the stack pruning efficiency but increases the caatimmal cost of th@op function.
By contrast, the single-stack search algorithm executeffiientpop function but the stack
length limitation tends to prune those hypotheses with adrigiumber of aligned source
positions.

Here we propose a possible way to make a tradeoff betweendilantages of these
algorithms by introducing a new parameter which will be refd to as thgranularity of the
algorithm. The granularity parameter determines the nurabstacks that are used during
the decoding process. The generalised multiple-stackittigo described in this section is
appropriate when we perform a best-first search.

DOM-DSIC-UPV 79



Chapter 4. Search for Phrase-Based Statistical Machine Translation

Selecting the Granularity of the Algorithm

To appropriately define the concept of granularity we firseha define the concept afign-
ment vectofor a hypothesig. The alignment vectox;, for a hypothesis is a binary vector
of J bits: ({0,1})”, where thej’th bit is set tol if j ¢ SP;,. In addition to this, we also
define theL, parameter, which represents the maximum number of hypeshthan can be
stored by the search algorithm (this differs from the prasig definedL, parameter, which
imposes a limitation on the maximum number of hypothesescdra be stored into a given
stack).

The granularity () of a generalised multiple-stack algorithm is an integeicivhiakes
values betweem and.J. Given a sentencg; to be translated, a generalised stack algorithm
with a granularity parameter equal gowill have the following features:

e The algorithm will use at mog¢ stacks to perform the translation.
e Each stack will contain hypotheses which may hade? different alignment vectors.

e If the algorithm can store at most, hypotheses, then, the maximum size of each stack
will be equal toLs.

Mapping Hypotheses to Stacks

The key aspect of a multiple-stack search algorithm is thg iwawhich hypotheses are
mapped to stacks. Here we define a mapping function basedeoalifnment vectory,
for a given hypothesis. Given a alignment vector composed lats, the mapping function,
wu(v), returns a stack identifier composed of oplpits:

e ({0,13)7 — ({0,1})? (4.7)

The mapping function can be defined in many ways, but thersnaressential principles
which must be taken into account:

e The mapping function must be efficiently calculated.

e Hypotheses whose alignment vector have a similar numbeitobét to one must be
assigned to the same stack.

A possible way to implement the mapping function, namejyv), consists in simply
shifting the alignment vectay — ¢ positions to the right, and then keeping only the first
bits. Such a proposal is very easy to calculate, howeveasitthpoor performance according
to the second principle explained above.

A better alternative to implement the mapping function, eBm. (v), can be formulated
as a composition of two functions. A constructive definitmfnsuch an implementation is
detailed next:

1. Givenf{, we order the set of bit numbers as follows: first the numbers which do not
have any bit equal to one, next, the numbers which have ordbdrequal to one, and
so on.
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2. Given the list of numbers described above, we define aiimegthich associates to
each number of the list, the order of the number within ttss li

3. Given the alignment vector of a partial hypothesisthe stack on which this partial
hypothesis is to be inserted is obtained by a two step prodésst, we obtain the
image ofv returned by the function described above. Next, the reswhifted] — ¢
positions to the right, keeping the firgbits.

Let 5 be the function that shifts a bit vectdr— g positions to the right, keeping the first
g bits; and let be the function that for each alignment vector returns iteear

o ({0,117 — ({0,1})” (4.8)
Then,us(v) is expressed as follows:
p2(v) = Boa(v) (4.9)

Table4.1shows an example of the values which returnsthe ) and theu, (v) functions
when the input sentence hasvords and the granularity of the decoder is equal.t@s it
can be observeds; (v) function performs better tham (v) function according to the second
principle described at the beginning of this section.

Table 4.1: Values returned by the,; andu. function defined as a composition of the
andg functions.

v [m) [av) [ M)
0000 00 0000 00
0001 00 0001 00
0010 00 0010 00
0100 01 0011 00
1000 10 0100 01
0011 00 0101 01
0101 01 0110 01
0110 01 0111 01
1001 10 1000 10
1010 10 1001 10
1100 11 1010 10
0111 01 1011 10
1011 10 1100 11
1101 11 1101 11
1110 11 1110 11
1111 11 1111 11

Single and Multiple-Stack Algorithms

The stack search algorithms usih@nd?2” stacks can be instantiated as particular cases of
the general formalism that has been proposed. Specifigalign the input sentencg; , a
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generalised stack decoding algorithm with= 0 will have the same features as the single-
stack search algorithm. By contrastGf = J, the resulting search algorithm will have the
same features as the multiple-stack search algorithm itstacks. Values ofs between
these extrema define a new family of multiple-stack seargbrdghms that allow to make a
tradeoff between the stack pruning efficiency and the coatjmurtal cost of thgpop function.

4.2.7 Generalised Multiple-Stack Algorithm for Breadth-First Search

The use of multiple stacks in breadth-first search can algberalised as well as it has been
shown in the previous section for best-first search. The madpnctions used in breadth-
first search have an additional requirement with respechdse used in best-first search.
Specifically, those hypotheses with a different number mfnald source positions have to
be assigned to different stacks. The number of stacks is agaermined by the number of
equivalence classes. Since in this case, the computattosalof thepop function is not
affected by the number of stacks (see sectich9, the number of equivalence classes for
the hypotheses can be arbitrarily high.

The most basic multiple-stack algorithm for breadth-fiesirsh useg/ stacks, one for
each possible number of aligned source positions. Thenegjmapping function is:

u(h) =J — SP, (4.10)

Starting from the basic multiple-stack search algorithrfingdel above, we can propose
new search algorithms by refining the partition determingdhe mapping function. For
instance, we can assign hypotheses with non-monotonicraégts to different stacks:

w(h) = (J — 8Pp,is _-mon(h)) (4.11)

where thés _mon(h) predicate is evaluated toue if i contains non-monotonic alignments.
This mapping function can be useful when performing non-otamic search.
Some additional examples of mapping functions are theviatig:

u(h) = (J — 8Py, |trg _sent (h)|) (4.12)

where|trg _sent (h)| returns the number of target words that compose the paytmithe-
sis.

The history of then-gram language model (or a part of it) can be used to define an
alternative mapping function:

w(h) = (J — 8Py, tail  (1,trg _sent (h))) (4.13)

wheretail (1,trg _sent (h)) is the last target word added to the partial hypothesis.
Finally, we propose another example of mapping function tha be useful when per-
forming non-monotonic search:

wu(h) = (J — 8Py, last _alig _src _pos (h)) (4.14)

wherelast _alig _src _pos (k) returns the index of the last source position that was atigne
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The maximum number of partitions is reached when the mapfuingtion returns the
state of the language and the translation models for a giypathesis. Under these circum-
stances, the search algorithm obtains the optimal solution

The computational complexity of the search depends on tiebeu of stacks, which
is given by the number of equivalence cIass{as[.’H]\. Specifically, the complexity is in
O(|u[H]| - J? - L - T). Itis worthy of note that the mapping function can be seen as a
possible way to prune the search space.

It is interesting to consider the search algorithms thatodatained when the maximum
stack length,L, is set tol. Depending on the mapping function, we can range from an
algorithm with.J stacks and complexity i@ (J2 - T'), to an optimal algorithm with one stack
per each state of the language and the translation modelsoamalexity inO(27 - J3 . M -
E,_;-T). In addition to this, this family of algorithms can replate tstack data structure
by a variable storing a single hypothesis.

4.2.8 Additional Pruning Techniques

The only pruning technique that has been introduced so theistack length limitation. In
addition to this, we can also apply the following set of pnghiechniques:

e Maximum source phrase length(L,): during the expansion of a hypothesis, the
source phrases to be aIignq‘tjf, cannot exceed a certain length.

e Maximum number of target phrase translations (7}): the expansion process works
by aligning source phrasg%ﬁ2 with target phrases extracted from the gt ;, of

phrase translations fof]]fl2 contained in phrase table. One possible way to restrict
the search consists in considering only a subset of the Gggdttphrase translations
contained ir7;, ;, as candidates to extend a given hypothesis.

e Maximum number of skipped source positions(S,): during the expansion of a hy-
pothesis, the number of source positions that can be skipfiedespect to the right-
most position of the last aligned source phrase is restkicta other words, we set
a maximum value for the hidden varialilg used in the specific phrase-based model
derivation presented in sectiéhb. If the maximum number of skipped source posi-
tions is set to zero, then we obtain a monotonic search &hgori These reordering
constraints are known as the IBM constrairB8D*96] and they were originally ap-
plied in SMT systems based on single-word translation nsdel

The pruning techniques that have been explained above catrdightforwardly intro-
duced into our proposed search algorithm. Specificallyy tmé expansion algorithm has to
be appropriately modified.

4.2.9 Rest Score Estimation

The efficiency of our proposed branch-and-bound searchitiigocan be improved by defin-
ing appropriate rest score estimation functions. The d&fimbf rest score estimation func-
tions in SMT has been previously studied W\W97, OUNO]] for single-word translation
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models and later extended to the alignment template appf@€02 and to phrase-based
models Koe03 Zen07q. Here we define rest score estimation functions for twoedéht
translation submodels, namely, the phrase translatiomsdbl and the distortion submodel.

Regarding the phrase translation submodel, we follow ttlertigue proposed irkjoe03,
which is based on the maximum probability for translatingrse positionyj, ..., j'}:

) = { g (7] 0w OG0 5+ LGN} @)
wherep*(4, ') has to be calculated for the set of phrase positions comtamé P(SP).
Given a set of word positions, the functidiP(-) returns the set of phrase positions deter-
mining the longest phrases that can be obtained using thesk positions. For instance,
LP({1,3,4,5}) would contain the following phrase position§1, 1), (3,5)}. LP(-) can be
formally defined as follows:

LPSP) = {G:d) 1 {j,-ni'teSPAj <]
A= §" Y €SP (5,0 # G 3" YN <GnG" =5}
(4.16)

The rest score estimation function for the phrase tramsiaiibmodel is given by:

rp(SP) = Z log p* (4, ..., 4") 4.17)

(4,5')ELP(SP)

Finally, we have defined a very simple rest score estimatimctfon for the distortion
submodel. Specifically, given the set of unaligned sourcitipos of the partial hypothesis,
SP, and the rightmost position of the last aligned source ghraghe rest score estimation
is given by the number of skipped source positions with ressfze; of highest probability
according to the distortion submogsl):

ra(SP,j) = max logp(j' — j) (4.18)

The overall rest score estimation function is obtained asstim of the two rest score
estimation functions defined above:

r(SP,j) = rp(SP) + ra(SP, j) (4.19)

It should be noted that the rest score estimation functi@ssnbed above can be com-
bined with that defined in sectiah2.5to perform breadth-first search.

4.2.10 Generation of Word Graphs

Our branch-and-bound search algorithm with hypothesisméination described above can
be used to obtain the best translation according to thesttati models involved in the trans-
lation process. However, there are situations in which wenat only interested in this single
best translation but also in alternative translations. [[$teof the N best translations for a
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given source sentence according to the statistical modeksves the name df-best list
These N-best lists can be obtained from a specific data steucalledwvord graph

A word graph is a weighted directed acyclic graph in whichheamde represents a partial
translation hypothesis and each edge is labelled with a Yaorgroup of words) of the target
sentence and is weighted according to the scores given bivldm®del. Word graphs can
be easily generated as a by-product of the translation psoddne generation of word-graphs
for SMT is described inlJONOZ for the single-word based IBM 4 Model, and iKge03
HZNO7] for phrase-based models.

Our branch-and-bound algorithm with hypothesis recontimnacan be easily modi-
fied to generate word graphs. We define a word graph as a setdfuples of the form
(8P, m,a,7),(SP',m',0',j'), ¢, q); where each quadruple represents an edge from state
(SP,m,o,j) to state(SP’,m’, o', j'). This edge is labelled with the wordsand has the
scoreq. After the execution of the expansion algorithm for a givgpdthesish, the word
graph is extended with a new quadruple for each hypoth€stontained in the sekl of
expanded hypotheses. Specifically, the new quadruple ipased of the state information
for h andh’, the newly added target phragéwhere((-, -), €) = back (h’)) and the score,
which is calculated as the difference of the scores’@ndh: ¢ = q(h') — q(h).

A word graph can be seen as a compact representation of astNigbe A single trans-
lation is given by a path from the initial state to a state espnting a complete hypothesis
in the word graph. The information stored in word graphsvedlais to retrieve not only
the translations associated to the best states of the lgagarad the translation models, but
also those translations associated to recombined hypsthBsfferent algorithms have been
proposed in the literature to obtain N-best lists from wgrdphs Epp99 UONO02 JMO03.

In this thesis we use word graphs as a key component in IMEBstas will be shown
in section6.3.

4.3 Efficient Decoding with Very Large Phrase-Based Mod-
els

The great size of the phrase tables used in PB-SMT is a sofireldems not only during
the training process as explained in the previous chaptergsctiorB.4), but also during the
decoding process, since the whole phrase table is to belstoneemory.

A simple solution to this problem is to extract the subseheffithrase table that is needed
to translate a test set and to store it in memory. This saluiancorporated in translation
systems like the Pharaoh decoder, but it is not a generaleadidtic solution since the test
set must be previously known.

An approach that has been more successful consists in tiod da structures with very
low memory requirement$JBBS05 ZV05]. However, these techniques may not be suitable
for very large corpora unless there are machines with greatarny sizes (2 GBytes or more).

We propose an alternative way to solve this problem whickragly inspired by a clas-
sic concept of computer architectureache memory Our proposed solution also uses a
specific data structure to represent phrase tables whidfigsat to previously defined data
structures with the same purpose. The proposed techniquelsé accessing model param-
eters from disk and have points in common with those destiilb§ZNO7] and in [FCO7.
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Zens et al. ZNO7] propose efficient techniques to access phrase-based matelbilities
using a prefix-tree structure for the source phrases. Fedetial. FCO7 apply different
techniques, including caching of probabilities, to effitig access the parameters of n-gram
language models.

4.3.1 Cache Memory Architecture

Cache memory is based on thenciple of localityof references: if one location is read by a
program, then nearby locations are likely to be read so@madird. In the case of machine
translation, this principle manifests itself in two diféat ways:

1. The majority of the phrase pairs contained in a phrase hiagle a very low frequency.
Therefore, we can predict that these phrase pairs will frghzot be required during
the decoding process.

2. When translating a sentence, only a small number of thieetitrat compose the phrase
model are accessed. Additionally, each entry will be acmkgsany times because of
the iterative nature of the decoding process. Thereforesamadentify both temporal
and spatial locality principles.

The locality principle explained above leads us to propasemory hierarchy composed
of two levels. The first level stores the bilingual pairs thgt accessed during the translation
of each sentence. This level is local to the sentence to bslat@d, and will be erased
whenever the translation process of a new sentence iscstarte

The second level contains a certain percentage of the nexgidnt phrase pairs stored
within the phrase model. This level is kept in memory during whole translation process.

Finally, the whole phrase table is stored on the hard diskisusttructured to allow the
retrieval of the probability of the bilingual pairs. Thisd®ne with logarithmic complexity
by means of binary search.

It is important to point out that the basic information elenthat is handled within the
memory hierarchy consists of a single source phyaséth all its target translations. This is
done to favour spatial locality.

Thus, when the decoder needs to retrieve the probabilitypbfase pai(f, é), itsearches
for the pair in the first level cache. If it is present, its pabbity is returned. Otherwise, the
translations off are searched for in the second level cache. If these traorsagxist, they
are copied in the first level cache and the probability of theape pair is returned i has
been stored as a possible translatiorf off there is no translation fof in the second level
cache, then the hard disk is accessed.

When the translations of are searched for in the hard disk, they may or may not exist.
In either case, the result of the search is copied in the &vet icache, and the probability of
the phrase pair is returned.

When the translation process of each sentence has finiskditstievel cache is erased,
and the decoder only keeps in memory the selected percenitize model. The percentage
of phrase pairs that are stored in the second level cachbewkferred to as the parameter.
According to the first locality principle explained aboves fphrase pairs stored in the second
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Main memory

->The first level cache table stores those entries of
the phrase table that are required during the
translation of an input sentence

Level 1 cache-table

->The second level cache table
Level 2 cache-table stores a percentage of the most
ffequently used entries of the
phrase table

-->The whole phrase table is stored on the hard disk
-->The entries are retrieved using binary search

Figure 4.2: Cache memory architecture.

level will be those with higher frequency. Figuée2 shows a diagram of the above described
cache memory architecture.

In the experiments we have carried oattakes values betwedhand 100. Both these
values are particular cases with interesting features:

«=0 : the second-level cache will be empty. Therefore, ther@iphrase pair permanently
stored in memory. This will increase the amount of cache esisslowever, it allows
us to translate without having to store the model in memory.

«=100 : the whole model will be stored in the second-level cactee he whole model is
allocated in memory and the retrievals are cached). Thosvalus to translate without
any cache misses and can be viewed as the baseline that esmieptied by common
decoders such as the Pharaoh decoder.

4.3.2 Selecting a Suitable Data Structure for Phrase Pairs

Because of the huge size of the phrase tables, it is crucfaidca data structure with low
memory requirements to represent the phrase pairs.

For the training process described in sectiofy the choice of the representation for the
phrase pairs is not an important problem, since it is possibreduce the memory require-
ments by simply reducing the fragment size.
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However, the data structures must be carefully chosen éocése of the decoding pro-
cess. Specifically, it is important to use a fast data strediurepresent the first-level cache
table, and to use a low complexity data structure in termgats to represent the second-
level cache table.

In our work, we have used the same representation for the &ingt the second-level
cache memory. Such a representation makes a tradeoff betimee and space complexity
and consists in aasymmetrical double triéke the one shown in Figd.3, where there is
a trie associated to the source language (left) and anosiseciated to the target language
(right). In the upper part of the figure, a small set of Englgfanish phrases is shown. In
the lower part of the figure a depiction is given of how thesepé pairs are stored by the
proposed data structure.

la casa roja - the red house

la casa roja - the red flat

la casa verde - the green house

Figure 4.3: An example of the double-trie data structure for the storage of bilingual
pairs. The trie at the left stores the source phrases and the one aththstoigs the
target phrases.

In order to retrieve the probability( f|¢) of a phrase paitf, ¢), first, the target phrase
is to be searched in the target trie. As a result of the seangbinter that represents the target
phrase and the count of the target phragg are obtained. Second, the source phrageto
be searched in the source trie. Once the search is done, wddfiad the pointer té@ that
was obtained in the previous step. This final step allows mettteyec(f, €). Once the two
counts are retrieved, the probability of the phrase paiivisrgbyc(f, €)/c(é).

The number of comparisons that are to be done in order t@vetthe probability of the
phrase pai(f, €) is given by the following expression:

log(s) + log(t) +n, (4.20)

wheres andt are the number of source words and target words respegtthelyare stored
by the data structure, andis the number of source phrases that translates the tangetgsh
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Given thats ~ t andn < s (see Table.3), we can conclude that the retrieval has a logarith-
mic complexity.

The proposed data structure also allows us to obtain thefdetrglations of a given
source phras¢, which is a basic operation performed by standard decodgayithms. For
this purpose, the source phrasis to be searched in the source trie. As a result of the search,
the set of pointers which represents all possible tramslatof f are obtained. The target
phrases that are represented by each pointer can be obkgimeeans of the pointers to the
father nodes stored in the target trie.

With regard to the space complexity, if we implement triebemsry trees (as proposed
in [Knu73), and assuming that an integer number is represented withword from the
processor, the number of integers required to store theendiatistical dictionary of phrase
pairs using the data structure we have defined is given byotteving expression:

SXCgX3+tXee XDH+ppx2

wheres andt are the total number of source and target words, respegtistred in the
phrase table;, andc; are factors betweeland1 whose meaning will be described below;
andpp is the number of pairs which compose the phrase table.

Each trie node requiresintegers, one integer to store the word it contains, andhamot
two as pointers to child and brother nodes. The target tgeires an additional integer in
each node to store the pointer to its father node, and onetmstere the count of the phrase
it represents. Finally, each alignment between bilingwtsprequires one integer and the
count of the phrase pair one integer more.

With regard to the factors, andc;, they represent the compression ratio obtained by the
use of the trie data structure for the source and the tanggtileges, respectively. Specifically,
the tries will compress all those phrases that share the pagfie (see Fig4.3). Such a
compression is represented in the expression shown abtivéagiors betweefi and1. The
value of these factors depends on the features of the coRmrsnstance, for the Europarl
corpus these compression factors are not greater(3gior both the source and the target
tries.

Our proposed data structure not only allows the retrievahwdrse probabilitiep( f|é),
but also the retrieval of direct probabilitipé?| /). Sincep(é|f) is given bye(f, €)/c(f), now
we need to retrieve the values of the coutits, ¢) andc(f). Regarding the value af f, é),
it is obtained in the same way as it was shown for the retriezaiverse probabilities. With
respect to the value ef f), sincec(f) = >, c¢(f, '), we only have to search for the phrase
fin the source trie and sum the joint coun¢§7 -) for all its translations, obtaining the value
of ¢(f). Itis worth pointing out that this data structure can be usezbmbination with the
training procedure described in secti®rl.2 allowing direct and inverse probabilities to be
accessed after executing the training process in only @mslation direction. Specifically,
the training procedure generates the couhfsé) andc(é) for each phrase pair, and our pro-
posed data structure uses these counts to efficiently gerdgiract and inverse probabilities
for each phrase pair.

In addition to the above commented features, the use of s@llowvs the proposed data
structure to be dynamically modified (i.e. new phrase paars loe added or the counts of
existing ones can be modified). Such capability will be eitptbto implement an incremental
phrase-based model, as it will be shown in chajpter
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In spite of the low space complexity of the data structures@néed in this work, more ef-
ficientimplementations have been proposed, such as the-aunffiys described ifdJBBS05
ZV05]. However, suffix-arrays are not able to efficiently obtakae probabilities for the
phrase pairs; instead, the probabilities are approximsteals to reduce the retrieval costs.
By contrast, as it has been shown, our proposed data steuallows to obtain exact proba-
bilities with logarithmic time complexity.

4.4 Phrase-Level Alignment Generation

In this section we study the problem of generating alignmeabphrase level between a sen-
tence pair. As is discussed below, the generation of pHesgd-alignments is not a trivial
task due to problems with unseen events, which may causa thiaen sentence pair can-
not be adequately aligned. The phrase-level alignmentrgdae techniques proposed here
allows us to solve this problem and can be useful in a rangppfaations, including multi-
source SMT QNO1], Viterbi-like estimation of phrase-based modalgNIN10], discrimina-
tive training [LBCKTO#], training of phrase segmentation modes9AS09, etc. Moreover,

in Chapter6 of this thesis, we show how the problem of generating phlagd-alignments
can be modified for its application in IMT (see secti®g).

The problem of finding the best alignment at phrase level lsdd@en extensively ad-
dressed in the literature. A first attempt can be founddw@N+05], where different tech-
nigues to obtain alignments at phrase level are proposedetty, the proposed techniques
heavily rely on word alignment models or on word alignmentnioas.

As was explained in sectioh.4.3 the concept of bisegmentation and the concept of
phrase-based alignment for a sentence pair are interchblegeé\ bisegmentation or phrase-
based alignment of length’ of a sentence paiff; ,61) A(f{,el), is defined as a triple:
A(f{ el = (fF,eK,al), wherefK = f/, X = el andalS is a specific one-to-one
mapping between th& segments/phrases of both senterides K < min(I, J)).

Then, given a pair of sentencgfy’, el) and a phrase model, we are interested in the best
phrase-alignment (or Viterbi phrase-alignmenity; (f{, ¢! ), between themdy (f/, e!) can
be computed ds

Ay (f{,e]) = argmax {Pr(f{*,af" |ef)} (4.21)

K K K
f1 s€1 ,a7

where, following the assumptions given ifiom03, Pr( K af|ek) can be approximated
as:

p(ff aflef) Hpak\al -p(frléay) (4.22)

On the basis of Equationt(22), a very straightforward technique can be proposed for
finding the best phrase-alignment of a sentence(gfdire! ). This can be conceived as a sort
of constrainedranslation. In this way, the search process only requiresise of a regular
SMT system which filters its phrase table in order to obtagséhtranslations of;’ that are
compatible withe! .

3t should be noted thalr (| fi, &) = Pr(fK,al|el) / Pr(fE|eK).
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In spite of its simplicity, this technique has no practicgkrest when applied on regular
tasks. Specifically, the technique is not applicable wherallgnments cannot be generated
due to coverage problems of the phrase-based alignment fhedene or more phrase pairs
required to compose a given alignment have not been seamdhe training process). This
problem cannot be easily solved, since standard estime&tos such as fioT and Moses do
not guarantee the complete coverage of sentence pairsfékien are included in the training
set; this is due to the great number of heuristic decisionslved in the estimation process.
In addition to this, certain search space pruning techsiquay also introduce coverage
problems, such as the reordering constraints (see secid).

One possible way to overcome the above-mentioned coverabems requires the def-
inition of an alternative technique that is able to consielegry source phrase ¢f/ as a
possible translation of every target phraseofSuch a technique requires the following two
elements:

1. A search algorithm that enables efficient explorationhef $et of possible phrase-
alignments for a sentence pair.

2. A general mechanism to assign probabilities to phrags,p@ matter if they are con-
tained in the phrase table or not.

In the following sections we describe the details of the mémhe used to obtain phrase
alignments, focusing our attention on the two key elemédrashave been mentioned above.
Specifically, the search algorithm used to explore the spoe§ible alignments is described
in section4.4.1, and the mechanism to assign probabilities to phrase paulescribed in
sectionst.4.2and4.4.3

4.4.1 Search Algorithm

Regarding the search algorithm to be used, we propose thefusanodified version of
the branch and bound search algorithm for PB-SMT describexbction4.2. Except for
the scoring function (which will be studied in sectiofigl.2and4.4.3, only the expansion
algorithm has to be appropriately modified to allow the ergion of the set of possible
phrase-alignments.

The expansion process consists in appending target pheasémnslation of previ-
ously unaligned source phrases of a given hypothesis. Lstipgose that we want to ob-
tain a phrase alignment between the senterfges= “Para ver la lista de recursos”, and
el = “To view a list of resources”. Figuré.4 shows an example of the results obtained by
the expansion algorithm that we propose for a given hypatlies

The hypothesi#é has aligned the source phrase “Para”, appending the tengete“To”.
The setSP; contains the set of unaligned source positionsioSP, = {2,3,4,5,6}.
The expansion algorithm works by aligning source phraséipos, v = (ji, j2), from the
setPP(SPy,), where the functiorP(-), given a set of word positions returns the set of all
possible phrase positions that can be obtained using thaskpesitions (the” P(+) function
is formally defined by Equationi(5)).

Lete!, = “view a list of resources” be the remaining words that aree@ppended tb
to complete the target sentenge Under these circumstances, we have to take into account
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el: To view a list of resources

hl

u=(2,6) ; :
f{:Paraver la lista de recursos
el:Toview a list of resources

o
e = ef/

hg

f{:Paraver la lista derecursos
el:To wview a list of
| —

el e P - {el}
3

hs

h fi :Paraver la lista derecursos
u=(2/5) e{:TO view a list
———
J. ; "
,flj.Paraver la lista de recursos el e P ; —{el}
e1:To Cir

hy

fi :Paraver la lista derecursos
el:To view q
new g

el e P — {el}
i

hs

fi:Paraver la lista derecursos
el:To view
N~

el e P — {el}
T

Figure 4.4: Example of the expansion of the hypothdsigiven f; = “Para ver la lista
de recursos” and the target senteafe= “To view a list of resources”.

whether we are aligning the last source phrase positionstorfor example, let us suppose
that we align the source phrase determined by positioas(2,6) € PP(SP3) (fS = “ver

la lista de recursos”). Since those are the last sourcei@osio be aligned, we have to ensure
that the whole target sentenegis generated. For this purpose, we appehdo £, resulting

in the hypothesig;.

By contrast, if we are not aligning the last source positioh&, we can also append
strings, e’ , from the setP,: of sub-prefixes ot/ with the exception ot/, itself, to the
newly generated hypotheées. Before appending a string ypattresis, we have to ensure
that after aligning a source phrase, there are enough rergaarget words to be aligned with
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input : el (reference target sentenck)(hypothesis to be expanded)

output : H (set of expanded hypotheses)

auxiliar: SPy, (set of unaligned source word positionsigf
PP(SPy) (set of all possible unaligned source phrase positiorig of
LP(SPy) (set of phrase positions of the longest unaligned phrases),
el, (remaining target sentence to be aligned at phrase level),
P.: (set of sub-prefixes af]))

1 begin

2 | forall (j1,j2) € PP(SPy)do

3 el, =get remaining _trg _sent (h.el);

4 if SPr — {j1,..., j2} # 0 then

5 forall ¢!, € 735; —{el} do

6 it (Jefi| = leis ) > [LP(SPh — {j1, -, j2})| then
7 | #H:= 1 U {append( h, ((jr, j2)lr ) }

8 else

9 | H =M U{append( h, ((j1,72).e})) }

10 end

Algorithm 4.6: Pseudocode for theghralig _expand algorithm.

unaligned source phrases. The number of remaining targelsvimgiven by:(|e’,| — |%]).
Given the current set of unaligned positio8%;,, and the next source phrase to be aligned,
determined by the positiorig,, j»), we have to align atleask P(SPj,—{j1, ..., j2 })| source
phrases, where the functidhP(-), given a set of word positions, returns the set of phrase
positions determining the longest phrases that can benauataising these word positions
(LP(-) was formally defined by Equatiod (16). Thus, we have to ensure that the following
condition holds:(|ef| — |€%'|) > |LP(SPy — {j1,...,j2})|. These restrictions allow the
translation system to complete the target sentehde subsequent expansion processes.

As an example of the previous considerations, let us supghatene align the source
phrase determined by positions= (2,5) € PP(SP;) (f; = “ver la lista de”). In this
case we can append the string “view a list of”, resulting im ltlypothesid,. Alternatively,
the subprefix ot/ “view a list”, can be appended, resulting in the hypothésisFinally,
we can also append the strings “view a” and “view” resultinghie hypotheses, andhs,
respectively. In all cases the above explained restristivere satisfied, sindd.P(SP;, —
{2,3,4,5}| is equal tol and(|e/,| — \e;ii' ) was greater or equal tofor the appended strings.

Algorithm 4.6 shows the expansion algorithm that we propose for its aggidic in the
generation of phrase alignments. The algorithm is a fosatibn of the ideas depicted in
Figure4.4. This expansion algorithm permits phrase reorderingst bah be easily modified
to only obtain monotonic alignments.

The time cost of thehralig _expand algorithm can be reduced by the introduction of
pruning techniques. In this case, the only pruning techaitpat we propose to apply con-
sists in restricting the maximum number of target phrasasdhn be linked to an unaligned
source phrase during the expansion process. Specificaltijose cases wheed has not
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already been generated, only a subset of the strings cedtairthe sef,.; are considered

as candidates for the expansion process. One possiblgarite choose the substrings is
based on the length of the source phr@éfeto be aligned determined hy Only those target

substrings with lengths similar to the Iengthﬁf are considered.

Regarding the complexity of the search algorithm, it degemithe selected configura-
tion of the branch-and-bound algorithm. Let us assume tleatise a breadth-first multiple
stack algorithm with/ stacks (see sectigh2.5. Under these circumstances, the search algo-
rithm has to expand.; hypothesis frony stacks. The complexity of thghralig _expand
algorithmis inO(J2-1). Therefore, the complexity of the search algorithm i€iy>- L, -1).

4.4.2 Smoothing Techniques

During the generation of phrase alignments using the sedgohithm that has been described
above, it is necessary to assign scores to the phrase pairarth appended to the newly
generated hypothesis. Since these appended phrase jgairstarecessarily extracted from
the phrase table (in principle, given a sentence pair, eagfet phrase can be considered
as translation of a given source phrase), a general scor@udpamism is required to assign
probabilities to phrase pairs, no matter if they are comtin the phrase table or not.

To solve this problem, we propose the application of smaoagthiechniques over the
phrase table. Although smoothing is an important issuenguage modelling and other areas
of statistical NLP (see for exampl®S01] for more details), it has not received much atten-
tion from the SMT community. However, most of the well-knolanguage model smoothing
techniques can be imported to the SMT field and specificalthéd®B-SMT framework, as
it is shown in FKJOg.

In spite of the fact that PB-SMT and the generation of phadggiments are similar
tasks, it should be noted that the two problems differ in a &gyect. While in PB-SMT
the probabilities of unseen events are not important (dineelecoder only proposes phrase
translations that are contained in the model, $8€JDq), in the generation of phrase align-
ments, assigning probabilities to unseen events is oneeoffibist important problems that
has to be solved.

In the rest of this section, we describe the smoothing teghes that we have imple-
mented. They are similar to those proposed-ii]J0§, although in our case we have strongly
focused on the appropriate treatment of unseen events.

Phrase-based Model Statistical Estimators

Training data can be exploited in different ways to estinsédtistical models. Regarding the
phrase-based models, the standard estimation technidpasésl on the relative frequencies
of the phrase pairs (see secti®r). Taking this standard estimation technique as a starting
point, a number of alternative estimation techniques caaeiged.

In this thesis we propose the application of the followintireation techniques for phrase-
based models:

o Maximume-likelihood estimation

e Good-Turing estimation
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e Absolute-discount estimation
e Kneser-Ney smoothing
e Simple discount

As was mentioned above, ML estimation uses the concept afivelfrequency as a
probability estimate. Once the counts of the phrase pairs haen obtained, different well-
known estimation techniques can be applied. In this thesipmpose the application of
Good-Turing, Absolute-discount, Kneser-Ney and Simpéealint estimation.

The well-known Good-Turing smoothing techniq®397 works by replacing observed
countsc, by modified countsg,:

cg=(c+1). 2L (4.23)
N
wherec, is a modified count value used to replac# subsequent relative-frequency esti-
mates, and.. is the number of events having count
It follows from Equation 4.23) that the total count mass assigned to unseen phrase pairs
is 04m9 = m1. This mass is distributed among contekts proportion toc(é), giving the
Good-Turing estimator: )
. co(f, €
0 P— e L (4.24)
> jcq(f €) +p(e) -m

wherep(é) = c(é)/ >, c(é).

Absolute-discounting and Kneser-Ney smoothing subtrdisiea discount from all non-
zero countsfKN95]. The general probability distribution for these smoothiachniques was
originally defined as a backoff combination by Kneser and N&Y95] and later reframed
as an interpolation by Chen and Goodm@&@®P4g. Here we adopt the interpolated version:

~é:c(f’éﬂ a(é) - pu(flé 4.25
p(fle) ch(f7é)+ (€) - po(fle) (4.25)

where D is the subtracted fixed discount(é) is the normalisation factor angl(f|é) is
the smoothing distribution. Following the formulae givenNEK94], the fixed discount is
calculated ad = ny/(n1 + 2ns). The normalisation factax(é) is defined as follows:

ale) = — 2 Ny (e,0) (4.26)

elf.é)
whereNy_ (e, &) is the number of source phrasg$or which¢(f, &) > 0.

Regarding the smoothing distributicm,(ﬂé), we define two different versions. For the
sake of simplicity, in these two versions, the distributd@pendency o# is removed. The
first version is given by(f) = ¢(f)/ > ¢(f), and the second one is the Kneser-Ney lower
order distribution:

po(f) = Nii(f,0)/ Y Nig(fr) (4.27)
7
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whereN,_ (f,e) is defined analogously ;. (e, &).
Finally, we propose the use of an alternative discount whiethave called Simple dis-
count, where a fixed probability mass is discounted from sgents instead of a fixed count:

Fls (fv)
= (1-9§ 4.28
p(fle) =(1—-4)- 7.0 (4.28)

whered is the discounted probability mass assigned to unseengpeass.

Lexical Distributions

A good way to tackle the problem of unseen events is the usmbapility distributions that
decompose phrases into words. Two different techniquemargioned in FKJO§ for this
purpose: the noisy-or and an alternative technique whiblased on alignment matrices.

In this thesis we have applied another technique which isdas the IBM 1 Model
probability as defined ingDDM93]:

(f1 |€1

J I
H Z (f;le:) (4.29)

We use the IBM 1 model to assign probabilities to phrase pestead of sentence pairs,

i.e. we obtain probabilities for individual phrasgsindé instead of for the sentencg¢g and

el.

Combining Estimators

The statistical estimators described above can be comiinisg hope of producing better
models. We have chosen three different well-known tectesdar combining estimators:

e Linear interpolation
e Backing-off
e Log-linear interpolation

The linear interpolation technique consists of making adincombination of different
estimators, ensuring that the weights of such combinatedarchine a probability function.
The general form of the interpolation schemes proposedisa®follows:

pri(f1e) = A;z - ppe(fIE) + (1 - A7) prex(fle) (4.30)

whereppp is a phrase-based statistical estimator gpgx is the lexical distribution de-
scribed above.

The backing-off combination technique consults diffenaaidels in order depending on
their specificity. The general form of the proposed backcifiesnes is as follows:

(1) 59 >0 (4.31)
(&) - prex(flé) if ¢(f,é) =0
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wherea(f|é) is a modified version oppp(f|é) that reserves some probability mass for
unseen events, the scale fact€) is introduced to make the conditional distribution sum up
to one andvz, x (f|€) is the lexical distribution described above.

Phrase-based model estimators and lower order distrilsitan also be combined by
means of log-linear interpolation. In this case, the procectonsists in adding a phrase
based statistical estimator and a lexical distribution@sisg components of a log-linear
model.

In all cases, the main goal of the different combinationstafistical estimators is to
achieve good treatment of unseen events. However, eachiatiob technique has its own
properties.

The key difference between interpolation and backing dffié the latter only uses infor-
mation from the smoothing distribution (the lexical distriion) for low frequency or unseen
events. Since for phrase alignment generation, betteighi@u of unseen events has a great
impact, backing-off seems a especially suitable approach.

Finally, the main difference between linear and log-lineambination is that the for-
mer moderates extreme probability values and preservegnietliate values, whereas the
latter preserves extreme values and makes intermediatesvalore extreme. When assign-
ing probabilities to unseen events, the phrase-based mtadistical estimators will produce
very low or zero probabilities that will be moderated by Alneombination (using the LEX
distribution), and preserved by log-linear combinationecBuse of this, we expect linear
combination to work better than log-linear combination.

4.4.3 Aloglinear Approach to Phrase-to-Phrase Alignments

As was explained above, the score of a given alignment caalbelated according to Equa-
tion (4.22). This scoring function can be refined to take into accountesbasic aspects of a
phrase alignment, such as the lengths of the source and pdngeses, and the reorderings of
phrase alignments. For this purpose, we follow the spedifiage-based model decomposi-
tion presented in sectich5, where the alignment variabig is replaced by our own set of
hidden variable$K, o<, b ck). In this set of alignment variable&; represents the length
of the bisegmentatiom ¥ is a vector of ending positions of thi§ target phrasegX is a
vector with the number of skipped source positions with eesfo the ending position of the
previously aligned source phrase arfdrepresents a vector containing the lengths offthe
source phrases.

The new scoring function given by our proposed phrase-basetl decomposition is as
follows:

K
p(fi K, a1, b e le) = p(JII) - p(K|L,J) - H[ (ak|ak—1)
k=1
p(r) - pleklar, an—1) - p(farlegr_ 1+1)} (4.32)

where the following submodels are included: a source seatlmgth submodeh(J|I),

a
bisegmentation length submode(K|I, J), a target phrase length submodel;|ar—1), @
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reordering submodeh(by, ), a source phrase length submogét;, |ax, ax—1) and an inverse
phrase translation submodg(,f5*|e5*  ,); thea andg variables are defined as follows:

ar = fr—cp+1
Bk = Pr—1+br+ck
Bo = 0

It should be noted that the source sentence length submedsissassigns the same prob-
ability to each possible phrase alignment betwggrande!, since in all cases the sentence
lengths remain unchanged. Additionally, according to theape model derivation presented
in section3.5, the bisegmentation length submodel is assumed to be mifdrhus, the
calculation of the probability for a given phrase alignmgiven by Equation4.32 can be
simplified by dropping the termsJ|I) andp(K|I, J).

In a similar way as it was described in sectitb.3for the case of standard PB-SMT, we
can introduce the submodels that are present in EquatiBf) @s components of a log-linear
model (except the source sentence length and the bisedinantngth submodels). This
log-linear model can also be complemented with additionafescomponents. The genera-
tion of the Viterbi phrase alignment using this log-lineasdel can be formally expressed as
follows:

AV(fijvei) = argimax { Z /\m' fl aK CL bl , C1 76{)} (433)

K pK K
K,a7* ,by* ¢y

We propose the use of a specific instantiation of the previmueral log-linear model
given by Equation4.33. Specifically, this log-linear model instantiation is coosed of
a total of five score components or feature functions (filoto hs): inverse and direct
phrase-based models,(and hs respectively), a target phrase-length mode)( a source
phrase-length modeh(), and a distortion modehg). The details for each feature function
are listed below:

e inverse phrase- based modeln)
hl(e{,K aK bK 01 ) 1) 10g(Hk 1p( | a;\ 1+1))

e direct phrase- based model-)
h2(6{7K,a{(7bK C1 ) 1) log(Hk 1p( @ — 1+1|fak))

e target phrase-length model {i3)
hs(K,af) = log([ T, plaklar—1))

e source phrase length mKodeIl(4)
ha(K, af', eff) = log(I =, p(exlar, ax-1))

o distortion model (h5z2
hs (K, bi*) = log([ Ty p(bk))

To implement the above described score components we usartieprobability models
that were proposed in secti@b5.2for its use in standard PB-SMT. Specifically, we use in-
verse and direct phrase models to implemenandh, respectivelyz can be implemented
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by means of a geometric probability distribution (penalikang target phrases) or a uniform
probability distribution (penalises the length of the isentation); a geometric, a uniform
or a Poisson probability distribution can be used to implethe (geometric and Poisson dis-
tributions penalise the difference between the length@stburce and target phrases and the
uniform distribution penalises the length of the bisegragah); finally, 5 is implemented
by means of a geometric probability distribution.

It is worth noticing that the inverse and the direct phraselef®used to implement the
scoring functionsh; and hs, respectively, can be smoothed using the techniques that we
described in sectiod.4.2

Regarding the weights of the log-linear combinatiap,, m € {1,2,3,4,5}, they can be
computed by means of the MERT algorith@dh03.

4.5 Summary

In this chapter we have studied different issues regardiegéarch problem in PB-SMT. We
have proposed a branch-and-bound search algorithm forMB-$he computational com-
plexity of the proposed algorithm is bounded by the compjead the well-known dynamic
programming algorithm defined ifZgn07q. We have provided both single- and multiple-
stack versions of the basic search algorithm. Our propokgdtitom performs a best-first
search by default, but it can also perform a breadth-firstchelay only appropriately mod-
ifying its scoring function. We have studied the problem afpping hypotheses to stacks
when multiple-stack search algorithms are used, propagiegific mapping techniques for
its application in best-first or breadth-first search aldponis. Finally, we have also described
different techniques to prune the search space and to estihescore of completing a partial
hypothesis.

Additionally, we have proposed techniques to deal withdghrase-based models during
the search process. These techniques include the use dfie-geamory architecture and a
specific data structure to represent phrase tables.

Finally, we have formally described the problem of genegasitatistical phrase-to-phrase
alignments between the source and the target sentenceffyimpaur proposed PB-SMT
search algorithm for its use in this task. The proposed neadifins include a new expansion
algorithm, the application of smoothing techniques anddisnition of a log-linear model
composed of a specific set of components.
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CHAPTERDS

PB-SMT EVALUATION

In this chapter we show the results of the experiments thatameed out to test the SMT
techniques proposed in chaptérsand 4. Specifically, the results obtained by the tech-
nigues to estimate phrase-based models from large corpershawn in sectio®.1, best-
and breadth-first search techniques for SMT are compareetiios5.2, our proposed gen-
eralised multiple stack search algorithms are evaluatest@tion5.3, the log-linear model

for SMT is evaluated in sectioh.4, the bisegmentation-based RF estimation technique is
tested in sectiod.5, the results obtained by the decoding techniques for langeoca are
shown in sectiorb.6 and finally, the proposed phrase-based alignment genertatibniques
are evaluated in sectidn7.

5.1 Phrase Model Estimation from Very Large Corpora

We carried out experiments to compare fneg _by _frag _training algorithm pro-
posed in section3.4.2 with respect to the conventional estimation technique. The
frag _by _frag _training training algorithm is designed to train phrase-based nsodel
from very large corpora. For this purpose, the estimatiatoise in afragment-by-fragment
fashion. The experiments measure both the spatial and raigusts of the estimation pro-
cess. This is done in order to quantify the amount of memorighvs saved by means of the
frag _by _frag _training  algorithm and the overhead introduced by its use.

Table 5.1 shows the spatial cost in GBytes and the temporal cost innsisctinat have
both the estimation from the whole corpus and the fragmgffrdagment estimation. In all
cases, the phrase-based models were obtained by meandefdéoolkit presented in Ap-
pendixB of this thesis. All the experiments presented in this sadiiave been executed on
a PC with a 2.60 Ghz Intel Pentium 4 processor with 2GByteserhory. The experiments
were executed on the English-Spanish Europarl corpus éstieis1.10.2for a detailed de-
scription), ranging from a maximum phrase size2aofo 8. The experimentation was not
extended to additional language pairs because in this tesnguage pair under consider-
ation does not qualitatively affect the results (the timd apatial costs for both estimation
techniques only depend on the number of phrase pairs thgtas#rthe model and we did
not observe significant differences in this aspect for tfferdint language pairs).
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Table 5.1: Statistics of both conventional estimation and fragment-by-fragment esti-
mation for the English-Spanish Europarl corpus and different valfigse maximum
phrase size. The statistics include the time in seconds and the main meneiy siz
GBytes required by the estimation process.

Conventional estimation | Fragment-by-fragment estimation
m | Time (S) Size (GB) | Time (s) Size (GB)
2 2266 0.11 2336 0.12
4 6034 0.66 5848 0.12
6 10757 1.47 10234 0.12
8 - >2 17089 0.12

As can be seen in Table 1, the memory requirements of the conventional estimation
are higher than 2 GBytes when the maximum phrase size is ég&al Because of this,
such an estimation may not be feasible3irbits machines depending on which operating
system is used. In contrast, fragment-by-fragment esiiméias a fixed cost that is equal to
0.12 GBytes. This value is the maximum amount of memory that iggassl to the sorting
algorithm and can be decreased at the expense of an incretimetime needed to perform
the sort.

With regard to the time cost of the algorithms, it should beéedathat fragment-by-
fragment estimation can be even faster than conventiotiah@on for great values of the
maximum phrase length. As explained in sectiof.2 fragment-by-fragment estimation in-
troduces time overhead because of the necessity of sohnghrase counts. However, the
time needed to store and update the counts of each phrasdgp&inds on the size of the
model. This size is smaller if the estimation is carried autdmall fragments of the corpus.

5.2 Best- versus Breadth-First Search

We carried out experiments to compare the performance dfabefirst search algorithm for
SMT described in sectiod.2.2with that of the breadth-first search algorithm presented in
section4.2.5 The results were obtained using three different corporaaéasing complex-
ity, including the EuTrans-I, Xerox and Europarl corporegsectiori.10for more details).

In all the experiments, we obtained translations from Sgfato English (experiments using
additional language pairs were executed, yielding verylaimesults).

Both the best- and the breadth-first search algorithms igeghpping function given by
Equation ¢.10 to assign hypotheses to stacks (which ugestacks, one for each possible
number of aligned source positions). The log-linear moda$ \mstantiated as follows: a
standard backoff language model estimated by means of theMSBolkit was used to
implementh; the source sentence length model, was implemented by means of a set of
normal distributions; inverse and direct standard phiessed models generated by means of
the THOT toolkit were used to implemerit; and h,, respectively (maximum phrase length
was set to7 words); the target phrase length modej, was implemented by means of a
uniform distribution and finally, the source phrase lengtd the distortion modelss and
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hr, respectively, were implemented using geometric distidims. Table5.2 summarises the
information of the log-linear model described above. Wedudefault values for the weights
of the log-linear model.

Table 5.2: Description of the log-linear model used in the experiments.

Feature | Model Implementation
h1 Language model Standard backoff language model (SRILN)
ho Source sentence length modelSet of normal distributions
hs Inverse phrase model Standard phrase model {©T)
ha Direct phrase model Standard phrase model{®©T)
hs Target phrase length model | Uniform distribution
he Source phrase length model| Geometric distribution
h7 Distortion model Geometric distribution

All the experiments presented in this section were executealPC with a 2.40 Ghz Intel
Xeon processor with 1GB of memory.

5.2.1 Assessment Criteria

The evaluation of the techniques presented in this sectamnoarried out measuring the time
cost per sentence and the average score per sentence. Tdgessepre per sentence for a test
corpus is obtained by dividing the score of the log-lineadei@ssigned to each translation
hypothesis by the total number of sentences that compodegheorpus. The time cost per
sentence and the average cost per sentence were measugiad tha value of the maximum
stack size parameter frointo 100.

We have chosen the average score per sentence as an evatuaddon because we
are interested in comparing the effectiveness of two decpaligorithms that share the same
scoring function (both the best- and the breadth-first $ealgorithms use a log-linear model
with the same components and the same weights for each cem)o8ince the goal of the
decoding process is to obtain the translation hypothediggbiest score for each source sen-
tence, we can tell that one decoding algorithm is better #marther for a given test corpus if
it obtains a higher average score per sentence. In additithist the time cost that is required
to achieve a certain value of the average score is also iamtax judge the effectiveness of
the search process.

In the following sections, we will not report the BLEU measubtained by the search
algorithms. This is because the BLEU measure does not ale@yslate with the average
score per sentence. In addition to this, obtaining tralesiajuality results requires to tune the
weights of the log-linear models by means of the MERT alfaomnit The main disadvantage
of performing weight adjustment in our experimentationtisgtis that the average score per
sentence is no longer comparable for the two search algwiflsince MERT will return a
different set of weights for each one). As it will be showndyelcomparing the average score
per sentence allows us to achieve a better understandihg afivantages and disadvantages
of each of the search algorithms. In any case, in the expatsiiat we carried out (without
weight adjustment), the two search algorithms produceg senilar BLEU results for a
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given value of the average score per sentence. We will shamsltion quality results in
section5.4.

5.2.2 EuTrans-I Experiments

We carried out experiments to compare the best- and brdasitsearch algorithms using the
EuTrans-I test corpus. Figuréslaand5.1bshows the obtained results for monotonic and
non-monotonic search, respectively. For each figure, geettanslation time per sentence
(left) and average score per sentence (right) as a funcfidheomaximum stack size are
shown.
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Figure 5.1: Best- versus breadth-first search comparison executed on tharisdTiest

corpus. Plots show average translation time per sentence (left) arabaws&ore per
sentence (right) as a function of the maximum stack size when performamgtonic

and non-monotonic translation.

According to the figures, best-first search has a lower tins¢ tb@n breadth-first search
for both monotonic and non-monotonic search. As was stat&thapter!, the complexity of
the best-first search algorithm cannot be bounded by the lesitypof the breadth-first search
algorithm. However, if the statistical models involved hettranslation process have a low
perplexity, they can accurately guide the search, redutiagime cost of the algorithm with
respect to that of the breadth-first search algorithm (setoss4.2.4and4.2.5for a more
detailed explanation). Since the EuTrans-I corpus hasyaleer complexity, the behaviour
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of the time cost is exactly what we expected. It is also wodticong that the time cost of the
best-first algorithm remains constant when we increaseahe\wf the maximum stack size
parameter. By contrast, and according to the complexityesgion given in section.2.5
the time cost of the breadth-first search algorithm growsdity with respect to maximum
stack size.

Regarding the average score per sentence, there are nficsigndifferences between
the two search algorithms. It should be noted that the aeesagre per sentence reaches its
maximum value for small values of the maximum stack sizempatar. In addition to this,
non-monotonic search allows to obtain higher average sgeresentence than monotonic
search.

5.2.3 Xerox Experiments

We repeated the experiments presented in the previoussesiing the English-Spanish test
set of the Xerox corpus. Figufe2ashows the results for monotonic search and Figugé®
shows those for non-monotonic search. Again, averagelatéonstime per sentence (left)
and average score per sentence (right) as a function of tkiemam stack size are shown for
each figure.
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Figure 5.2: Best- versus breadth-first search comparison executed on the tenglis
Spanish test set of the Xerox corpus. Plots show average translatiopamsentence
(left) and average score per sentence (right) as a function of the maxstack size
when performing monotonic and non-monotonic translation.
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According to the results presented in the figures, the tinse afdoest-first search is lower
than that of the breadth-first search only for monotonic@earhese results contrasts with
the results obtained for the EuTrans-I corpus. As was expthabove, the time complexity of
the best-first search algorithm depends on the complexitigeofranslation task. The Xerox
corpus is more complex than the EuTrans-l task, and non-tooitosearch significantly
increases the size of the search space.

Regarding the average score per sentence, it is very sifoildroth search algorithms
when performing monotonic search. By contrast, non-mariotbest-first search obtains
higher average score than non-monotonic breadth-firstlsedrhis is due to the more ag-
gressive pruning of the stacks executed by the breadthséestth algorithm. In addition to
this, it should be noted that in this case, non-monotonicceei@quires higher values of the
maximum stack size parameter to obtain the same averageasanonotonic search, due to
the greater size of the search space.

5.2.4 Europarl Experiments

Finally, we compared best- and breadth-first search usm&panish-English test set of the
Europarl corpus. Figurg.3ashows the monotonic results and Figir&b shows the non-
monotonic results. Each figure represents average tramsl@ne per sentence (left) and
average score per sentence (right) as a function of the nuaxigtack size.

As can be seen in the figures, the time cost per sentence oé#tditst search algorithm
is significantly higher than that of the breadth-first seaatdorithm. Again, this was the
expected behaviour, since the Europarl corpus is by far th&t komplex task of the three
tasks used to carry out these experiments.

The behaviour of the average score per sentence is the saha abserved for the Xerox
corpus: on the one hand, best-first search obtains higheageecores than breadth-first
search for non-monotonic translation; on the other hand;monotonic translation requires
higher values of the maximum stack size parameter to obit@rsame score as monotonic
translation.

5.3 Generalised Multiple-Stack Search

In this section we report results to evaluate the performasfcthe generalised best- and
breadth-first multiple-stack algorithms described in Ghap. The experiments were exe-
cuted on the same corpora used in secfich the EuTrans-1, Xerox and Europarl corpora.
The log-linear model used in the experiments was instaai&tllowing the configuration
given in Table5.2

All the experiments presented in this section were exeauteal PC with a 2.40 Ghz Intel
Xeon processor with 1GB of memory.

5.3.1 Best-First Search Experiments

We carried out experiments to test the generalised bestiuftiple stack algorithms de-
scribed in sectior.2.6 For this purpose, we measured the time cost per sentencéhand
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Figure 5.3: Best- versus breadth-first search comparison executed on théslpan
English test set of the Europarl corpus. Plots show average trandiat®per sentence
(left) and average score per sentence (right) as a function of the maxstack size
when performing monotonic and hon-monotonic translation.

average score per sentence as a function of the granulé&fjtpdrameter (the granularity
parameter determines the number of stacks and the maxinaak size used by the search
algorithm). The experiments were obtained varying theeva@fiG (ranging from O to 10)

and the maximum number of hypothesésg, that the algorithm is allowed to store for all
used stacks (ranging frog¥ to 2'1). This is basically the same assessment criteria described
in section5.2.1for comparing best- and breadth-first search (the only mffee is that the
maximum stack size limitation is replaced by the granufgrdrameter).

EuTrans-I Experiments

Figure 5.4 shows the results of the experiments that we carried outh®mBuTrans-1 test
corpus. Specifically, two plots are shown in the figure: therage time per sentence (left)
and the average score (right) as a function of the granulpsitameter. As can be seen, the
bigger the value of+ the lower the average time per sentence. For valués gfeater than

6 (keeping fixed the value df,,) the average time per sentence decreases very slightly. Thi
is due to the fact that the number of stacks determined-lig very high and the search
algorithm starts to spend more time to decide which hypdhss$o be expanded.

DOM-DSIC-UPV 107



Chapter 5. PB-SMT Evaluation

With respect to the average score, the maximum value israatdorG = 4. Values of
the G parameter above or belovdecreased the average score. Low value§ afecrease
the number of stacks used by the search algorithm. This esdile accuracy of the stack
pruning, since hypotheses having very different alignnwexctors are stored into the same
stack. By contrast, high values 6f increase the number of stacks used by the algorithm.
Taking into account that the value 6f, is fixed, then the maximum stack size can take very
low values and thus the “optimal” hypothesis can easily hmed.

Finally, it is worthy of note that the best obtained scorenggshe proposed generalised
best-first search algorithms was worse than that obtainddthé standard best-first search
algorithm (see Figur&.1). This suggests that the generalised best-first searchithlgs
execute a less efficient stack pruning than the standardithigo It should be noted that the
algorithm may assign hypotheses with a different numbeligihad words to the same stack
(see Tablet.1 for an example). By contrast, the standard best-first sesgdrithm always
assigns hypotheses with a different number of aligned wtwrdkifferent stacks. We think
that this can be one of the underlying reasons that explaiobtained results.
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Figure 5.4: Generalised multiple-stack search experiments executed on the EuTrans
| test corpus. Plots show average translation time (left) and average @ight) per
sentence as a function of the granularity (G) parameter. Each cus/ebt@ined using
different values of the maximum number of hypotheses stored by #retsalgorithm

(La).

Xerox Experiments

We also carried out experiments using the English-Spaeistset of the Xerox corpus. The
obtained results are shown in Figuses. Again, the plots represent the average time per
sentence (left) and the average score (right) as a functitred- parameter.

According to the figure, the behaviour of the time cost waslaimto that observed for
the EuTrans-I corpus. Specifically, values of tHearameter below or equal tallowed
us to significantly reduce the time cost per sentence. Byrasitvery slight improvements
were obtained for values of th& parameter above.

Regarding the average score per sentence, its maximumwabkiebtained for values of
G betweent and8. The results were different to those obtained for the EudHlazorpus,
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Figure 5.5: Generalised multiple-stack search experiments executed on the English-
Spanish test set of the Xerox corpus. Plots show average translatiorfl¢itheand
average score (right) per sentence as a function of the granularifyaf@mneter. Each
curve was obtained using different values of the maximum numbenmdthgses stored

by the search algorithni(,).

since the average score f6r = 0 was higher than those obtained for valueszobetween

1 and4. In addition to this, increases in the maximum number of tigeses [,) did not
always produce better average scores (specificallf.for 2 048). This suggests that the ef-
ficiency of the mapping function is negatively influenced g complexity of the translation
task. One difference between the EuTrans-l and the Xergaocaris that the Xerox corpora
has a greater average sentence length. Generalised beseéirch uses the same limitation
for the maximum number of hypotheses that can be stored utittaing into account the
length of the sentence to be translated. This circumstarageb® negatively affecting the
average score.

Again, the best obtained score using the proposed gerestdlest-first search algorithms
was not better than that obtained with the standard besséiesch algorithm (see Figuse?).
This confirms our previous intuition that generalised Wgst-search performs a less efficient
stack pruning.

Europarl Experiments

We repeated the experiments presented above using thesBgamglish test set of the Eu-
roparl corpus. The obtained results are shown in Figuse

Regarding the time cost of the algorithm, the results werg sinilar to those obtained
for the EuTrans-1 and the Xerox corpora (with the exceptibtine result obtained foff = 2
and L, = 2048). Again, significant improvements in the time cost were obse for values
of the G parameter belo\.

With respect to the average score per sentence, the obtaists were even poorer than
those obtained for the Xerox corpus. The best average sas®btained foz = 0 in all
cases. In addition to this, increases in theparameter did not produce better average scores.
According to these observations, we can conclude that gésed best-first search does not
scale well with complex corpora.
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Finally, the best obtained score using generalised bestsiarch was again lower than
that of standard best-first search.
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Figure 5.6: Generalised multiple-stack search experiments executed on the Spanish-
English test set of the Europarl corpus. Plots show average trandiamier{left) and
average score (right) per sentence as a function of the granularityaf@neter. Each
curve was obtained using different values of the maximum numbenmdthgses stored

by the search algorithni(,).

5.3.2 Breadth-First Search Experiments

We carried out experiments to test the generalised brdadtmultiple stack algorithms de-
scribed in sectiod.2.6 For this purpose we evaluated the performance of diffdrerdtions
to map hypotheses to stacks. Again, we are interested inntleeciost of the translation as
well as in the average score per sentence. More specifiealyyill represent the time cost
per sentence as a function of the average score. This gligjifférs from the assessment cri-
teria defined in previous sections, where the x axis was dkfinghe value of the maximum
stack size parameter or as the granularity parameter.drc#ise, two search algorithms with
the same value of the maximum stack size parameter andatiffarapping functions are not
directly comparable, since they will use a different numtifestacks. To solve this problem,
given a specific mapping function, we obtained the time codtthe average score per sen-
tence for different values of the maximum stack size paramé&nce all this measures were
obtained for the different mapping functions, we represérhe time cost as a function of
the average score per sentence in order to compare them.

Here is a list of the mapping functions that were evaluated:

e baseline : this function assigns to different stacks those hypothesth a different
number of aligned words and can be formally defined by mearisgahtion ¢.10).
This function constitutes the baseline of our experiments.

e ncjol : the same as thkaseline  function, but those hypotheses containing non-
monotonic alignments are stored in different stacks. Tinietion is formally defined
by Equation ¢.117).
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e nctl : thebaseline function is redefined to take into account the target len@ith o
the partial hypothesis. see Equatigni(?) for a more formal definition.

e ncltw : thebaseline function is modified to also include the last target word atlde
to a given hypothesis. This function is formally defined byB&tpn @.13).

e nclspc : this function refines thbaseline  function by taking into account the last
aligned source position, see Equatidnil{) for a more formal definition.

EuTrans-I Experiments

Figure5.7 shows the empirical results that were obtained for the EwsFidest corpus. As
can be seen in the figure, there were no significant diffeeinteerms of average score
per sentence between the baseline functimséline ) and the rest of the mapping func-
tions for both monotonic and non-monotonic search. It sthdad noted thahcj0l and
nclspc are specifically defined for its application in non-monotoséarch. By contrast,
such mapping functions cannot be distinguished fromkthseline  function when per-
forming monotonic search. As was explained in sectidh4 a given mapping function,
wu(h), defines a set of equivalence classes for the partial hypeshelhe number of stacks
used by the generalised breadth-first search algorithmharsiits computational complexity
are determined by the number of equivalence classes. Therd¢he time cost per sentence
gives an idea of the size of the set of equivalence classég ofipping function. According
to the results shown in the figure, thetl mapping function was the most time consuming
one, followed byncltw |, nclspc , ncj01 andbaseline
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Figure 5.7: Breadth-first search comparison executed on the EuTrans-| tgsiso
Plots show the time cost per sentence in seconds as a function of thgeaseose per
sentence using monotonic (left) and non-monotonic (right) translatiore different
functions for mapping hypotheses to stacks were tested.
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Xerox Experiments

We also carried out experiments using the English-Spaesttset of the Xerox corpus. Fig-
ure 5.8 shows the obtained results. Regarding the average scosepimnce, no significant
differences were observed between the different mappingtiitns when performing mono-
tonic search. In contrast to this, the results using nonetmnic search show that the baseline
function (aseline ) is outperformed by the other four mapping functions. Rdiyay the
time cost that is required to obtain a given average scoreg@ence, again, the most time
consuming function wascltw , followed bynclspc , nctl ,ncj01 andbaseline . The
ncj01 mapping function showed the best behaviour with respedtdmther functions both
in terms of time cost and average score per sentence.
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Figure 5.8: Breadth-first search comparison executed on the English-Spanisetes
of the Xerox corpus. Plots show the time cost per sentence in secordiastion
of the average score per sentence using monotonic (left) and nootomén (right)
translation. Five different mapping functions were compared.

Europarl Experiments

In addition to the previous experiments, we also obtainedlIte using the Spanish-English
test set of the Europarl corpus. The results are shown inr&tga. Again, the differences be-
tween the five mapping functions in terms of average scorsgreence were not significant
when performing monotonic search. By contrast, the avesagee per sentence obtained by
the baseline functionb@seline ) was outperformed by theclspc , nctl andncj0l
functions (thenctl function obtained the worst average score). Regardingithe ¢ost
per sentence, the results were similar to those obtaindd thit Xerox corpus: the most
time consuming function was theeltw  function, followed bynclspc , nctl ,ncj01 and
baseline . Finally, thencj01 mapping function showed again the best behaviour both in
terms of time cost and average score per sentence.
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Figure 5.9: Breadth-first search comparison executed on the Spanish-Englistetes
of the Europarl corpus. Plots show the time cost per sentence in seaeradfunction
of the average score per sentence using monotonic (left) and nootomin (right)
translation. Five different mapping functions were tested.

5.4 Log-linear Model Performance

We carried out experiments to test the performance of thdihegr model that was de-
scribed in sectio.5.3 Specifically, we measured the impact of each feature fonaif the
log-linear model in the translation quality. The experinsawere executed on the Europarl
corpus, which is the standard corpus used in the literaturegort SMT results. In addition
to this, we also carried out experiments on two differenpoca described in sectich1Q
the Xerox corpus and the EU corpus. These corpora have béensasely used to report
IMT results. The translation quality was measured in terfrtt@ BLEU score described in
section1.9.1

5.4.1 Decoder Configuration

To obtain the results of the experiments we used a configurafi the decoding algorithm
which is based on the experiments that we carried out in teeiquis sections. Specifically,
we used a generalised breadth-first multiple-stack algoritThis algorithm uses the map-
ping function given by Equatiord(11) to assign hypotheses to stacks (which is specifically
designed for its use with non-monotonic search algorithni$)is configuration showed a
good behaviour in terms of time cost and average score p&rgan The log-linear model
used by the search algorithms was instantiated followiegtnfiguration given in Table.2.
Finally, the weights of the log-linear combination wereeadrusing the development sets of
each corpus by means of the MERT algorithm.
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5.4.2 Europarl Experiments

We carried out translation quality experiments using theoparl test corpora, for the three
language pairs, namely, Spanish-English, French-EnglishGerman-English. The decoder
configuration used in the experiments was described ingebtit.1 Table5.3 shows the
influence of the different log-linear model components i@ ttanslation quality, which was
measured using the BLEU score. The experiment started wih-bnear model composed
of only two components: &-gram language model and an inverse phrase-based model, and
then, the rest of the components were incrementally addedale computation time, non-
monotonic search was applied only when the distortion medslincorporated into the log-
linear model. The results were obtained using the Spanigliith test set of the Europarl
corpus. As was explained in sectidnl0.2 the Europarl test corpora used in this thesis
are composed of in-domain and out-domain subsets. BLElksagere obtained for such
subsets and also for the whole test corpus.

Table 5.3: Influence of different models on the translation quality measured in terms
of BLEU. The results were obtained using the Spanish-English Eurégstricorpus
(In+Out) and its in-domain (In) and out-domain (Out) subsets. A brefudthmultiple-
stack algorithm was used to generate the translations. MERT was used $b thdju
weights of the log-linear model.

Search Models In Out | In+Out
monotone 4-gram LM + inverse phrase model 24.0 | 21.3 23.3
+ sent. length model 28.0| 21.9 26.3
+ direct phrase model 29.7 | 240 28.0
+ source phrase length model 30.1| 244 28.3
+ target phrase length model 30.9 | 25.2 29.1
non-monotone| + distortion model 31.0| 254 29.2

According to the results presented in Tablg, the incrementally added models allowed
us to improve the translation quality for the Spanish-Estgkuroparl test set and its in- and
out-domain subsets. The sentence length model and the ghiestse-based model caused
the greatest impact on translation quality. By contrash-mmnotonic search resulted in a
very slight improvement of the BLEU score.

Table5.4summarises the translation quality results in terms of BltE&f were obtained
when translating the Europarl test corpora from Spaniginéh and German to English. The
table includes monotone and non-monotone results. We biseshtme decoder configuration
that was used in the previous experiment. Monotone resaitegpond to an SMT system
that includes in the log-linear model all the log-linear gmments that were mentioned above
with the exception of the distortion modéi).

As can be seen in Tabe4, the best results were obtained for the Spanish to English
translation direction, followed by the French-English @aerman-English language pairs.
Again, the use of non-monotonic search allowed us to obtiy slight improvements with
respect to monotonic search.

Finally, we carried out experiments to compare the traimsiaquality obtained by our
proposed translation system with that obtained by the welhin Moses decodeKHB ™ 07].
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Table 5.4: BLEU results obtained with the Europarl test corpora when translating fro
Spanish, French and German to the English language. The translatimmgeverated
by means of a breadth-first multiple-stack algorithm. Monotonic andmonetonic
search were used. The weights of the log-linear combination were tim&tBRT.

Search Spa-Eng | Fre-Eng | Ger-Eng
monotone 29.1+0.8 | 27.3:0.8 | 22.6£0.7
non-monotone| 29.2£0.8 | 27.4£0.8 | 22.6£0.7

To obtain translation quality results with Moses, we dovadled its latest version and created
an appropriate experimental setup to allow a fair comparisiween the two decoders. Ta-
ble 5.5shows the BLEU results that are obtained when the Europsrttepora is translated.
Specifically, we translated from Spanish, French and Getm&mglish.

Table 5.5: Comparison of translation quality (measured according to BLEU) between
Moses and our proposed translation system (BB-ALG) when translatengthoparl
test corpora. 95% confidence intervals are shown.

Search | Spa-Eng | Fre-Eng | Ger-Eng
Moses 30.8+0.7 | 28.1+0.7 | 23.4+0.7
BB-ALG 29.2+0.8 | 27.4+0.8 | 22.6+0.7

As can be seen in Tabte5, Moses significantly outperformed the results obtainedy o
proposed decoder for the Spanish to English translati@ttiim. By contrast, both decoders
obtained very similar BLEU results for the other two langeiagirs.

One possible cause for the observed differences in thetsestiained by the two SMT
systems could be in the statistical models used by each ooeording to the Moses doc-
umentatiof, the Moses decoder uses a log-linear model composé&dfediture functions,
including a language model, inverse and direct phrasedbaselels, phrase and word penal-
ties, a distortion model and inverse and direct lexical congmts. The set of feature functions
used by our proposed decoder does not include any compdrating £quivalent to the lexical
components used by the Moses decoder. The lexical compooenstitute one way to vali-
date the quality of the translation pairs that compose thmagghtables and they are estimated
using the so-called lexical weighting techniqi&MO03]. To assess the influence of the lex-
ical components in the translation quality obtained by Mosee carried out experiments in
which such components were removed. The results are shovable5.6.

As can be seen in Table6, the results obtained by the Moses decoder without itsdéxic
components were very similar to those obtained by our peghaecoder. The differences
were not statistically significant in all cases and our pegabdecoder was able to slightly
improve the Moses results for the German-English language pherefore, the obtained
results confirm our intuition that the lexical componentsduiby Moses strongly contribute
to the differences in translation quality observed in Tabte

@http://www.statmt.org/moses/
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Table 5.6: Comparison of translation quality (measured according to BLEU) between
Moses and our proposed translation system (BB-ALG) when translatn§thoparl

test corpora. The log-linear model used by Moses did not include lecécaponents.
95% confidence intervals are shown.

Search Spa-Eng | Fre-Eng | Ger-Eng
Moses-NoLex| 29.740.7 | 27.7£0.7 | 22.5£0.7
BB-ALG 29.2£0.8 | 27.4+-0.8 | 22.6+0.7

5.4.3 Additional Experiments

In addition to the previously presented results, we alsoieaout experiments with two
additional corpora, namely, the Xerox corpus and the EUumrghese corpora have been
extensively used to report IMT results in the literature.rédeve report translation quality
measures to get an overall idea of the difficulty of theses@KT results will be reported in
Chapter8). Again, we used the SMT system configuration describeddtiee5.4.1

Table5.7 shows the translation quality results measured in termsL&fBwhen trans-
lating the Xerox test corpora from English to Spanish, Fnegmad German. The table shows
results for both monotone and non-monotone search (moicotesults were obtained by
means of a log-linear model including the whole set of feafunctions except the distortion
model,h;). As can be seen, the Xerox English-Spanish language phi @ne for which the
best translations can be produced. In addition to this, monetonic search outperformed
monotonic search for the three language pairs.

Table 5.7: BLEU results when translating the Xerox test corpora from English to
Spanish, French and German. Translations were generated by ofeahseadth-first
multiple-stack algorithm. MERT was used to tune the weights of the log-linedemo

Search Eng-Spa | Eng-Fre | Eng-Ger
monotone 60.2+2.5 | 31.94-2.0 | 20.9+-1.8
non-monotone| 60.4+2.5 | 32.3£2.0 | 21.0+1.8

Additionally, we also carried out experiments to compakettanslation quality obtained
by our translation system with that of the Moses decodereFaB shows the obtained results
in terms of BLEU for the three test sets of the Xerox corpora.cAn be seen in this table,
both SMT systems obtained very similar results and the réiffees between them were not
statistically significant. It should be noted that theseltegliffer from those obtained for the
Europarl corpus. In that situation, our proposed systerainbtl worse results than Moses
when its lexical components were included in the log-limeadel (see Tables.5and5.6).
By contrast, when translating the Xerox corpora, the ldxdomponents used by Moses did
not allow it to outperform the results obtained by our pragmbsystem.

The BLEU results that were obtained when translating the &l ¢orpora from Span-
ish, French and German to the English language are showrbie 8. The table includes
monotonic and non-monotonic results. In this case, the iessits were obtained for the
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Table 5.8: Comparison of translation quality (measured according to BLEU) between
Moses and our proposed translation system (BB-ALG) when translatngelox test
corpora. 95% confidence intervals are shown.

Search | Eng-Spa | Eng-Fre | Eng-Ger
Moses 59.6£2.4 | 33.742.0 | 19.3+1.6
BB-ALG 60.4+2.5 | 32.3t2.0 | 21.0+1.8

Spanish-English and the French-English language pairainAgon-monotonic search al-
lowed us to obtain better results with respect to monotoaarah, although the obtained
improvements were smaller than those obtained for the Xesbcorpora.

Table 5.9: Translation quality results measured in terms of BLEU when translating the
EU test corpora from Spanish, French and German to the English lgagaéreadth-
first multiple-stack algorithm was used to generate the translations. Thatweigthe
log-linear combination were adjusted via the MERT algorithm.

Search Spa-Eng | Fre-Eng | Ger-Eng
monotone 44.3+1.9 | 47.3t2.0 | 37.6t1.9
non-monotone| 44.5+1.9 | 47.5£1.9 | 37.6:1.9

We also performed translation quality experiments to campar proposed translation
system with the Moses decoder. The BLEU results are showralie®.10. Again, the
differences between the two decoders were not statistisajhificant.

Table 5.10: Comparison of translation quality (measured according to BLEU) between
Moses and our proposed translation system (BB-ALG) when translatengthtest
corpora. 95% confidence intervals are shown.

Search | Spa-Eng | Fre-Eng | Ger-Eng
Moses 44.1+1.9 | 46.6£1.8 | 37.9£2.0
BB-ALG | 44.5+1.9 | 47.5£1.9 | 37.6t1.9

5.5 Bisegmentation-based RF Estimation

In this section we show the results of the experiments wdethout to evaluate the BRF
(bisegmentation-based relative frequency) estimaticmrtigue for phrase-based models. This
alternative estimation technique was described in seétign

We evaluated our alternative estimation technique usirggttifferent corpora of ascend-
ing complexity, namely, the EuTrans-I, Xerox and Europarpora. To evaluate our alter-
native estimation technigue, we measured the estimatiom ith seconds and the translation
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quality in terms of BLEU. The obtained results were compavét those of the standard RF
estimation technique. The translation quality experiragvére carried out using the decoder
configuration described in sectiém. 1

Table5.11shows the time costin seconds of both RF and BRF estimatighdd=uTrans-
I, Xerox and Europarl corpora. As can be seen in the table, BRimation required more
time to be executed in all cases. Nevertheless, the time€EBRF estimation was affordable
even for medium or large size corpora (the Xerox and Euragapora were trained in 0.6
and 18 hours, respectively). It is also worthy of note thatadditional constraints were
necessary to successfully complete the training procebss cbntrasts with other related
proposals such as the one presenteddi@ZKO06], where the performance of a generative
phrase-based model trained by means of the EM algorithmrigpaced with that of the
standard estimation method. In that work, the training @ssds constrained such that only
those bisegmentations that can be obtained using cortgitease pairs are considered. This
is exactly the key aspect of BRF estimation. According toatthors of the work presented
in [DGZKO06], a maximum phrase length of three words was imposed duni@draining. In
addition to this, different factors caused their estintatidgorithm to rule out approximately
54% of the training set. The proposal presented here dodsametsuch disadvantages.

Table 5.11: Comparison of estimation time cost in seconds using RF and BRF estima-
tion when translating from English to Spanish with the EuTrans-I, Xeroxgamdparl
corpora.

Estimation | EuTrans-l1 | Xerox | Europarl
RF 8 243 9780
BRF 16 | 2089 64 868

Table5.12shows the BLEU scores that were obtained when using RF andd3Rfa-
tion. The experiments were carried out using the EuTraxeifox and Europarl corpora.
As can be seen in the table, RF estimation obtained sligletfiebresults than BRF estima-
tion in all cases. However, the differences between the stionation techniques were not
statistically significant.

As was mentioned above, our estimation proposal is stramggyed to the one presented
in [DGZKO06]. The results obtained by their alternative estimatiortégue also underper-
formed the results obtained by the standard estimatiomigah. In spite of this, their tech-
nigue yielded higher likelihood values than the convergi@stimation technique. According
to the authors, the observed increases in the data likelhace obtained by determinising
phrase translation probabilities, i.e. the estimatioroddgm obtains sharply peaked con-
ditional distributions, overfitting the training data. Wertk that the conclusions explained
in [DGZKO0§)] are also appliable here due to the similarities of the twappsed estimation
techniques. In our case, we also observed higher datahdadis for BRF estimation with
respect to RF estimation, but the translation quality tesmére worse.

According to the presented results, we have empiricallyafestrated that BRF estima-
tion can be efficiently used to estimate phrase models frogelaorpora. Unfortunately,
the proposed estimation technique did not allow us to imgptbe results with respect to the
standard estimation technique. In spite of this, we thimlt the acceptable time cost of BRF
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Table 5.12: Comparison of translation quality (measured according to BLEU) using
RF and BRF estimation when translating from English to Spanish with the EsfTran
Xerox and Europarl corpora. 95% confidence intervals are shown.

Estimation | EuTrans-I Xerox Europarl
RF 93.3:0.4 | 60.4£2.5 | 29.2£0.8
BRF 93.2+0.4 | 60.2£2.5 | 28.7+£0.8

estimation makes it interesting as a starting point to irmgliet more sophisticated estimation
techniques, as was explained in sectiod.4

5.6 Efficient Decoding with Large Phrase-Based Models

To evaluate the performance of the decoding technique fgelphrase-based models de-
scribed in sectiord.3, we carried out a series of experiments using the Europgplso For
this purpose, we have estimated a phrase model imposingianmmaxphrase size af words.

The access to the model parameters during the decodinggsreem be viewed as a
two-stage process that is repeated for each sentence tartstated. First, the target phrase
translations for each phrase of the source sentence areveelr Second, the translation
probabilities for the bilingual pairs are accessed.

The efficiency of the cache-inspired proposed architectapends on the number of disk
accesses (or cache misses) occurred during the first stage tinslation process of each
sentence. Once the first stage of the translation has cad;lnd more disk accesses will be
necessary since all the required entries of the model wiitbeed in the main memory. The
number of cache misses allows us to compute the rate of caskesras the number of cache
misses divided by the total number of accesses to the modglgdthe whole translation
process. In order to determine the efficiency of the propaselitecture it is also interesting
to measure the time cost per translation and the time coshpdel query, which are closely
related to the rate of cache-misses.

Table 5.13 shows the time in seconds required to retrieve the transiatfor all the
phrases that compose the Spanish-English Europarl tekirsdifferent values of thexr pa-
rameter described in sectign3.1 All the experiments presented in this section have been
executed on a PC with a 2.60 Ghz Intel Pentium 4 processor2@tytes of memory. The
table also shows the number of phrase pairs stored in memh@yumber of disk accesses
and the time overhead caused by these accesses. As can bedbe retrieval of the trans-
lations from disk introduces significant overhead; howgthés overhead can be reduced by
increasing the value of the parameter. It is worth noticing that a great decrease indtee r
of cache misses can be achieved for small values of

In order to quantify the total locating time, we have tratesfathe Spanish-English Eu-
roparl test set by means of a decoding algorithm. Again, sledoding algorithm was in-
stantiated following the SMT system configuration givenégtion5.4.1 Since translation
quality was not important in our experiments and the MERTo&atgm is time consuming,
we used default values for the weights of the log-linear dostion.

DOM-DSIC-UPV 119



Chapter 5. PB-SMT Evaluation

Table 5.13: Number of phrases, disk accesses, total time (in secs), and didkeader
required to retrieve the translations for the phrases of the Spanish{EEglisparl test
set, ranging over the value af

Phrases DiskAccesses| Time | DiskOvh
« = 100 (Baseline) | 31227 305 0/ 0.0% 8.6 0
a=20 0 | 559336/100.0%| 651.2 649.7
a=1 312244 | 462277/ 82.6%| 633.7 625.1
a=10 3122708| 370419/ 66.2%| 545.6 535.4
a =20 6245443 | 349727/ 62.5%| 525.7 515.4
a =40 12490908| 288282/ 51.5%| 368.8 358.2
a =60 18736374| 219763/ 39.2%| 272.4 262.3
a =80 24981839| 146141/ 26.1%| 175.2 170.2
a =99 30915031 71885/ 12.8%| 96.4 86.8

In the experiment, cache models withequal to100 (our baseline) and with: equal to
10 were used. Tablb.14shows the number of queries to the model, the percentagebéca
misses, the total locating time, the locating time per sergethe locating time per query and
the translation quality measured in terms of BLEU.

As can be observed, the proposed system needs 0.2 seconaisstate a sentence (five
translated sentences per second). Although the time esgairts are higher than those of
the baseline system, we think that they are acceptable dolaetranslator users. In addi-
tion to this, it could be interesting to compare the time qustquery for the two systems.
The latency of modern hard drives is measured in millisespnthereas the latency of main
memory is measured in microseconds or tenths of microseddtiRDJ. As it is shown, the
low rate of cache misses makes possible that the averagetistger query of our system
becomes close to the latency of main memory.

It should be noted that the reported results correspondsioremtonic search algorithm.
If non-monotonic search is performed, then even bettedteesan be expected, since the
number of possible phrase translations to be retrieveddoh source sentence remains the
same while the number of queries to the model during thelatos significantly increases.
This increase of model queries is due to the greater conplekthe non-monotonic expan-
sion algorithm with respect to that of the monotonic one &Extionst.2.2and4.2.3.

Regarding the space requirements, the proposed systemeetdig one tenth of the mem-
ory required by the baseline system to translate the teptisor

5.7 Phrase-Level Alignment Generation

We carried out experiments to test the phrase-level aligingeneration techniques described
in section4.4. The experiments consisted in obtaining phrase-to-ptakgements between
pairs of sentences following a set of different smoothirghiggues. The test set was taken
from the shared tasks in word alignments developed in HLIRRA 2003 [MP03. This
shared task involved four different language pairs, but w¢ ased English-French in our
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Table 5.14: Number of queries, % of cache misses, total, per sentence and pgr que
locating time (in secs.) required by all model queries when translating phaish-
English Europarl test sety(= 100 constitutes the baseline system). A breadth-first
multiple-stack algorithm was used to generate the translations. Such algaritiie
mented monotonic search. Default log-linear weights were used.

Queries | %CMisses | Time | Time/sent | Time/query | BLEU
a =100 | 227694848 0| 94.6 0.03 4.1e-07 26.8
a=10 227694848 0.16 | 636.4 0.2 2.8e-06 26.8

experiments. A subset of the Canadian Hansards corpus wdsruthe English-French task.
The exact details of the corpus used in the experimentatare described in sectioh10.3

5.7.1 Aligner Configuration

The results were obtained by means of a breadth-first medifdck algorithm. Such al-
gorithm used non-monotonic search and the mapping fungii@n by Equation4.11) to
assign hypotheses to stacks. Inverse and direct standeadgshased models generated by
means of the HOT toolkit were used to implement; andh,. With respect to the probability
distribution used to model feature functiohs (target phrase length model) ahd (source
phrase length model), we show the results correspondirfietage of a uniform distribution
for h3 and a geometric distribution fdt,, since such choices led to better results. As was
mentioned in sectiol.2.2 the use of a uniform distribution fdt; penalises the length of
the segmentation and the use of a geometric distributioh fonakes it possible to establish
a relationship between the length of source and target phiéise use of a Poisson distribu-
tion also worked well). Finally, the distortion modél;, was implemented by means of a
geometric distribution.

5.7.2 Assessment Criteria

We were interested in evaluating the quality of the phrasphrase alignments obtained with
the different phrase alignment smoothing techniques tiegpreposed. Unfortunately, there
does not exist a gold standard for phrase alignments, so egedeto refine the obtained
phrase alignments to word alignments in order to compane théh other existing word
alignment techniques.

Taking these considerations into account, we proceedeallaw/$: Given a pair of sen-
tences to be aligned, we first aligned them at phrase levigirobg a phrase-to-phrase align-
ment. Afterwards, we obtained a word-to-word IBM1 alignméar each pair of aligned
phrases. Finally, these “intra-phrase” word alignmentsevj@ined, resulting in a word level
alignment for the whole sentence. We could thus make a faipawison of the proposed
smoothing techniques with the ones presented in the HLT/MAR003 shared task.

To evaluate the quality of the obtained final alignmentdedént measures were taken
into account: precision, recall, F-measure, and alignmeemtr rate. Given an alignment
and a reference alignmefit(both A andG can be split into two subsetss, Ap andGg, Gp,

DOM-DSIC-UPV 121



Chapter 5. PB-SMT Evaluation

respectively representirfureandProbablealignments) precisioni{s,Pp), recall (Rs,Rp),
F-measureKs,Fp) and alignment error rated(? ) were computed (see sectiard.2for a
detailed description of these measures).

The above described evaluation measures were applied tdiffiecent sets of evaluation
depending on whether the alignments with the null word wereaved or not (seeVfP03
for more details):

e NULL alignments: given a word alignment/ for a pair of sentence§f;, el), if a
word f; (j € {1...J}) is not aligned with any; (i € {1...I}), or viceversa, that
word is aligned with the null word.

e NO-NULL alignments: null alignments are removed, from thsttset and from the
obtained alignments.

5.7.3 Alignment Quality Results

In Table5.15 the alignment quality results using different phrasgtoase alignment smooth-
ing techniques are presented, for NO-NULL and NULL alignisert is worth mentioning
that the figures foBurealignments are identical for NO-NULL and NULL alignments.the
table the first row shows the baseline, which consists ofahelts obtained using a maximum
likelihood estimation (ML) without smoothing. The rest bietrows corresponds to differ-
ent estimation techniques combined with linear interpoafL|), backoff (BO) or log-linear
interpolation (LL).

For the NO-NULL alignment experiment, significant improwemts in all alignment qual-
ity measures were obtained for all the smoothing techniquagpared with the baseline. The
baseline system results were worse due to the great numberes in which the segmenta-
tion of a sentence pair could not be completed due to covenadeems (in our experiments,
86.5% of the test pairs presented this problem); in such situafite baseline system aligned
all the source words of the source sentence with all the tavgeds of the target sentence.
Finally, it is worth pointing out that the use of the LEX dibtition produced improvements
in the alignment quality with respect to those situationsvirich such distribution was not
used. These better results are obtained due to improveghassint of probabilities to un-
seen events. In addition to this, linear interpolation aadking-off obtained better results
than log-linear interpolation. This is precisely the exgdcbehaviour, as was explained in
sectiond.4.2 In addition to this, we observed that ML, GT and SD estimati@rked better
than AD and KN estimation in some cases, e.g. when those astismwere combined with
the LEX distribution via linear interpolation. More reseliis needed to determine the exact
cause of the observed differences.

It is also worth mentioning that despite the fact that theaplralignment techniques
proposed here are not specifically designed to obtain wogiraknts, all the results are
competitive with those presented MP03J. In the table, the best results for each column are
highlighted showing that GT+LEgg obtained the best results.

Regarding the results for the NULL alignment experimergr¢hwere small relative im-
provements in 9 out of 16 smoothing techniques comparedthébaseline. The differences
between these results and those for NO-NULL alignment éxy@at are due to the fact that
the baseline generated a lot of alignments in which all warele aligned with all words due
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Table 5.15: Comparative alignment quality results (in %) using different smooth-
ing techniques for NO-NULL and NULL alignments. A breadth-first multiptack
algorithm was used to generate the alignments. Such algorithm implememed no
monotonic search. Default log-linear weights were used. Best reseltshawn in

bold.
NO-NULL & NULL NO-NULL NULL
Smooth. Ps Rs Fg Pp Rp Fp AFER Pp Rp Fp AER
ML 64.4 | 76.6 | 70.0 775 | 283 | 415 20.0 55.1 | 29.4 | 38.3 36.4
GT 716 | 79.6 | 75.4 87.8 | 27.0 | 413 14.8 524 | 28.8 | 37.2 39.1
AD 69.1 | 776 | 73.1 84.0 | 26.6 | 40.4 171 51.1 | 28.1 | 36.3 40.2
KN 68.6 | 779 | 74.0 83.7 | 26.7 | 40.4 17.2 515 | 28.2 | 36.4 39.9
SD 717 | 79.1 | 75.2 87.7 | 27.0 | 41.2 15.1 523 | 28.8 | 37.1 39.4

ML+LEX 722 | 86.4 | 78.0 913 | 299 | 45.1 9.7 595 | 315 | 412 31.8
GT+LEXy 710 | 863 | 77.9 91.2 | 29.9 | 45.0 9.8 595 | 315 | 41.2 31.9
AD+LEXy, 715 | 815 | 76.2 89.4 | 279 | 426 12.9 544 | 29.6 | 38.4 37.0
KN+LEXy 716 | 82.1 | 76.4 89.5 | 28.1 | 429 125 549 | 29.8 | 38.6 36.4
SD+LEX 71.0 | 86.1 | 77.8 91.2 | 29.9 | 45.0 9.9 59.4 | 315 | 411 32.0
GT+LEXgo 710 | 86.4 | 779 91.2 | 30.0 | 45.2 9.6 59.8 | 31.7 | 414 315
SD+LEXgo 71.1 | 86.3 | 78.0 91.1 | 30.0 | 45.0 9.8 59.5 | 315 | 41.2 31.8
ML+LEX (L 64.4 | 76.6 | 70.0 774 | 283 | 415 20.0 55.1 | 29.4 | 383 36.4
GT+LEX. L 713 | 86.8 | 78.3 90.3 | 29.8 | 44.8 10.1 59.2 | 314 | 410 31.9
AD+LEX | 67.8 | 80.9 | 73.8 82.7 | 28.4 | 422 16.2 555 | 29.7 | 38.7 35.7
KN+LEX L 68.0 | 814 | 741 82.7 | 285 | 424 16.0 55.8 | 29.8 | 38.8 354
SD+LEXL 71.2 | 86.7 | 78.2 90.3 | 29.8 | 44.8 10.0 59.1 | 31.3 | 41.0 32.0

to coverage problems. In those situations, the IBM 1 alignnneodel tended to align less
words with the null word than when it was applied over inttagse alignments derived from
successful segmentations of sentence pairs. If we compamnn Pp of both experiments,
a significant reduction in terms of precision is obtainedhia tase of the NULL alignment
experiment. This makes our results less competitive thasetipresented ilMP0J for the
NULL alignment experiment.

Finally, we also carried out alignment quality experimdntghe GT+LEXzo smoothing
technique using MERT to tune the weights of the log-lineambimation. The objective
function to be minimised via MERT was the AER measure for ibehNULL and the NO-
NULL alignments (specifically, we computed the sum of the)twithe results are shown in
Table5.16 As can be seen in the table, the tuning of the log-linear tsigroduced very
similar results than those obtained by the system with dieferights. We think that this is
because the small size of the development set of the Hansampiss (it is composed of only
37 sentence pairs according to the corpus statistics prasansectionl.10.3.

Table 5.16: Alignment quality results (in %) using GT+LE smoothing for NO-
NULL and NULL alignments. A breadth-first multiple-stack algorithm wagdiso
generate the alignments. The search algorithm implemented non-monséamizh.
Log-linear weights were tuned using MERT.

NO-NULL & NULL NO-NULL NULL
[ Smooth. Pg [ Rs [ Fg Pp [ Rp [ Fp [ AFER Pp [ Rp [ Fp [ AER
[ GT+LEXgo | 71.6 | 86.3 | 78.2 || 91.7 | 29.8 | 450 | 95 || 59.2 | 315 | 411 | 321
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5.8 Summary

In this chapter we have tested the different training anddieg techniques for SMT that
were proposed in chapteBsand4.

The techniques to train phrase-based models from very laygeora described in sec-
tion 3.4were tested by means of a series of experiments. The reboltsthat the proposed
techniques can be used to train phrase models for corpomaarfoérary size without intro-
ducing a significant time overhead.

We carried out experiments to compare the performance dfabefirst search algorithm
for SMT described in sectiof.2.2with that of the breadth-first search algorithm presented
in section4.2.5 The obtained results show that the time cost of best-filstckeis lower
when translating simple corpora. Moreover, best-firstadeabtained higher average score
per sentence for a given test corpus than breadth-firstfsdaecto its less aggressive pruning
of the search space. By contrast, best-first search wadisagmly more time consuming than
breadth-first search when translating complex corpora.

Additionally, we evaluated the performance of the gensealibest- and breadth-first
multiple-stack algorithms described in sectich&.6 and 4.2.7, respectively. Generalised
best-first search algorithms did not outperform the corwaat best-first search algorithm.
One possible reason for these results may be that the prb@dgerithms store hypothe-
ses with different number of aligned words in the same stBgkcontrast, empirical results
showed that generalised breadth-first search algorithtpedorm conventional breadth-first
search algorithms in terms of average score and time cosepéence.

We compared the performance in terms of translation quafithe Moses decoder with
that of a generalised breadth-first search decoder. Théneldtaesults were similar when
translating the test sets of the Xerox and EU corpora. ByreshtMoses outperformed the
results obtained by our proposed system when translatengtinoparl corpus. Nevertheless,
if the lexical log-linear components of the Moses decoderewemoved (our decoder does
not include them), then we did not observe significant déffiees between the two decoders.

We also performed experiments to test our alternative BRifnason technique for
phrase-based models described in seclidch We empirically demonstrated by means of
a series of experiments that the time cost of the estimagiaffordable for corpora of differ-
ent complexity. Additionally, translation quality experents were obtained to compare BRF
estimation with the standard estimation technique. Oyp@sed technique slightly underper-
formed the standard technique, but the differences werstatstically significant. Despite
this, BRF estimation obtained higher likelihood valuesttiee standard estimation technique
for corpora of different complexity. One possible explaoator the observed results may
be that our estimation technique overfits the training data.

Additionally, we carried out experiments to test the tegnes to efficiently handle the
phrase-based model parameters estimated from very largeraoproposed in sectich3.
Such techniques are based on a classic concept of compeitéeature: cache memory. The
results of the experiments show that the proposed cache memahitecture has a extremely
low rate of cache misses, allowing a very efficient acceséitage-based model parameters.

Finally, we performed experiments to test the phrase-baigdment generation tech-
niques proposed in sectigh4. Experimental results for a well-known shared task on word
alignment evaluation have been reported. The results shegreat impact of the smoothing
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techniques on alignment quality. Such smoothing techsigoesisted of different statistical
phrase-based model estimators and a lexical distributiiohcan be combined by means of

backoff techniques, linear interpolation or log-lineaeipolation. As we expected, backing-
off and linear interpolation worked better than log-linegerpolation.
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CHAPTER®G

INTERACTIVE PHRASE-BASED
MACHINE TRANSLATION

6.1 Introduction

As was already introduced in sectidrg, the IMT framework constitutes an alternative to
fully automatic MT systems in which the MT system and its us#laborate to generate cor-
rect translations. These correct translations are gestenata series of interactions between
the IMT system and its user. Specifically, at each interaatbthe IMT process, the IMT
system generates a translation of the source sentence wduniche partially or completely
accepted and corrected by the user of the IMT system. Eatialpacorrected text segment,
or prefix, is then used by the SMT system as additional inftiondo generate better trans-
lation suggestions. An example of a typical IMT session wasm in Figurel.3. For the
reader’s convenience, we briefly present again the statidtrmalisation of IMT (the full
details can be found in sectidng).

In the IMT scenario we have to find the suffix,, that best completes the user validated
prefix, e, (Equation (.34):

é, = arg max {p(es | flJ7 ep)} (6.1)

€s

Applying the Bayes rule, we arrive at the following express{Equation {.35):

és = argemax {ples|ep) p(f{ | €y, €;)} (6.2)

where the ternp(e,) has been dropped since it does not depend,on

Due to the similarities between the MT and the IMT framewovks only need to appro-
priately modify the search procedures of regular SMT systenobtain the suffixes required
in IMT (note thate,e; = ef).

One common implementation for IMT systems is based on thesrgéion of word
graphs (word graphs were introduced in sectioh.1(). During the interactive translation
process of a given source sentence, the system makes usewbitt graph generated for
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that sentence in order to complete the prefixes acceptedcebwitinan translator. Specifically,
the system finds the best path in the word graph which is cabipatith the user prefix.

The main advantages of word graph-based IMT systems isdfiiiiency in terms of the
time cost per each interaction. This is due to the fact thattbrd graph is generated only
once at the beginning of the interactive translation preoés. given source sentence, and the
suffixes required in IMT can be obtained by incrementallycessing this word graph. The
use of word graphs generated at the beginning of the IMT poisealso the main limitation
of this kind of IMT systems, since the word graph does not getraatically adapted to the
new information provided by the user prefix.

Several IMT systems have been proposed in the literature.eXample, in FLLO2] a
maximum entropy version of IBM 2 model is used as word-basadstation model. The
alignment template approach to IMT is proposed@ZNO0J. In that work, a pre-computed
word graph is used in order to achieve fast response timds.approach is compared with
the use of a direct translation modellingHV+05]. An IMT approach based on stochastic
finite-state transducers is presented@V[T04). In that work, word graphs are also used to
resolve real-time constraints. A phrase-based approgmesented inTCO0g, in contrast to
other existing techniques, their proposal does not use gyaohs.

Recently, in BBCT09] the IMT approach to CAT is proposed, establishing the stéte
the-art in this discipline. In this work the last three apgmiees mentioned above are com-
pared.

A common problem in IMT arises when the user sets a prefix wtéeinot be explained
by the statistical models. Under these circumstances uffi® sannot be appropriately gen-
erated, since the system is unable to generate transldakiahare compatible with the user
prefix. In those IMT systems that use word graphs to genehatesuffixes, the common
procedure to face this problem is to perform a tolerant $egrt¢he word graph. This toler-
ant search uses the well known concept of Levenshtein distiamnorder to obtain the most
similar string for the given prefix (se®©gNOJ for more details).

In this chapter, two novel phrase-based IMT techniquesmsepted. First, an IMT tech-
nigue based on the generation of partial phrase-basecdadigis is proposed in sectién2.
This technique is inspired by the techniques to generatasghipased alignments presented
in the previous chapter and does not rely on word graphs tergenthe suffixes required
in IMT. Second, an alternative IMT technique based on stsiharror-correction models is
proposed in sectiofi.3. This technique relies on word graphs or N-best lists to getaeghe
suffixes required in IMT. To end the chapter, a brief summadiiyie provided in sectiorb.4.

To complement the above mentioned content, Appe@dibescribes the main features of
an IMT prototype that have been implemented using the teciesi proposed in this chapter.

6.2 IMT based on Partial Phrase-Based Alignments

We present a new IMT technique which is based on the genaratipartial alignmentsat
phrase-level. In the proposed IMT technique, the suffix isegated following a two-stage
process: first the prefie, is aligned with only a part of the source senterfge and second,
the unaligned portion of{ (if any) is translated, giving the desired suféix The generation
of such partial alignments is driven by statistical phreased models. The problem of gener-
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ating the suffix in IMT using partial phrase-based alignreémvery similar to the problem of
finding the best alignment between a pair of sentences thesicin sectiont.4. Specifically,
the generation of the suffixes requires the definition of aifipesearch algorithm as well
as the application of smoothing techniques over the phrasgels to appropriately assign
probabilities to unseen events.

The proposed IMT system is similar to those presente8it\[ +05] and [TC0§. These
two techniques do not use word graphs to generate the suffigaged in IMT, as well as our
proposal. The key difference between the so-cadléeractive generatiostrategy proposed
in [BHVT05] and the technique proposed here is that they use erroeatorg techniques
instead of smoothing techniques to assign probabilitiesngeen events. Specifically, the
error correcting costs are introduced as an additional wtergtheir log-linear model. We
think that our approach is better motivated from a theoattiwint of view, as it has been
deeply studied and demonstrated in the field of language ihagle

The work presented inTIC0§ is based on filtering the phrase table to obtain translation
that are compatible with the user prefix. Since this appr@&sems too restrictive (phrase
models always present coverage problems in complex tasksjuess that also any sort of
smoothing is taken into account, but as far as we know thet ¢égelenique that is used is not
explained. Because of this, we think that the work preseimt¢@dC06 can benefit from the
techniques presented here.

The remaining part of this section is structured as follofirst, the specific search algo-
rithm to be used in the generation of the suffixes requirei¥if is described in sectiof.2.;
and second, the scoring function used to assign scores tialgapotheses is described in
section6.2.2

6.2.1 Search Algorithm

Regarding the search algorithm to be used, we propose thef asmodified version of the
generalised branch and bound search algorithm for PB-SM@rileed in sectiod.2. Except
for the scoring function (which will be studied in secti6r2.?, only the expansion algorithm
has to be appropriately modified to allow the generation digiphrase-based alignments.

The expansion process consists of appending target praageanslation of previously
unaligned source phrases of a given hypothesis. Let us sapghat we are translating the
sentencef; = “Para ver la lista de recursos”, and that the user has velidtite prefix
e, = "To view a” (interactionl of the IMT session given in Figurk.3). Figure6.1shows an
example of the results obtained by the expansion algorittatwe propose for two hypothe-
sesh; andhs.

Hypothesish; has aligned the source phrase “Para ver la” (aligned phi@gesoted
with underlined words in Figuré.l), appending the target phrase “To view a” to the final
translation. Since fok, the user prefix, has already been generated, the expansion process
works in the same way as the one executed in a regular trandlat us suppose that we are
aligning the source phrage="lista de recursos” given by the source positians- (4,6).
The new hypotheséds; andh, are generated by appending target phragesm the set7, ¢
of translations forf$ contained in the phrase table.
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e,: Toview a

hy

f{:Para ver Idista de recursos
el:To view a

}Lg

f{:Para ver Idista de recursos
el:To view alist of resources
-

éeTf

hy

f{:Para ver I|dista de recursos

el:To view alisting of resources
|

SET];

hs

f{:Paraver la lista de recursos
el Toview a

é=e,

he

fi:Paraver la lista de recursos
el Toview a list of resources

667}7,

is_prefix(e,, €)

hz
f{:Paraverla lista de recursos
el:To view
ey
¢ € Pe, — {e;}

hz hg

f{:Paraver la lista de recursos

f{:Paraverla lista de recursos
el:To )

Figure 6.1: Example of the expansion of two hypothe#gesandh. given fi = “Para
ver la lista de recursos” and the user prefix= “To view a”.

132 DOM-DSIC-UPV



6.2. IMT based on Partial Phrase-Based Alignments

Regarding the hypothesis, it has aligned the source phrase “Para”, appending thettarg
phrase “To”". In this case, the preféy, has not been completely generated. éet= “view
a” be the remaining words that are to be appendéd:tto complete the user prefix. Under
these circumstances, we have to take into account if theegubst hypothesis extension
yields a complete hypothesis or not. For example, let us asgthat we align the phrase
positionsu = (2, 6) (f = “ver la lista de recursos”). Since this hypothesis extempimduce
a complete hypothesis, we have to ensure that the whole prgfis generated. For this
purpose, we appené,. to ho, resulting in the hypothesiss. In addition to this, we can
append phrases contained in the sef, ¢ havinge, as prefix (if any). This allows the
generation of hypotheses likg;, that takes advantage of the information contained in the
phrase table.

In contrast, if the next extension Af do not produce a complete hypothesis, we can also
append strings from the sg% , of prefixes ofe,., to the newly generated hypotheses, allow-
ing the translation system to complete the whole prefiin subsequent expansion processes.
For example, let us suppose that we align the phrase pasitien(2, 2) (f = “ver"). In this
case we can append the phrase “view” which is a subprefx afesulting in the hypothesis
h7. In addition to this, we can also appeaditself, resulting in the hypothesig. Finally,
appending phrases froffy » havinge, as prefix (if any) can also be considered, although
this situation has not been depicted in Figare

Algorithm 6.1 shows the expansion algorithm that we propose for its agidic in IMT.
The algorithm is a formalisation of the ideas depicted iruFég. 1. This expansion algorithm
permits phrase reorderings, but it can be easily modifiedipabtain monotonic alignments.

The time cost of the IMT expansion algorithm can be reducedhieyintroduction of
pruning techniques. Such pruning techniques include tngsats recombination, stack length
limitation and restrictions on the maximum number of tagg@iases that can be linked to an
unaligned source phrase during the expansion process.ifiSag in those cases where
e, has not already been generated, only a subset of the stiamgsied in the seP.. are
considered as candidates for the expansion process. Ostblgosriterion to choose the
substrings is based on the length of the phrAge be translated determined hy Only
those substrings with lengths similar to the lengthf afre considered. In addition, the set of
expanded hypotheses that is returned by the algorithm caorbed by score, keeping only
the best ones.

Regarding the complexity of the search algorithm, it degemithe selected configura-
tion of the generalised branch-and-bound algorithm. Letassime that a breadth-first multi-
ple stack algorithm withy stacks is used (see sectid2.5. Under these circumstances, the
search algorithm has to expand hypotheses front stacks, wheré  is the maximum stack
length. The complexity of thent _expand algorithm is inO(J? - max{I, T}), wherel is
the length of the source sentence &b the maximum number of phrase translations for a
source phrase. Therefore, the complexity of the searchitiigois inO(.J3- L, -max{I,T}).

6.2.2 Scoring Function

The scoring function used in the branch-and-bound seagdhitim for PB-SMT described
in section4.2 can also be used here. This is due to the fact that the seableprin IMT is
equivalent to the problem of finding the best translatiorhefsource sentengg’ where the
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input : e, (user validated prefix}y (hypothesis to be expanded)
Ti1.5» (setof translations fofjff in phrase table)
output : H (set of expanded hypotheses)
auxiliar: SPy, (set of unaligned source positions/of,
PP(SPy) (set of all possible unaligned source phrase positiortg ,of
e, (remaining prefix words for a given hypothesis),
Pe,. (set of prefixes o&,)
1 begin
2 | e, =get _remaining _prefix (h,ep);
3 | if ler| # O0then
4 forall (j1,72) € PP(SP;) do
5 if SPy, — {j1,...,42} # @ then
6 forall € € Pe,. — {e,} do
7 | H = U {append( h, (j1,j2),€) }
H = H U {append( h, (j1,72),er) }
9 forall € € T;, 4, do
10 if is _prefix( e.é) ande, # éthen
1 | # == U {append( h, (j1,j2),é) }
12 | else
13 forall (j1,72) € PP(SPy) do
14 forall € € T;, 4, do
15 | # :=H U {append( h, (ju, j2),é) }
16 end

Algorithm 6.1: Pseudocode for thent _expand algorithm.

target translations! are restricted to contais, as prefix (see sectioh8). Since the phrase
models used during the translation process may not be alderpiain the prefix given by
the user (i.e. the phrase models may present coverage prghlemoothing techniques are
needed to robustly generate the suffixes required in IMT.srheothing techniques used in
the generation of phrase-based alignments that were Heddri sectiort.4.2can be applied
here without any modification.

As was stated in sectiof.2, the branch-and-bound search algorithm for PB-SMT can
be straightforwardly extended for its use with the log-d#inenodel defined in sectioB5.3
We will use this log-linear model to assign scores to hypsgiseén our IMT system based on
partial phrase-based alignments.

6.3 IMT based on Stochastic Error-Correction Models

As has been already mentioned, a common problem in IMT anbes the user sets a prefix
which cannot be explained by the statistical models. Thiblem requires the introduction
of specific techniques in the IMT systems to guarantee theastliffixes can be generated.
The vast majority of the IMT systems described in the literat(with the exception of the
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work presented inTCO06]) apply error-correcting techniques based on the conceptlib
distance to solve the coverage problems. These erroratimgetechniques, although they
are not included in the statistical formulation of the IMTopess, are crucial to ensure that
the suffixes completing the prefixes given by the user can bergé&d.

In this section an alternative formalisation of the IMT framork which includes stochas-
tic error-correction models in its statistical formulatis proposed. The remaining part of
this section is organised as follows: first, probabilistitité-state machines (PFSMs) are
adapted for its use as stochastic error-correction modedsdtion6.3.1 Second, the details
of the proposed alternative formalisation of the IMT franoekare described in secti@n3.2
Finally, the proposed formalisation of IMT is generalisedifs use in other pattern recogni-
tion applications in sectiof.3.3

6.3.1 PFSMs as Stochastic Error-Correction Models

To the best of our knowledge, the first stochastic interpicgiaf edit distance was described
in [BJ79. In that work, PFSMs were used to model the transformatwoduced by a noisy
channel in a given text string.

PFSMs

A PFSM (see YTdIH*055 VTdIH*05H for a detailed description) is a tuplel =
<QA)Z75.A51A7FA7PA>=Where:

e (4 is afinite set of states;

e Y is the alphabet;

04 CQaxTU{A} x Q4 is aset of transitions;
o I4:Q4 — RT (initial-state probabilities);

e P, : 54 — RT (transition probabilities);

o F4: Q4 — Rt (final-state probabilities).

14, P4 andF 4 are functions such that:

D Ialg) =1

qeQ A

and
qu QA;FA(Q)+ Z P.A(qvaaq/) =1
a€X,q'€EQa

In what follows, we will usey without subindex to denote a generic stat€gothe specific
states of@ will be denoted asp, 1., ¢/g|—1, and a sequence of states of lengtwill be
denoted a$so, s1, ..., s;) Wheres; € Q for1 <i < j.

PFSMs are stochastic machines that generate probabibti@sset of finite strings con-
tained inX*. The generation of a string is a process that has two steps:
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e Initialisation: Choose, with respect to a probability distition 7, one statey, € @) as
the initial state. Defing, as the current state.

e Generation: Let be the current state. Decide whether to stop, with proligtfil{q),
or to produce a transitioy, a, ¢') with probability P(q, a, ¢'), wherea € YU {\} and
q € Q (\is the empty string). Output and set the current statedb

One relevant question to be solved regarding PFSMs is howltulate the probability
assigned by a PFSMA4, to a given stringe € X*. To deal with this problem, lef =
(s0, 1, s1), (51,25, 52), ..., (Sk—1, 2}, si) be apathfor x in A; i.e. a sequence of transitions
so thatx = z}z5...7, (note that, in generalx| < k because some symbat$ may be)).

The probability assigned to the patlis given by the following expression:

k
pa(0) = ILa(so) - HPA(sj_l,x;,sj) - Fu(sk) (6.3)

j=1

In general, a given string can be generated hyt through multiple valid paths. Let
0 4(x) be the set of all the valid paths farin .A. The probability of generating with A is
given by:

pa(x)= > palb) (6.4)

GGG)A(X)

If > pa(x) =1, thenA defines a probability distributiof in 3¥*. This is guaranteed
if A is consistentA PFSMA is consistent if all its states appears in at least one valild pf
0.4 [VTdIHT054.

We will finish this brief introduction on PFSMs describingtboncept of best paﬁwfor
a stringx in a given PESMA. The best path is given by the following expression:

0 = argmax{p(0)} (6.5)
0€0 .4 (x)

PFSMs as Error-Correction Models

PFSMs can be used as stochastic error-correction modelsh&ftic error-correction models
based on the well-known concept of edit distaricevp€ are implemented by means of PF-
SMs in BJ75. Specifically, these PFSMs are built by concatenatingresoorection models
based on PFSMs for individual symbols.

Figure6.2shows an example of PFSM that works as an stochastic errmgetion model
for a given symbok contained in the alphab&t. We will note such a PFSM a4,. As can
be observed, the figure shows transitions for the differdittdistance operations, namely,
insertions, substitutions and deletions. The edge adsdda the emission of (the empty
string) is represented with a dashed line.

Figure6.3shows the result of concatenating three PFSMs at symbel;lgw as to obtain
an stochastic error-correction model for a text strage ¥*, wherex = zyx0x3. The
resulting PFSM can be minimised (s&J[/'g), giving the PFSM that is shown in Figufe4.
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Insertion
{2} ; Pa, (90, {=}, q0) Substitution

{Z}; Paq (90, {Z} 1)

~ \; P A,
O A (0, })

Deletion
Figure 6.2: Error-correction model for symbal € X, A,.

Az 1 sz ‘AIB

Of @@

~ — ~ — ~ —

Figure 6.3: Error-correction model for string = z1x2x3, A;. The model has been
obtained by concatenating., , A., andA,.

Parameter Estimation

The problem of estimating the parameters of stochastic-emaection models based on the
concept of edit distance has been studiedRW 7], where the use of the EM algorithm is
proposed. Due to the great simplicity of the parameters &stimated, one alternative to the
application of the EM algorithm consists in the use of thecalbedad-hocstochastic error-
correction modelsNIDM91]. This technique was initially proposed for its use in thédfie
of optical character recognition (OCR) and consists inmgsg a probability mass for the
substitution of one symbol by itself and distributing thetref the probability mass among
the different edit operations between strings.

We also propose the application of an ad-hoc stochastic-eomection model. One
possible way of defining it consists in assigning a fixed pbilig mass to the substitution
of one symbol by itselp = 1 — ¢, and uniformly distributing the remaining probability nsas
among the rest of possible transitions:

o €
2[5

/

p (6.6)

where2|X| represents the number of transitions that have been defimezhth state (with
the exception of the substitution of one symbol by itself).

) O OF @
~ -~

- — —_ ~ _ -

Figure 6.4: Reduced version ofl«.
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Alternatively, the model described above can be refined bigamg different probabili-
ties depending on the type of edit operation that is appliiegk(tion, substitution or deletion).
For this purpose, we introduce three factofs, f; and f;, that are used to assign weights
to the probabilities assigned to insertions, substitwiand deletions, respectively. Given
the value ofe and the values for the weighting factors, the auxiliary diiarn is defined as
follows:

c= ¢ (6.7)
(filZ]) + (Fs(15] = 1)) + fa '

The probabilities for the insertion, substitution and tlele operations:p;, ps andpy,

respectively, can be expressed in terms of the quanttyd the weighting factorg;, fs; and

fa:

pi = fixec (6.8)
Ps = fs X c (69)
pa = faxc (6.10)

Once we have defined the task in which the stochastic ermectmn models will be
applied, the values of the weighting factgfs fs and f; can be established by means of a
development data set and the MERT algorithm.

Finding the Best Sequence of Edit Operations

We will end this section about stochastic error-correctimuels based on PFSMs discussing
some issues regarding the problem of finding the best sequémrlit operations for a given
string.

Given an error-correction model for the strirge ©*, Ay, and a string with errorsy’,
we will be interested in finding the best sequence of editatpars that are needed to change
x into x’. This problem is equivalent to the problem of finding the lpegh in.A,. For this
purpose, the well-knowNiterbi algorithm(see for example[TdIH 054 for more details)
can be used.

Additionally, the problem of finding the best sequence of egerations has been stud-
ied in a more general setting, where a PFSM and a stochasticaarrection model are
given [AV98]. In such setting, the PFSM accounts for the set of diffes#iigs belonging to
a given language, while the error-correction model accofartthe typical variations that the
strings tend to exhibit with respect to their standard fosmnepresented by the PFSM. Under
these circumstances, Amengual and Vid&f98] propose simple extensions of the Viterbi
algorithm that efficiently solve the problem of finding thesbsequence of edit operations.

6.3.2 Alternative IMT Formalisation

We propose an alternative formalisation of the IMT paradignwhich the user prefix and
the target sentence constitute separated entities. Tovgsalis to introduce stochastic error-
correction models in the statistical formulation of the IMfocess.
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Translating with User Prefix

The starting point of our alternative IMT formalisation aists in solving the problem of
finding the sentence in the target language that, at the same time, better exgtlaénsource
sentencef; and the prefix given by the usey,. This problem can be formally stated as
follows: )

é1 = argmax{Pr(ef|f{, e,)} (6.11)

I
Iy

Using the Bayes rule we can write:

Pr(el) - Pr(fi],ep|e{)
Pr(fi,ep)

Pr(eilfi ,ep) =

Since the denominator here is independentiofthe sentencéilf can be found by max-
imising the expressio®r (el ) Pr(f{, e,|el). We arrive then at the following equation:

&] = argmax{Pr(el) - Pr(f{,e,lel)} (6.12)

T
Ie;

Now we make the following naive Bayes assumption: given tlpothesised target string
el, the stringsf; ande, are considered statistically independent. Thus, we olbkeirfol-
lowing expression:

é{ = arg Inax{Pr(e{) . Pr(fl‘]|e{) . Pr(ep|e{)} (6.13)

I,e{
In the previous equation the following terms can be found:

e Pr(el): measures the well-formednessedfas a sentence of the target language. This
distribution can be approximated by means of a statistisajliage model.

o Pr(f{lel): measures the appropriateness of the sentgfices a possible translation
of ef. This distribution can be approximated by means of a siggigtanslation model.

e Pr(eylel): measures the compatibility ef with the user prefixe,. This distribution
can be approximated by stochastic error-correction malatare adequately modified
for its use in IMT.

It should be noted that the result of the maximisation giveiEuation 6.13, ¢!, may
not contain the prefix, given by the user, since every possible target sentehisecompat-
ible with the user prefix with a certain probability. Becawasehis, the problem defined by
Equation 6.13) is not equivalent to the problem of finding the best suffixNl

To solve this problem, an additional assumption over thehststic error-correction mod-
els is imposed. Specifically, they must be able to determmalignmentbetween a part
of the target sentenag and the user prefig,. The set of unaligned words ef Uer, In
an appropriate order constitute the suffix required in IM@.simplify things, we can also
assume that we monotonically align a prefixegfwith e,. This implies that the reordering
problem is left to the language and translation models (e stochastic error-correction
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flJ he reservado una habitacién sencilla
—> €p | have made a reservation for
é{ | have booked a single room
ue{ {a, single, room}
€s a single room

Figure 6.5: Example of how the IMT suffix is determined in our alternative IMT for-
malisation.

model is used to determine monotonic alignments betweeunseprefix and a prefix of the
non-monotonic target translations of the source senteridajler these circumstances, the
suffix required in IMT is also a suffix of!.

The probability given by stochastic error-correction medman be expressed in terms of
a hidden alignment variablg, as follows:

Pr(eyle]) ZPr ey, plet) (6.14)

According to Equationf.14) and following a maximum-approximation, we can modify
the problem stated in Equatiofi.( 3 so as to obtain not only the senterie but also the
alignment variablep, which maximises the probability:

(é1,p) = arg r;aax{Pr(el) Pr(f{le1) - Pr(ey, ple1)} (6.15)

Iej,p
Figure6.5shows how the IMT suffix is determined in our alternative IMFrhalisation.
The IMT system receives the source sentenGk, and the user prefixg,, as input, and

generates the best translatigalong with an alignment between a prefixegfande,. The
suffix e, is obtained from the séf, 1 of words ofe! that are not aligned with,,.

It is noteworthy that the IMT technlque proposed here haspaiat in common with the
IMT technique based on partial phrase-based alignmentsided in sectior.2. Specifi-
cally, both IMT techniques require finding alignments foe thser prefix: the IMT technique
based on partial phrase-based alignments aligns the ustx pith the source sentence,
while the IMT technique based on stochastic error-coroecthodels aligns the user prefix
with the target sentences generated as translation of thieeseentence.

The stochastic error-correction models used in the prapdgd formalisation can be
defined in many ways. In this thesis, error-correction methelsed on PFSMs will be used.
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Figure 6.6: Error-correction model based on PFSMs for IMT given the sentefce
Be{. The states of the PFSM are labelled with the words of the target sentknce

It is worthy of note that the stochastic error-correctiondels can be seen as explicit models
of the users of the IMT system.

Error-Correction Models based on PFSMs for IMT

Error-correction models based on PFSMs described in seétiblrequire some modifica-
tions for its use in IMT, since we want to model the probapfliistribution Pr (e, |e] ), where
e, is a prefix instead of a complete sentence.

As a starting point, a stochastic error-correction modsklbaon PFSMs4, 1 is defined
(see Figureés.4for an example of this kind of stochastic error- correctlomdeis) where4, 1
has been obtained as the concatenation of the error-doreibdels for each one of the
words ofe!.

To allow this error-correction model to be used in the IMTnfiwvork, we only have to
introduce one simple modification id,:. Specifically, we assume thats(q) is a non-null
fixed quantity for each possible sta;teontamed i) 4. We will note the resulting PFSM as
B.:. Figure6.6 shows how the error-correction model is defined, the stdtded®FSM are

labelled with the words of the target senteré¢e

Let® = (so,z1,51), (51,5, 82), .., (Sk—1, 2}, 1) be a valid path foe,, in B.:, where
s; are states contained @ = = {eo, ..., er} andz; are words ofe, or the empty stringh.
Each transition of the path i is associated to an insertionbstiution or a deletion operation.

The path¥ determines a monotonic alignment between a prefix of thetaentence! and
the user prefix,. The alignment decisions depend on the edit operationshaiplied:

e Insertions: correspond to transitions of the forfw;, z’, e;), wherez' is a word ofe,,.
When these transitions are addedtdhe wordz’ of e, is not aligned with any word
of el.

e Substitutions: correspond to transitions of the forte;, 2/, e; 1), wherez’ is a word
of e,. These transitions align the woegl, ; of e] with the wordz’ of e,,.

e Deletions correspond to transitions of the forfw;, A, e;+1). When these transitions
are added t@, the worde; , ; of e! is aligned with the empty string.

The final states;, of the pathd will be associated to the positiarof the last word of!
which accounts for the user preféx (this last word and the previous words will be aligned
with words ofe,, or with the empty string). Therefore, the suféix required in IMT will be
determined by!, ;.

DOM-DSIC-UPV 141



Chapter 6. Interactive Phrase-Based Machine Translation

Among all the valid paths for the string, in B..:, ©5 , (e;), we will be interested in that

of the maximum probability), where:

§ = argmax {pg
9€05 , (e))
1

()} (6.16)

I
°1

Hence, the best paﬁlfor ep in B.: not only allows us to approximate the probability

distribution Pr(e,|e!), but also to determine the part ef that constitutes the suffix
required in IMT.

It is worth noticing that the error-correction model for IMiEfined here works at word
level, but it could have been defined to work at characterl lngtead. A character-level
error-correction model would allow us to assign higher piglities to the substitution of
one word by another similar word. This advantage would baiobt at the cost of a higher
time complexity. Alternatively, the proposed ad-hoc wésdel error-correction model can
also be replaced by a more complex word-level model whichdsfspecific substitution
probabilities.

Instantiation of the Alternative IMT Formalism

To instantiate our proposed alternative IMT formalism,ri@els that approximate the prob-
ability distributions that are present in Equati@iShave to be appropriately chosefr (el )
and Pr(f{|e!) can be approximated by a language model and a translatioelpredpec-
tively. Regarding the probability distributioRr(e,, p|e!), it has to be approximated by an
error-correction model that is able to determine an aligmrbetween the target sentende
and the user prefix,,.

The stochastic error-correction models based on PFSM&Adrdescribed above can be
used to determine the required alignment betweeande,,. Specifically, this alignment is
given by a pathy in the PFSM. The final state éfdetermines the positiohof the last word
of ef that accounts for the user prefix. Therefore, the suffiis given bye!, ;.

Given the previous considerations, a particular instéintiaof the proposed alternative
IMT formalism can be defined as:

(61, 6) = argmax{p(er) - p(f7le1) - pi 1 (0)} (6.17)

where# is contained in the set of all possible paths for the stepgn 5.1, O , (e;).

It should be noted that the IMT formalism based on the Baykesgiven by the previous
equation can be replaced by another one based on the l@g-pproach. The resulting log-
linear model would be composed of the standard componests insfully-automatic PB-
SMT, plus one more component corresponding to the log-fitityagiven by the stochastic
error-correction model.

The search procedure formalised by Equatiéri() can be implemented as a process
with two steps:

1. Generate a word graph for the source sentgilceThe word graph is generated only
once at the first interaction of the IMT process.
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2. Apply the stochastic error-correction model over thgeasentences contained in the
word graph so as to obtain the péir{, §) of maximum probability.

The word graph that is required at Stépf the search procedure can be obtained as a
by-product of the translation gf/. This translation process can be carried out by means of
the branch-and-bound search algorithm proposed in thigsh&he time complexity of the
translation depends on how the search algorithm is configirer example, if a breadth-first
multiple stack algorithm witty stacks is used (see sectibr2.5, then the time complexity of
the algorithmis inO(J2- L, -T), whereL, is the maximum stack size afidis the maximum
number of phrase translations for a source phrase.

Regarding the computation of the pgir, é) at Step? of the search procedure, it can be
performed by means of a straightforward extension of therkitalgorithm. Such algorithm
extension can be executed efficiently if the nodes of the \goagh are visited in a topological
order [AV98]. Given the user prefix, and a word graph with average branching fadsor
and|Q)| states, the asymptotic cost of the resulting algorith@(&,| - |Q| - B).

6.3.3 Generalisation

The equations used in our alternative IMT formalisation bargeneralised for their use in
other pattern recognition applications. Letandy be the source and the target patterns,
respectively, and led be adistortedversion of the target patteyn Equation 6.13 can be
rewritten as follows:

y= arg;nax{Pr(Y) - Pr(xly) - Pr(dly)} (6.18)
If an alignment between the pattems&ndd can be defined, then Equatidh 15 can be
rewritten analogously.
Different pattern recognition applications can be derifen the previous equations
depending on how the patterrsy andd are defined. Below we show a list of some possible
instantiations of our generalised formalism:

e Multi-source translation

If x is a sentence in a source languagés its corresponding translation in the target
language and is a translation ok in another language different to the target language,
then the probability distributior(d|y) is approximated by a translation model in-
stead of an stochastic error-correction model. Under thesemstances, the system
would take advantage of the information provideddio obtain the best target trans-
lationy. We will refer to this application as multi-source SMT (M34¥). MS-SMT
was first described inNO1] and formalised in the same way as here.

e Computer-assisted speech transcription

The goal of computer-assisted speech transcription (CAST)07] is to interactively
obtain the transcription of an acoustic signal represgrdisequence of words. In this
casex is an acoustic signay; is a transcription ok proposed by the system adds

a prefix ofy given by the user. The probability distributidtr(x|y) is approximated
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by an acoustic model anflr(d|y) is approximated by an stochastic error-correction
model. The standard CAST formalisation given RCJV07] is similar to the one pro-
posed here, but it does not include a stochastic error-ctisremodel.

e Multimodal computer-assisted translation

In multimodal computer-assisted translation (MCAT), a lamntranslator dictates the
translation of a given source sentence. Given the sourderssmnand the target lan-
guage acoustic sequence, the system should search for #tdikety decoding of the
acoustic sequence. In our formalisatianis the source text to be translatedis the
target text, andl is an acoustic signal. The probability distributi®n (x|y) is approx-
imated by a translation model atitf(d|y) is approximated by an acoustic model.

e Computer-assisted transcription of text images

In computer-assisted transcription of textimages (CATTWRVO07], the input pattern

x is a sequence of feature vectors describing a text image alsrhorizontal axis,
and the system generates transcribed wgrdgven a prefixd validated by the user.
The probability distributionPr(x|y) is approximated by morphological word models
and Pr(d|y) is approximated by a stochastic error-correction modele Jtandard
formalisation of the CATTI framewaork given ifTfVRV07] is similar but not equal to
the one proposed here.

Summary of Applications

To end this section, the main features of the pattern retiograpplications that were de-
scribed above will be summarised.

Table 6.1 shows, for each pattern recognition application (inclgdiMT, MS-SMT,
CAST, MCAT and CATTI), how the patterns, y andd are defined; the models used to
approximate the probability distributiohsnd the output of the system.

Table 6.1: Summary of applications of the generalised formalisation.

Appl. X y d Pr(x|y) Pr(dly) Output
IMT text text | text(pref.) trans. model | e.c. model | (y,p)
MS-SMT text text text trans. model | trans. model y
CAST acoust. signal text | text(pref.) | acoust. model| e.c. model | (y,p)
MCAT text text | acoust. signal| trans. model | acoust. model y
CATTI textimage | text text morph. model| e.c. model | (y,p)

In the pattern recognition systems given in Tabl& two different sub-systems can be

identified:

e Automatic sub-system the automatic sub-system is related to the probabilitirieis
butionsPr(y) and Pr(x|y). These distributions do not dependén

aThe distributionPr(y) is not included in the table because it has the same meanindj foe applications.
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e User sub-systemthe user sub-system is related to the probability distidouPr(d|y),
which depends od.

It is worthy of note that a given sub-system can be reusedf@rdnt pattern recognition
applications if the involved probability distributionsm@in unchanged. For example, the
same user sub-system can be used in the IMT, CAST and CATiTikfnmrks.

6.4 Summary

In this chapter, two novel IMT techniques have been preserae IMT technique based on
partial phrase-based alignments and an IMT technique basetiochastic error-correction
models.

The IMT technique based on partial phrase-based alignngenteives the generation of
the suffixes as a two step process: first, the user prefix inedigvith a part of the source
sentence; second, the suffix is obtained as the translafitimeaunaligned portion of the
source sentence. The generation of the partial phrasetadiggments is driven by statis-
tical phrase-based models and relies on the applicatiomobthing techniques to assign
probabilities to unseen events.

The IMT technique based on stochastic error-correctionatsddllows an alternative for-
malisation of the IMT framework in which the user prefix and target sentence generated
by the system constitute separated entities. This aliget@irmalisation introduces stochas-
tic error-correction models in the statistical formulatiof the IMT process. This contrasts
with existing IMT systems in which error correction is agglibut not formally justified. The
proposed IMT technique generates the suffixes required hbiipartially aligning a prefix
of the target hypotheses with the user prefix. Once the paligmment is determined, the
suffix is given by the unaligned portion of the target senéent is worth pointing out that
stochastic error-correction models can be seen as explaziels of the user of the IMT sys-
tem. Finally, the proposed alternative formalisation &f KT framework can be generalised
for its use in different pattern recognition applications.
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CHAPTER7

ONLINE LEARNING FOR
INTERACTIVE PHRASE-BASED
M ACHINE TRANSLATION

7.1 Introduction

The vast majority of the existing work on IMT makes use of thelsknown batch learning
paradigm. In the batch learning paradigm, the training eflMT system and the interactive
translation process are carried out in separate stages.pahadigm is not able to take ad-
vantage of the new knowledge produced by the user of the IMTesy. In this chapter, an
application of theonline learningparadigm to the IMT framework is presented. In the online
learning paradigm, the training and prediction stages alemger separated. This feature is
particularly useful in IMT since it allows the user feedbaclbe taken into account.

The online learning techniques proposed here allow thisstat models involved in the
translation process to be updated given the target trémstatalidated by the user. Figurel
shows a schematic view of these ideas, which contrasts hatlliagram of a conventional
IMT system shown in Figuré.4. Here, f{’ is the input sentence ard is the output derived
by the IMT system frony{. By observingf; ande!, the user interacts with the IMT system,
validating prefixes and/or pressing keys (k) correspontbirthe next correct character, until
the desired outpui’ is produced. The input sentengg¢ and its desired translatloa{ can
be used to refine the models used by the system. In generahdtiel is initially obtained
through a classical batch training process from a prewogiskn training sequence of pairs
(f1, e1),....,[f,, e,) from the task being considered. Now, the models can be éztewith the
use of valuable user feedback by means of online learnirgnigaes.

The online learning paradigm has been previously appli¢dato discriminative models
in SMT [LBCKTO06, AKO7, WSTI07, CMRO§. These works differ from the one presented
here in that we apply online learning techniques to trainegative models instead of dis-
criminative models.

More recently, Levenberg et alLEBO1(Q introduced an online training regime for
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Figure 7.1: An Online Interactive SMT system.

phrase-based models which is applied in a fully-automdttissical machine translation
system. Such training regime is based on the applicatiohe&b-called stepwise EM al-
gorithm [CMO09]. Our work differs from the work of Levenberg et aL§BO1( in that we
use the incremental version of the EM algorithkH98] instead of the stepwise version (the
details of our proposal will be described below). Additibpeour proposed techniques can
be applied to incrementally train all of the different maxlased by an IMT system.

In [NLLFO4], dynamic adaptation of an IMT system via cache-based nmodehsions to
language and translation models is proposed. The work byélegt al. NLLFO04] consti-
tutes a domain adaptation technique and not an online fgatechnique, since the proposed
cache components require pre-existent models estimateatdh mode. In addition to this,
their IMT system does not use state-of-the-art models.

To our knowledge, the only previous work on online learniog IMT is [CBRSO0§,
where a very constrained version of online learning is prege This constrained version
of online learning is not able to extend the translation ni®dee to technical problems
with the efficiency of the learning process. By contrast, wespnt a purely statistical IMT
system which is able to incrementally update the parameteisof the different models that
are used in the system, including the translation modegKing with the above mentioned
constraints. What is more, our system is able to learn froratsley that is, without any
preexisting model stored in the system.

The remaining part of this chapter is structured as followatch and online learning
paradigms are described in sectibf. Incremental learning is discussed as one possible way
to implement online learning in sectian3. The basic IMT system that is used to implement
our IMT system with online learning is described in sectibd. The techniques that are
required to incrementally update the proposed basic IMTesysire explained in sectiahb.
Finally, a summary of this chapter is given in sectibfl
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7.2 Batch Learning versus Online Learning

In the IMT system proposed in this chapter, the batch legrparadigm is replaced by the
online learning paradigm. The goal in online learning (astimer learning paradigms) is
to predict labels from instances. The key aspect of onliaeniag is that soon after the
prediction is made, the true label of the instance is presktat the learning algorithm. This
information can then be used to refine subsequent predsction

Online learning algorithms proceed in a sequence of trizdgh trial can be decomposed
into three steps:

1. The learning algorithm receives an instance.
2. The learning algorithm predicts a label for the instance.

3. The true label of the instance is presented to the leaalgayithm.

After the true label of the instance has been discoveredletimaing algorithm uses it
to minimise a pre-determined performance criterion. Taibycthis pre-determined criterion
is based on the amount of error in the label predicted at Stepmpared to the true label
given at SteB. Two well-known examples of online learning algorithms tivePerceptron
algorithm [Ros58 and theWinnowalgorithm [Lit88].

The online learning setting described above contrasts tvétbatch learning setting, in
which all the training patterns are presented to the ledrefare learning takes place and the
learner is no longer updated after the learning stage hadumted.

Batch learning algorithms are appropriate for their usgatianary environments. In a
stationary environment, all instances are drawn from timeesanderlying probability dis-
tribution. By contrast, since the online learning algarithcontinually receive prediction
feedback, they can be used in non-stationary environments.

7.3 Online Learning as Incremental Learning

One possible way to implement online learning consists énuke of incremental learning
algorithms.

Incremental learning is appropriate in those learninggaskwvhich learning must take
place over time in a kind of continuous fashion rather thamfa training data set available
a priori. A review on incremental learning can be found@doQd.

According to [GC0Q, the main characteristics of an incremental learning taskthe
following:

e Examples are not available a priori but become available twe, usually one at a
time.

e Learning may need to go on indefinitely.

A learning algorithm is incremental if for any sequence afrting samplex, ..., xy,
produces a sequence of paramet&$?, (1) ... ©(N) such that the algorithm parameters
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at instantt, ©*), depends only on the previous parametéré; 1), and the current sample
Xt
The main features of an incremental learning algorithm laedallowing:

¢ No re-processing of previous samples is required.

e Since the knowledge is incrementally acquired, the leacaer at any time, produce
an answer to a query and the quality of its answers improvestoue.

Incremental learning algorithms are also called memosylesnline algo-
rithms (see AB92]) since they constitute online learning algorithms thatcdrd each
new training sample after updating the learner.

It is interesting to consider some issues raised in the dedigncremental learning algo-
rithms:

e Ordering effects: Chronology, or the order in which knowledge is acquiredaris
inherent aspect of incrementality.

e Learning curve: An incremental system may start from scratch and gain kedge
from examples given one at a time over time. As a result, tetegy experiences a sort
of learning curve, where the quality of its predictions ioyes over time.

e Open-world assumption All the data relevant to the problem at hand is not available
a priori. Then the world cannot be assumed to be closed. Asisequence of this,
there is a need for special learning mechanisms that iratalidortions of knowledge,
while not affecting the rest of it.

If the incremental learning algorithm is based on statéticodels, then we need to main-
tain a set ofsufficient statistic$or these models that can be incrementally updated. A suf-
ficient statistic for a statistical model is a statistic thaptures all the information that is
relevant to estimate this model. If the estimation of théistieaal model does not require the
use of the EM algorithm (e.gn-gram language models), then it is generally easy to incre-
mentally extend the model given a new training sample. Byrast if the EM algorithm is
required (e.g. word alignment models), the estimation @iloce has to be modified, since
the conventional EM algorithm is designed for its use in bagarning scenarios. To solve
this problem, an incremental version of the EM algorithneiguired.

7.3.1 Incremental View of the EM Algorithm

Neal and HintonINH98] proposed an alternative view of the EM algorithm in whicisiseen
as maximising a joint function of the parameters and of tis¢rithution over the unobserved
variables. The E step maximises this function with respetite distribution over unobserved
variables and the M step with respect to the parameters.

As a starting point, Neal and HintoWNH98] formulate the EM algorithm in a slightly
non-standard fashion as follows:

Estep Compute a distribution over the hidden datd), such
thatq™ (y) = p(y[x, ©~Y) (7.1)
M step: Set©® to be theO that maximisesZ,  [log p(x, y|©)]
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wherex is the observed variablg, is the hidden variable®(*) are the model parameters at
instantt and £, [-] denotes expectation with respect to the distribution dverange ofy
given byg(®).

The E step of the algorithm can be seen as representing thewnkvalue fory by
a distribution of values, and the M step as then performingimam-likelihood estima-
tion for the joint data by combining andy. As shown by Dempster et aD[R77], each
EM iteration improves the log-likelihood of the observedadd(©,x) = logp(x|©) or
leaves it unchanged. Such monotonic improvement(i®, x) is guaranteed by the gener-
alised EM (GEM) algorithmDLR77], in which only a partial maximisation is performed
in the EM step, withO(*) set to some valué,, [log p(x, y|©™)] such that is greater than
By [log p(x, |0~ 1)].

An alternative view of the EM algorithm can be proposed inchhboth the E and the M
steps are seen as maximising, or at least increasing thefsant®n, F'(¢, ©), allowing us
to also partially performing the E step.

The functionF'(¢, ©) is defined as follows:

F(g,0) = Eyllogp(x,y|0)] + H(q) (7.2)
whereH (q) is the entropy of the distribution

H(q) = —Eq[logq(y)] (7.3)
The following two lemmas state properties of the functiogsee NH9g)):

Lemma 1 For a fixed value 0B, there is a unique distributionye that maximises’(q, ©)
given byge (y) = p(y|x, ©). Furthermore, thigje varies continuously witk®.

Lemma 2 If ¢(y) = p(y|x, ©) = qo(y) thenF (¢, ©) = log p(x|©) = L(O, x).

The EM algorithm can be formulated in terms of the functiofy, ©) as follows:

Estep Setq® to theq that maximises (¢, ©¢—1)) } (7.4)

M step: SetO®) to the® that maximises'(¢(*), ©)

The EM iterations given by/( 1) and (7.4) are equivalent. That the E steps of the iterations
are equivalent, follows directly from Lemnia That the M steps are equivalent follows from
the fact that the entropy term in the definition/6fin Equation {.2) does not depend o@.

Once the EM iteration has been expressed in the form giverm By, {t is clear that the
algorithm converges to valugd and©* that locally maximiseZ’(q, ©). In general, finding
a local maximum forF'(¢, ©) will also yield a local maximum for(O, x), justifying not
only the EM algorithm given by7.4), but variants of it in which the E and M steps are
performed partially. This can be formally stated by meantheffollowing theorem, which
is theoretically demonstrated using Lemmasgnd @) in [NH98]:

Theorem 1 If F'(¢q,0) has a local maximum at* and ©*, then£(©, x) has a local maxi-
mum ato* as well. Similarly, ifF” has a global maximum at* and©*, then,L has a global
maximum at*.
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An incremental variant of the EM algorithm can be justifiedtba basis of Theorer
in those cases in which the maximume-likelihood parametémeses are obtained from in-
dependent data items. Specifically, the observed variabis,decomposed &, ..., xx ),
and the hidden variable is decomposed %1, ..., y ), allowing us to decompose the joint
probability distribution ag(x,y|©) = [],, p(Xn, yn|©).

Using the above mentioned decomposition of the hidden biarig, the search for a
maximum of ' can be restricted to distributionsthat factor as(y) = [],, ¢»(y»). This
allows us to writeF’ asF'(q,©) = > F,(qn, ©), whereF,,(¢,, ©) is given by the following
expression:

Fn(an, ©) = Ey, [log p(xn, yn|O)] + H(qn) (7.5)

The following incremental EM iteration can be used to find ximam of F' and hence
L(0,x), starting from some guess at the parametef®),, and some guess at the distribution,

¢'?, which may or may not be consistent wigh?:

E step Choose some data item to be updated.
Setqg) = qgfl) for m # n.
Setq\” to theg, that maximises?), (g,, ©¢—1)),
given by = p(ya|x,, ©¢Y).

M step: SetO") to the® that maximises(¢(*), ©), or,
equivalently, that maximiseg,, ) [log p(x,y|©)]

In the previous EM iteration, the E step process one dataateartime, while the M step,
as written, looks like if it requires looking at all componemf g. This can be avoided in
those cases in which the inferential import of the completa dan be summarised by means
of a vector of sufficient statistics that are incrementafigateable.

Letting this vector of sufficient statistics Béx,y) = > sn(xn,yx), the standard EM
iteration of (7.1) can be reformulated as follows:

(7.6)

Estep SetsV) = E,[s(x,y)], whereg(y) = p(y|x, ©¢~1).
(In deta“’ Seﬁ(t) = Zn §£Lt)y W|th §£Lt) = Eq{sn(xny yn)]y

whereg, (y») = p(ynlxn, @(til)))-
M step: Set®® to the©® with maximum likelihood givers(*)

(7.7)

Similarly, the iteration of {.6), can be implemented using sufficient statistics that are
incrementally updated, starting with an initial gué$8, which may or may not be consistent
with ©(0);

E step Choose some data item,to be updated.
sets't) = sV form £ n.
Setst) = E,. 150X, ¥n)], fOr @0 (yn) = p(¥n|xn, D). (7.8)
Sets® = =1 _ 5= 4 5

M step: SetO@® to the® with maximum likelihood givers(*)

In iteration (7.8), both the E and the M steps take constant time, independettieo
number of data items. It is worthy of note that the incremiela algorithm is expected to

converge faster than the conventional EM algorithm, siheemiodel parameters are updated
for each data item instead of for the whole training data set.
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7.4 Basic IMT System

In this section we describe the basic IMT system that is useati@basis of our online IMT
system. Specifically, we propose the use of the IMT systeracbas PSPBAs that was de-
scribed in sectiol.2.2 Such an IMT system uses a log-linear model composed of deaen
ture functions (fronh; to h7) to generate its translations. This log-linear model issblasn

a specific set of hidden variables used to determine the @latagyments( K, af<, b i),
The meaning of each hidden variable is the followit§represents the length of the biseg-
mentation,aX is a vector of ending positions of th§ target phrasesi is a vector with
the number of skipped source positions with respect to thengrposition of the previously
aligned source phrase an{f represents a vector containing the lengths of fheource
phrases.

A specific instantiation of the log-linear model presentedséction3.5.3 have been
adopted here. This specific instantiation includesnagram language model with inter-
polated Kneser-Ney smoothing and phrase-based modeismésstl in both translation di-
rections) combined with an HMM-based alignment model by msez linear interpolation.
These models have been chosen because they are compaeiitivherstate of the art in SMT
and, at the same time, they can be incrementally updatediby efficient algorithms, as
will be shown in sectior?.5.

Below we give the details of the instantiation of each logeéir model component. This
detailed description is required to later introduce thegntental update rules for the compo-
nents.

e n-gram Ianguage model (11)
hy(el) = log(]_[t 1 p(61|62 n+1)) wherep(e;|ei” n+1) is defined as follows:

max{cx (el_, 1) — Dy, 0}

(e,|e +1) = —
o ex(eh)
D,
— . N eilel 7.9
CX(ez 711+1) 1+( i— n+1 ) (2| i— n+2) ( )
where D,, = —=— s a fixed discountd, ; andc,» are the number ofi-grams

Cn,1+2¢Cn 2
with one and two counts respectivelyy; . (e/”),, ;) is the number of unique words that
follows the historye!~} . ; andcx (e}_, ) is the count of the--grame?_,, , ;, wherecx ()
can represent true counts;(-), or modified countsg(-). True counts are used for the
higher ordem-grams and modified counts for the lower ordegrams. Given a certain-
gram, its modified count consists in the number of differentds that precede this-gram
in the training corpus.

Equation 7.9 corresponds to the probability given by argram language model with an
interpolated version of the Kneser-Ney smoothi@gPqg.

e source sentence-length modehg)
ha(el, f{) = log(p(J | I)) = log(é1(J + 0.5) — ¢r(J — 0.5)), whereg;(-) denotes the
cumulative distribution function (cdf) for the normal disution (the cdf is used here to
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integrate the normal density function over an interval ol 1). A specific normal dis-
tribution with mearu; and standard deviatios; is used for each possible target sentence
length!.

e inverse and direct phrase-based modelshg, hy)

K .
hs(el, K,afs,bf, i, fi') = log(ITy—y poi(fEless 1)) wherepp (fE|ess ) is
defined as follows:

prr(flelest ) = A-p(fklest 1)+
(1_>\) phm'rn(fgk|eak 1+1) (710)

In Equation 7.10), p(f? *leqk ) denotes the probability given by a statistical phrase-
based dictionary used in regular phrase-based modelsewher

ar = fr—cp+1
Br = Br—1+bp+ck
Bo = 0

Phmm (2 *leqr 1) is the probability given by an HMM-based (intra-phraseyuainent
model:

| £]
Prmm (F16) = €Y [ p(f51éa,) - plajlaj_1, |é]) (7.11)

P I=1
1

The HMM-based alignment model probability is used here foosthing.

Analogouslyh4 is deflned as:
h4(€1aK ay 751 acl ) 1) 10g(Hk 1pLI( Cay_ 1+1|fozk))

e target phrase-length model {i5)
hs (K, af) = log(I T, plaklar—1),
wherep(ag|ag—1) = plar — ax—1) = 6(1 — §)* %=1, hs implements a target phrase-
length model by means of a geometric distribution with pholityy of successd on each
trial. The use of a geometric distribution penalises thgtlef target phrases.

e source phrase length modell(6)

he(K, alS, ) = log([Ty; p(cklar, ar—1)),

wherep(clay, ap—1) = T-6(1 — §)@bs(er—(er—ar-0) r = S2ex7e1 =151 — §)i and
abs(+) is the absolute value function. A modified geometnc distitn with probability of
succes$ on each trial is used to model this feature. The scaling falétg is introduced to
make the distribution sum to one because the tgrm(a;, —ay—1) takes integer values,
and(a; — ar—1) are greater than zero). This distribution penalises tHeréifice between
the source and target phrase lengths.

o distortion model (hQ
h7(K, b{() = 1Og(Hk:1 p(bx)),
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wherep(b,) = 5150(1 — 6)°b*(»). A modified geometric distribution with probability
of succes9 on each trial is used to assign probabilities to the numbekigped source
words. The scaling factogs is introduced to make the distribution sum to ohg takes
integer values). The use of a geometric distribution peralthe reorderings.

The log-linear model, which includes the above describatufe functions, is used to
generate the suffig, given the user-validated prefés,. Specifically, the IMT system gener-
ates a partial phrase-based alignment between the user ggefind a portion of the source
sentence, and returns the suffik, as the translation of the remaining portionfof.

7.5 Online IMT System

After translating a source sentenfg, a new sentence pailfi , e!) is available to feed the
IMT system (see Figuré.3). To do this, a set of sufficient statistics that can be inenatally
updated is maintained for the statistical models that imelet each feature functidn (-).

In the following sections, we show how the set of sufficieatistics is defined for each
model. Regarding the weights of the log-linear combinatibay are not modified due to the
presentation of a new sentence pair to the system. Thesbtweign be adjusted off-line by
means of a development corpus and well-known optimisagohrtiques.

7.5.1 Language Model {;)

Feature functiom; implements a language model. According to Equatio)( the fol-
lowing data is to be maintaineds, 1 andcy 2 given any ordetk, N1, (-), andex(-) (see
section7.4for the meaning of each symbol).

Given a new sentence], and for eachk-grame;_, ., of ef, wherel < k < n and
1 < ¢ < I+ 1, the set of sufficient statistics is modified as it is shown Igokithm 7.1
The algorithm checks the changes in the counts oftljeams to update the set of sufficient
statistics. For a giveh-gram,eﬁfkﬂ, its true count and the corresponding normaliser are
updated at lined3 and 14, respectively. The modified count of tlié — 1)-gram and its

normaliser are updated at linésand8, respectively, only when the-grame;_, ., appears
for the first time (condition checked at lir®. The value of theV, . (-) statistic fore;~;
ande.”}  , is updated at lines0ands, respectively, only if the word; has been seen for the
first time following these contexts. Finally, sufficienttittics for Dy, are updated at lines2
(for higher ordemn-grams) and! (for lower ordem-grams), following the auxiliary procedure

shown in Algorithm?7.2

7.5.2 Sentence Length Modeli)

Feature functiorhs implements a sentence length modgb requires the incremental cal-
culation of the meam; and the standard deviatiery of the normal distribution associated
to a target sentence length For this purpose, the procedure describedkiny81] can be
used. In this procedure, two quantities are maintaineddcheormal distributiony; and
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input  : n (higher order)ei_, ., (k-gram),
S ={Vj(cj1,¢5,2), Ni+(+),ex(-)} (current set of sufficient statistics)
output : S (updated set of sufficient statistics)
1 begin

2 | if er(ei_piy) = 0then

3 if k—1>1then

4 updD( S,k-1 enr(€i_jr2)en(efpya) +1)
5 if car(e;_ k+2) = 0 then

6 LNH € k+2)‘ N1+( i— k+2)+1
7 e (e €i— kt2) = cm (€ jp2) +1

8 cu(e; i— k+2) ==cum(e 1 11c+2)+1

9 if kK = nthen

10 LN1+(e§:i+1) : N1+( i k+1) +1
11 | if k =nthen

12 LUpdD( S.ker(e;- k+1):CT(e§—k+1) +1)
13 | cr(€i_gi1): =cr(el_ 1) +1

14 cT(el k+1) cT(e 41) 1

15 end

Algorithm 7.1: Pseudocode for thepdate _suff _stats _Im algorithm.

input S (current set of sufficient statistics)(order),c (current count),
¢ (new count)
output : (ck,1, ck,2) (Updated sufficient statistics)

1 begin

2 | if c=0then

3 if ¢ =1thenck1 :=cr1+1
4 if ¢ =2thencg2 :=cr2+1
5 | if c=1then

6 Ck.1:=Ck1— 1

7 if ¢ =2thencg2 :=cr2+1
8 if c = 2then Ck,2 ‘= Ck,2 — 1

9 end

Algorithm 7.2: Pseudocode for thepdD algorithm.

Sr. Given then-th training pair(f,,, e,,) at instant, the two quantities are updated according
to the following equations:

g = M (7.12)
R A (| AR Ve () 7.13)
(t) _ (t—1)

Srilen = S (7.14)
Ster = Sl + Ul = i) (] = 1)) (7.15)
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wherec(le,|) is the count of the number of sentences of lenjgth that have been seen
so far, andul(:ll) and Sl(;"l) are the quantities previously storaaf;()‘ is initialised to the
source sentence length of the first sample@?fj?l is initialised to zero). Finally, the standard

deviation can be obtained frosf!) | as follows:o L) | = \/S(t) /(c(len)® —1).

len|

7.5.3 Inverse and Direct Phrase-Based Model%{ and h,)

Feature functionés andh, implement inverse and direct phrase-based models regglgcti
These phrase-based models are combined with HMM-basethaigt models via linear in-
terpolation. In this thesis we have not studied how to inenetally update the weights of the
interpolation. Instead, these weights can be estimated frdevelopment corpus.

Since phrase-based models are symmetric models, only arseénphrase-based model is
maintained (direct probabilities can be efficiently ob&ainusing appropriate data structures,
see sectiort.3.9). The inverse phrase model probabilities are estimated frbrase counts
as follows: B

p(fle) = =22
Zf_’ C(f’, e)

According to the previous equation, the set of sufficientistias to be stored for the
inverse phrase model consists of a set of phrase cm{ﬁiﬁ).

Given then-th training pair(f,,, e,,), the standard phrase-based model estimation method
uses a word alignment matri¥d, betweenf,, ande,, to extract the set of phrase pairs that
areconsistentvith the word alignment matrixBP(f,,, e, A) (see sectior3.2 for more de-
tails). Once the consistent phrase pairs have been exdraltephrase counts are updated as
follows:

o(f, &) =c(f, &)V 4 ¢(f, | BP(fn, en, A)) (7.16)

wherec(f,é)® is the current count of the phrase péff, é), c(f,é)*~1 is the previous
count, and:(f, & | BP(£,, e,, A)) is the count of f, é) in BP(f,,, e,, A).

After updating the phrase counts, we need to efficiently agmphe phrase translation
probabilities. For this purpose, we maintain in memory kbt current phrase counts and
their normalisers.

One problem to be solved when updating the phrase model pteesiis the need of gen-
erating word alignment matrices. To solve this problem, aethe direct and inverse HMM-
based alignment models that are included in the formulatfdhe IMT system. Specifically,
these models are used to obtain word alignments in bothlatiorsdirections. The resulting
direct and inverse word alignment matrices are combined égns of thesymmetrisation
alignment operationdNO3J before extracting the set of consistent phrase pairs.

In order to obtain an IMT system able to robustly learn frorardsedback, we also need
to incrementally update the HMM-based alignment modelshérfollowing section we show
how to efficiently incorporate new knowledge to these madels
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7.5.4 Inverse and Direct HMM-Based Alignment Models {3 and h.)

HMM-based alignment models play a crucial role in log-lineemponents.; andh,, since
they are used to smooth phrase-based models and to genenatealignment matrices.
HMM-based alignment models were chosen here becausegdaugto [ONO03 and [TIM02],
they outperform IBM 1 to IBM 4 alignment models while stillalving the exact calculation
of the loglikelihood for a given sentence pair. However, proposal is not restricted to the
use of HMM-based alignment models.

The standard estimation procedure for HMM-based alignmesdels is carried out by
means of the EM algorithm. However, the standard EM algerithnot appropriate to incre-
mentally extend our HMM-based alignment models becausedesigned to work in batch
training scenarios. To solve this problem, the incremenéal of the EM algorithm described
in section7.3.1can be applied.

Model Definition

HMM-based alignment models are a class of single-word adgm models. Single-word
alignment models were introduced in sectiioA.2 for the reader’s convenience, we describe
again those concepts that are relevant to the definition oM-dadsed alignment models.

Single-word alignment models are based on the conceptgiraknt between word po-
sitions of the source and the target senterfgeande!. Specifically, the alignment is defined
as a functiorw : {1---J} — {0---I}, wherea; = ¢ if the j'th source position is aligned
with thei'th target position. Additionallya; = 0 notes that the word position of f; has
not been aligned with any word positier (or that it has been aligned with timaill word
eo). Let A(f{,el) be the set of all possible alignments betweérand f;, we formulate
Pr(f{|el) in terms of the alignment variable as follows (Equatiari()):

Pr(ffle)= > Pr(#,a]le]) (7.17)

ai e A(f{ )

Under a generative point of view?r(f{,a{|el) can be decomposed without loss of
generality as follows (Equatiori (19):

<

Pr(f{,afler) = Pr(Jle}) - H r(fi1H 7 al el) - Pra|fi7} el el)  (7.18)

HMM-based alignment models are very similar to IBM modefsedfically, they only
differ in the assumptions made over the alignment prokasli HMM-based alignment
models use a first order alignment moggh,|a,;_1,I) to approximate the distribution
Pr(aj|f]~ " a)" el) and a word-to-word lexical modek f;e.,) to approximate the dis-
trlbutlonPr(f]|f1 ,a], el), resulting in the expression:

p(fi],aﬂe{, Hp f]|€aj : a]|a] 1, 1) (7.19)
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where we assume thay is equal to zero and

[ p(fle) VfeFandeeé&
9_{19(”’71) 1<i<I,0<i <TandvI (7.20)

is the set of hidden parameters. For the sake of simplicgyd@not allow alignments with the
null word, i.e.i = 0. This corresponds to the so-calledmogeneoudMM-based alignment
models defined infNT96]. The treatment of the null word can be easily introduced &s i
shown in PNO03J.

Incremental EM Algorithm

We follow the incremental EM iteration of (8). This incremental EM iteration is defined in
terms of a set of sufficient statistics summarising the griéal import of the complete data.

As a preliminary step, and following the same derivatioratetyy that is presented
in [Civ0g] for the batch EM algorithm, we change the nature of the ndfalignment vari-
ablea; € {0,..., I} from an integer value to an indicator vector:

a; = (ajo,aj1,---,0a51) (7.21)
The vectora; takes the value of one in th&h position and zeros elsewhere if the source
positionj is aligned to the target positian
Equation {.19 can be reexpressed in terms of indicator vectors as follows

J 1 I
p(fisaflet,©) = [T [T p(filea)™ TT pGild’, 1)%-r2 (7.22)
j=1i=1 i'=1
with ago = 1.
The complete data setZ = (X,)) comprises the observed datay =

{(f1,e1), ..., (fn,en)}, which is composed of the training sentence pairs; and ttidelni
data,y = {ay,...,ay}, which is composed of the alignment vectors associatedthitlsen-
tence pairs oft’. The loglikelihood function of the complete daf&©, f, e, a), is defined as
follows:

N
L(6,f,e,a) = > logp(fy,a,le,, O) (7.23)
n=1
It can be demonstrated by means of the Fisher-Neyman faatmm theorem that
s(f,e,a) = 3 sn(fn,e,,a,) constitutes a vector of sufficient statistics for the model p
rameters, where, (f,,, e,, a,,) is the vector of sufficient statistics for data item

_ C(f|6;f",e",an) v‘f € Fandec &
Sn(fnaeruan) _{ c(i|i',[;fn,en,an) 1 S i g ]—, 0 g ’i/ S I and\V/I (724)
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with
‘fn‘ ‘enl
C(f|€; fna €n, an) = Z Z Anji (725)
iy =f ieni=c
|£|
C(i‘i/> I; fm Cn, an) = 6(1’ |en|) Z(an(jfl)i/ anji) (726)
j=1

beingc(fle; £, en, a,) the number of times that the woeds aligned to the word for the
sentence paiff,,, e,,); andc(i|i', I; f,, e,, a,) the number of times that the alignmertias
been seen after the previous alignméngiven a source sentence composed @fords for
the sentence paif,,, e, ).

The log-likelihood of the complete data can be expresseering of the sufficient statis-
tics as follows:

N
@ f.e, a Z Z Z |e§fn7en7an) 'Ing(fle)+

fEF ect n=1

I I N
ZZZZ (i|i', I; £, en,a,) - logp(ili', I) (7.27)

VI i=1 =0

To implement the E step of the incremental EM algorithm, wed® obtain the expected
value at instant of the sufficient statistics given the probability disttilon of the hidden
alignment variables!!) = = By, [sn(fn, e, an)], whereg, (a,) = p(anf,, en, 0t=1). For
this purpose, the counts given by equation29 and (7.26) are replaced by expected counts:

‘fn‘ ‘enl

c(flefuenan)® =3 3 al) (7.28)
jifnj=f t:eni=e

[£n |
C(i|i/’ I7 fn7 €, a?L)(t) = 5([7 |en|) Z(an(]‘_l)il an‘”)(t) (729)

j=1

where
A _ _Onji Bnji
a, ;= [PSTRRE— (7.30)
Ongi * Bnji

i=1

an( j—1)i’ -p(i|i/, |en|)(t71) 'p(fnj‘eni)(til) . ani
(@n(j—1)i an;) ") = o] |en‘j (7.31)
A 2 AnGG-Y ([T, |en) D - p(fnjlen) 1 - B
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beingaﬁf}i, the posterior probability of aligning the source positjdo the target positionat
the current instant ; and(a,, ;1) anﬁ)(t), the posterior probability of aligning the source
position; — 1 to the target positiosf and the positior to the positiori for then'th sample
at the current instant The recursive functions andg are defined as follows:

1

j =
0, e,V - p(f,:|en) D i—1
g =4 200 fen) 7 (sl j .32
~21 A (j—1)1 p(ZHa |en|)(t71) 'p(fnj |eni)(t71) j >1
1 J= ‘fn|
Brji =4 e (7.33)

2 (i, len ) - p(fjn) [ent) ™ Bagirnyr J < Ifal

Regarding the M step, we have to obtain the set of parametatsrtaximises the log-
likelihood of the complete data given the expected valugb@Eufficient statistics. For this
purpose, we replace the sufficient statistics in Equatib@7] by their expected values at
instantt, and then maximise the resulting expression (which coordp to the) (0|0 1)

function expressed in terms of the sufficient statistick)aming the following update equa-
tions:

JZV: c(fle; £, en,an)®
p(fle)® ==L 3

N
> oe(fle;fn, en,a,)®
FreFn=1

N
Z C(i‘ilv I;f,,e,, an)(t)
p(ili, 1) == (7.35)

In the previous equations, the numerator values consttieteumulative sufficient statis-
tics5® =3 5 for the model parameters.

Incremental Update Rule

Given then-th training pair(f,,e,,), the incremental update equation for the cumulative
sufficient statisticsi(*, is given by the following expression:

50 = 50-1D 4 50 (7.36)

It is worth mentioning that the sufficient statistics for aegi sentence pair are nonzero
for a small fraction of its components. As a result of thig thme required to update the
parameters of the HMM-based alignment model depends ontth@mumber of nonzero
components.

Once the cumulative sufficient statistiés?), have been updated, we need to efficiently

compute the model parameters. For this purpose, the naendhctors fors® are also
maintained.
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The parameters of the direct HMM-based alignment model stimated analogously to
those of the inverse model.

7.5.5 Source Phrase Length, Target Phrase Length and Distodn Mod-
els (hs, hg and hy)

The parameters of the geometric distributions associatecetéetiture functionés, hg and
hr are left fixed. Because of this, there are no sufficient siegiso store for these feature
functions.

7.6 Summary

In this chapter, an IMT system in which the standard batcinlag paradigm is replaced
by the online learning paradigm has been proposed. Onlareilgy is particularly useful in
IMT since it allows to feed the models used by the IMT systerinie translations validated
by the user.

Our proposed IMT system implements online learning by med&irscremental learning
algorithms. Incremental learning algorithms are a kind wlire learning algorithms that
discard each new training sample after updating the learner

Our online IMT system uses incremental learning algorithnapdate the parameters
of the statistical models involved in the translation pssceFor this purpose, we need to
maintain a set of sufficient statistics that can be increailgntipdated for these models.

If the estimation of a given statistical model does not regjthie use of the EM algorithm,
then it is generally easy to incrementally extend the mod&rga new training sample. By
contrast, if the EM algorithm is required, the estimatioagadure has to be modified, since
the conventional EM algorithm is designed for its use in baéarning scenarios. To solve
this problem, we have applied the incremental view of the Bdd@thm described infIH9g].

We provided a complete set of update equations and algaithat allow us to obtain
an incrementally updateable IMT system, breaking techiim@ations encountered in other
works.
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CHAPTER S8

PB-IMT E VALUATION

In this chapter we show the results of the experiments thatamded out to test the three
IMT techniques proposed in chapteédsand 7, namely, IMT based on partial phrase-based
alignments, IMT based on stochastic error-correction rtsoaied IMT with online learning

8.1 IMT based on Partial Phrase-Based Alignments

We carried out experiments to test our proposed IMT systesedan partial phrase-based
alignments described in sectién2 In some experiments, this IMT system uses a mono-
tonic version of the expansion algorithm given by Algoritim. Monotonic IMT systems
are useful because of their lower response times, but this ¢tomplexity reduction usually
comes at the cost of poorer translation results. The largoagdel used by the IMT system
was implemented as a standard backoff language model, wrdshestimated by means of
the SRILM toolkit [Sto03. Regarding the inverse and direct smoothed phrase-basddis
they were obtained by means of thad@T toolkit presented in Appendik of this thesis.

The experiments were performed using the Xerox and the Epocay which were de-
scribed in sectiori.10 We evaluated our proposed techniques by means of the KSEWR (k
stroke and mouse action ratio) measure described in seicio® In addition to this, in some
experiments we also assessed the performance of our ptbpd3esystem with respect to
using a conventional SMT system followed by human postireglitThis assessment is done
by comparing the KSR (key stroke ratio) measure obtaineth&®yMT system with the CER
(character error rate) and PKSR (post-editing key stroli@)rmeasures. As was explained in
sectionl.9.3 the CER measure constitutes a rough estimation of thegabiirg effort, since
professional translators typically use text editors wittb@ompletion capabilities to generate
the target translations. To solve this problem, the PKSRsereadefined inRTV10] is used.

3n some experiments reported in this chapter we show the tinteottise proposed algorithms, all the experi-
ments were executed on a PC with a 2.40 Ghz Intel Xeon procest$oiGB of memory.
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8.1.1 Experiments with the Xerox Corpus

In Table8.1, IMT results with the Xerox corpus using different phrasephrase alignment
smoothing techniques are presented, for three differewgfuage pairs and both translation
directions. Geometric distributions were selected to em@nt both thé:; (target phrase
length model) andg¢ (source phrase length model) feature functions. The firgtafcthe ta-
ble shows the baseline, which consists of the results addaising maximum-likelihood es-
timation without smoothing (ML). The rows labelled with GG&¢od-Turing), AD (absolute-
discount), KN (Kneser-Ney) and SD (simple discount) shosvrésults for the phrase-based
model estimators presented in sectibd.2 The rest of the rows corresponds to different
estimation techniques combined with the lexical distifmut{(LEX) by means of linear in-
terpolation (LI), backing-off (BO), and log-linear interfation (LL). Because of the great
number of possible configurations of the IMT system and tlgh ime cost of the MERT
algorithm, we used a monotonic IMT system with default valt@ the weights of the log-
linear model to carry out the experiments.

Table 8.1: KSMR results for the three Xerox corpora (for both direct and inveeses-

lation directions separated by the symbol “/”) for a monotonic IMT systechdifferent
smoothing techniques. Geometric distributions were selected to implemelin trel

he feature functions. Default weights for the log-linear model were uBedt results
are shown in bold.

Smooth. Spa-Eng | Fre-Eng | Ger-Eng

ML 36.7/32.5| 59.4/53.2| 63.6/57.2
GT 28.6/29.4| 51.9/49.4| 57.7/53.0
AD 30.3/28.1| 50.4/46.7 | 58.4/52.5
KN 30.3/28.1| 50.4/46.7 | 58.4/52.4
SD 28.5/29.4| 51.6/49.2| 57.1/52.5

ML+LEX ¢ | 21.2/21.3| 39.9/39.2| 43.942.4
GT+LEX 21.721.3 | 39.9/39.2| 44.2/42.2
AD+LEX 21.4/22.2| 40.2/40.5| 45.1/42.2
KN+LEX 21.5/22.2| 40.1/40.5| 45.0/42.2
SD+LEXy 21.2/21.2| 39.989.0 | 44.041.8
GT+LEXgo | 21.221.0 | 39.839.0 | 45.3/42.3
SD+LEXgo | 21.221.0 | 39.839.2 | 45.1/42.3
ML+LEX . | 37.5/35.5| 59.5/53.7| 64.3/58.0
GT+LEX L | 24.0/25.8| 43.2/43.3| 50.9/46.9
AD+LEX . | 30.8/29.2| 51.3/46.9| 59.7/52.1
KN+LEX (. | 30.9/29.1| 51.4/46.9| 59.7/52.0
SD+LEXL 23.6/27.7| 43.2/42.7| 50.7/45.9

According to the table, the baseline system obtained byhfamtorst results. In contrast,
all those experiments that included the LEX distributiompeuformed the others due to im-
proved assignment of probabilities to unseen events. Asexpscted (see sectigh4.2),
linear interpolation and backing-off obtained better tisstihan log-linear interpolation. Ad-
ditionally, GT and SD statistical estimators worked slighetter than the rest of estimators.
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8.1. IMT based on Partial Phrase-Based Alignments

We also carried out experiments to study the impact of tHeraifit probability distribu-
tions used for the feature functiohg (target phrase length model) ahg (source phrase
length model) in the accuracy of our system. Tahl&reports the KSMR results for all pos-
sible combinations of the probability distributions used/; (Uniform (U) and Geometric
(G)) and forhg (Uniform (U), Geometric (G), and Poisson (P)). Only the Hssobtained for
the best smoothing technique (Good-Turing) are reportezlr@sults corresponding to other
smoothing technigues were similar). Again, a monotonic I8¢$tem with default log-linear
weights were used.

Table 8.2: KSMR results for the three Xerox corpora (for both direct and invereses-
lation directions separated by the symbol “/”) for all possible combinatiétise proba-
bility distributions for thehs andhg feature functions when using two different smooth-
ing techniques. A monotonic IMT system with default log-linear model wisigiere
used. Best results are shown in bold.

Smooth. | hs,he | Spa-Eng | Fre-Eng | Ger-Eng
u,u 30.1/29.0| 53.8/50.7 | 58.0/53.9
u,P 29.5/28.6 | 52.9/49.7| 57.6/53.4
U,G | 28.7/28.0| 51.7/48.7| 57.3/52.7
G,U | 30.5/29.7| 54.6/51.5| 58.5/54.4
G,P | 29.7/29.4| 53.3/50.5| 58.2/53.7
G,G | 28.6/29.4| 51.9/49.4| 57.7/53.0
u,u 21.8/21.6| 40.4/39.1| 44.8/42.2
u,p 21.5/21.4| 40.2/39.0| 44.3/42.0
GT+ U,G | 21.3/21.4| 40.188.8 | 44.041.8
LEX o G,U | 21.6/21.5| 40.3/39.1| 44.6/42.1
G,P | 21.4/21.3| 40.0/39.0| 44.2/41.9
G,G | 21.721.0 | 39.839.0 | 45.3/42.3

GT

As can be seen in the table, slight KSMR differences are obthi The best results
were obtained when U+G distributions were used for the Gifnasor, and G+G for the BO
combination. As was mentioned in secti6r2.2 the use of a uniform distribution fds
penalises the length of the bisegmentation and the use dfraajec distribution penalises
the length of the source phrases. Correspondingly, thefusg@ometric distribution fohg
makes it possible to establish a relationship between tigtheof source and target phrases
(the use of a Poisson distribution also worked well).

IMT results for the three considered corpora (for both tiatien directions) are shown
in Table8.3. MERT for the development corpus was performed to adjustvtights of the
log-linear model. In this case, only the GT+LEX the SD+LEXgo and the SD+LEX|
smoothing techniques were tested, obtaining very simédaults. The last column of Ta-
ble 8.3 shows the average time in seconds per iteration needed tpletena new translation
given a user validated prefix. Clearly, these times allowsystem to work on a real time
scenario.

We also carried out experiments using a hon-monotonic IM3esy with GT+LEXg0
smoothing. Table3.4 shows the KSMR results and the time cost in seconds per each
teraction when translating the Xerox corpora from Englsi$panish, French and German.

n
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Table 8.3: KSMR results for the three Xerox corpora, using a monotonic IMT system
with three different smoothing techniques. Geometric distributions werd tsim-
plement thehs andhe feature functions. MERT was performed. The average time in
seconds per interaction is also reported.

Corpus Smooth. KSMR | sfinter.
GT+LEX go 19.6 0.086
SD+LEXgo 19.6 0.090
SD+LEX(, 19.7 0.090
GT+LEX go 17.5 0.093
SD+LEXgo 17.6 0.094
SD+LEX 17.9 0.106
GT+LEX go 36.9 0.204
SD+LEXgo 37.0 0.205
SD+LEX( 37.4 0.242
GT+LEX go 34.4 0.148
SD+LEXgo 34.4 0.147
SD+LEX(, 34.1 0.211
GT+LEX go 39.5 0.170

Spa—Eng

Eng-Spa

Fre-Eng

Eng-Fre

Ge-Eng | ol EXso | 395 | 0.184
SD+LEXy, 39.7 | 0.237
EngGer | CT*LEXeo | 391 | 0152

SD+LEXgo 39.2 0.154
SD+LEXy 39.2 0.210

Table 8.4: KSMR results for the three Xerox corpora, using a non-monotonic IMT
system with GT+LEXo smoothing. Geometric distributions were used to implement
the hs andhe feature functions. MERT was performed. The average time in seconds
per interaction is also reported.

Corpus KSMR | sfinter.
Eng-Spa 16.7 0.283
Eng—Fre 34.9 0.388
Eng-Ger 38.6 0.405

Geometric distributions were used to implementithendhg feature functions, the weights
of the log-linear combination were adjusted by means of tl&RW algorithm. As can be
seen in the table, the non-monotonic IMT system obtaineb&BMR results than those
reported in Table3.3 for the monotonic IMT system. However, these improved fssaite
obtained with higher time costs per each interaction of i€ process.

Additionally, we performed experiments to estimate the anreffort reduction that can
be obtained using our proposed IMT system with respect tagubie post-editing approach.
For this purpose, we compared the KSR measure obtained diidusystem with the CER
and PKSR measures. Talle5 shows the obtained results. According to the results, the
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8.1. IMT based on Partial Phrase-Based Alignments

Table 8.5: CER and PKSR obtained with the post-editing approach and KSR obtained
with our proposed IMT system based on smoothing techniques (a mandWh sys-

tem with GT+LEXso smoothing tuned with MERT was used, geometric distributions
were selected to implement thg andhg feature functions). The results were obtained
for the Xerox corpora.

Corpus CER | PKSR | KSR
Eng-Spa | 22.3 17.3 10.0
Eng—-Fre | 48.1 35.6 21.7
Eng—Ger | 55.3 39.5 25.1

Table 8.6: KSMR results comparison of our IMT system based on partial statistical
phrase-based alignments (a monotonic IMT system with GTHdstmoothing tuned
with MERT was used, geometric distributions were selected to implemeritstiaed

he feature functions) and three different state-of-the art IMT syst&5% confidence
intervals are shown. The experiments were executed on the Xeroaraoipest results
are shown in bold.

Corpus AT PB SFST PSPBA
Spa—Eng | 24.0+1.3 | 18.1+1.2 | 26.9+1.3 | 19.6+1.1
Eng-Spa | 23.2:1.3 | 16.7+1.2 | 21.8+1.4 | 17.6+1.1
Fre-Eng | 40.5+1.4 | 37.2+1.3 | 45.5+1.3 | 37.0+1.4
Eng-Fre | 40.4+1.4 | 35.8:1.3 | 43.8£1.6 | 34.4t1.2
Ger-Eng | 45.9+1.2 | 36.741.2 | 46.6£1.4 | 39.5+1.1
Eng-Ger | 44.7+1.2 | 40.14+1.2 | 45.41.4 | 39.2t1.1

estimated human effort to generate correct translatioimgyumur proposed IMT system is
significantly reduced with respect to using the post-egiipproach. As was expected, the
values of the CER measure were greater than those of the PK@&Rune for the three lan-
guage pairs. This is due to the autocompletion capabititiasare involved in the calculation
of the PKSR measure.

Finally, in Table8.6a comparison of the best results obtained by our IMT systesadan
partial statistical phrase-based alignments (PSPBA) stike-of-the-art IMT systems is re-
ported (95% confidence intervals are shown). We comparedystem with those presented
in [BBCT09): the alignment templates (AT), the stochastic finiteestaansducer (SFST),
and the phrase-based (PB) approaches to IMT. As can be saesysiem obtains similar
results and in some cases clearly outperforms the resuitsneld by these IMT systems.
Specifically, our results were better than those obtainetiéyFST and the AT systems. By
contrast, the KSMR results with respect to the PB approach sieilar.

8.1.2 Experiments with the EU Corpus

Additional experiments using the EU corpus were carriedtotest the performance of our
IMT system based on partial phrase-based alignments. Bab#hows the obtained KSMR
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Table 8.7: KSMR results for the three EU corpora, using a monotonic IMT system with
GT+LEXgo smoothing. Geometric distributions were used to implemenkthendhs
feature functions. MERT was performed. The average time in sequerdsteraction

is also reported.

Corpus | KSMR | sfinter.
Spa—Eng 21.9 0.327
Fre—Eng 19.5 0.326
Ger-Eng 28.3 0.278

Table 8.8: CER and PKSR obtained with the post-editing approach and KSR obtained
with our proposed IMT system based on smoothing techniques (a monttbonh sys-

tem with GT+LEXso smoothing tuned with MERT was used, geometric distributions
were selected to implement the andhg feature functions). The results were obtained
for the EU corpora.

Corpus | CER | PKSR | KSR
Spa—-Eng | 36.6 255 | 131
Fre—Eng | 32.7 232 | 116
Ger-Eng | 45.0 30.6 17.4

results when translating from Spanish, French and Germ#ret&nglish language. All the
results were obtained by means of a monotonic IMT system GitkLEXgo smoothing.
The hs; andhg feature functions were implemented by means of geomestdlditions. The
weights of the log-linear combination were obtained by gshe MERT algorithm. The table
also shows the average time in seconds required by each texadtion of the IMT process.

As can be seen in the table, the interactive translation fmglish to Spanish obtained
the lowest KSMR measure. The time costs per interactionhithree language pairs were
higher than those obtained when translating the Xerox carfsee Tablé.3). This is due
to the fact that the EU corpora have greater training setstwhioduce substantially larger
translation and language models.

Additional experiments were carried out to compare thequerénce of our proposed
system with respect to that of the post-editing approachsufeare shown in Tablg.8.
According to the table, post-editing significantly incredghe required human effort with
respect to the IMT system. This is the same situation thaiolvasrved for the Xerox corpora
(see Tables.5).

Finally, Table8.9 shows a comparison of the KSMR results (95% confidence ialerv
are shown) that were obtained by our proposed IMT systemdbaiseartial phrase-based
alignments (PSPBA), with respect to those obtained by-sthtke-art IMT systems. As was
explained in sectio.1.], these state-of-the-art IMT systems are based on difféarans-
lation technologies, including alignment templates (Adtpchastic finite-state transducers
(SFST) and phrase-based models (PB). In the table we shawshks obtained by a mono-
tonic IMT system with GT+LEXo smoothing tuned with MERT. As can be seen, our system
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Table 8.9: KSMR results comparison of our IMT system based on partial statistical
phrase-based alignments (a monotonic IMT system with GTHd=noothing tuned
with MERT was used, geometric distributions were selected to implemeritstlaad

he feature functions) and three different state-of-the art IMT syst&5% confidence
intervals are shown. The experiments were executed on the EU cofpesa results
are shown in bold.

Corpus AT PB SFST | PSPBA
Spa—Eng | 33.3:1.3 | 23.8:1.0 | 31.1+1.3 | 21.9+1.0
Fre—Eng | 28.6:1.2 | 21.5:1.0 | 28.0£1.2 | 19.5:0.9
Ger—Eng | 38.141.4 | 31.741.0 | 39.141.5 | 28.2t1.2

outperforms the results obtained by these IMT systems iceaks.

8.2 IMT based on Stochastic Error-Correction Models

We carried out experiments to test our IMT system based ahastic error-correction mod-
els described in sectioh 3. The initial word graph for each source sentence was gestbrat
using a regular SMT system. This SMT system uses the logulim®del described in sec-
tion 3.5.3 The components of the log-linear combination where in&tad as follows: a
standard backoff language model estimated by means of tHevBRolkit was used to im-
plementh; ho was implemented by means of a set of normal distributiongrse and direct
phrase-based models without smoothing generated by mé#ms HoT toolkit were used
to implemenths andh,, respectively; the target phrase length modg|,was implemented
by means of a geometric distribution; finally, geometridrilisitions were used to implement
the source phrase length and the distortion modglandh, respectively.

The experiments were performed using the Xerox corporatamé&t) corpora as well as
in the previous section. We also used the same evaluatiosuress including KSMR and
KSR compared with CER and PKSR.

8.2.1 Experiments with the Xerox Corpus

In Table8.10the IMT results for the Xerox corpora (for the three langupges and both
translation directions) using our proposed IMT system Basestochastic error-corrections
models are shown. A monotonic SMT system was used to gentrateord graphs that
are required during the IMT process. MERT for the developnoenpus was performed to
adjust the weights of the log-linear model. The last colurhifable 8.10shows the average
time in seconds per iteration needed to complete a new &t@msigiven a user validated pre-
fix. These times allow the system to work on a real time scenard they are even lower
than those obtained by the IMT system based on partial pfivased alignments given in Ta-
ble 8.3 By contrast, the obtained KSMR results are slightly wor3#is is because the
greater simplicity of the word-graph based IMT system, \ulgarries out only one transla-
tion process at the first interaction of the interactive $fation of each source sentence.
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Table 8.10: KSMR results for the three Xerox corpora, using an IMT system based o
stochastic error-correction models. Word graphs were generatetthgs of a mono-
tonic SMT system. MERT was performed. The average time in secomdistpeaction

is also reported.

Corpus KSMR | sfinter.
Spa—Eng 21.2 0.010
Eng-Spa 19.8 0.010
Fre—Eng 41.2 0.012
Eng—Fre 375 0.013
Ger-Eng 41.0 0.012
Eng-Ger 42.7 0.012

Table 8.11: KSMR results for the three Xerox corpora, using an IMT system based o
stochastic error-correction models. Word graphs were generatetebys of a non-
monotonic SMT system. MERT was performed. The average time in dscpar
interaction is also reported.

Corpus KSMR | sfinter.
Eng-Spa 19.3 0.048
Eng—Fre 36.9 0.100
Eng-Ger 42.2 0.084

We also performed non-monotonic experiments. Tablel shows the KSMR results
when translating the Xerox test corpora from English to ttreeothree languages. Word
graphs were generated by means of a non-monotonic SMT sy3teenweights of the IMT
system were tuned using the MERT algorithm. The average ¢ivsts per each interaction
are also shown. As can be seen, slight improvements withkecésp the monotonic IMT
system can be obtained, at the cost of higher interactiogstim

We carried out experiments to compare the performance opmposed IMT system
based on stochastic error-correction models with thateptist-editing approach. Tal#el2
shows the obtained results. According to the table, ourgseg IMT system allowed us to
significantly reduce the required human effort with respgeqgbost-editing the output of an
SMT system.

Finally, in Table8.13 a comparison of the results obtained by our phrase-based IMT
system based on stochastic error-correction models (RBMSBEvith state-of-the-art IMT
systems is reported (95% confidence intervals are shownin pievious sections, the com-
parison includes the KSMR results obtained by IMT systenrsgudifferent translation tech-
nologies, namely, alignment templates (AT), stochastiitefigtate transducer (SFST), and
phrase-based models (PB). Additionally, we also show thelt®of the IMT system based
on partial phrase-based alignments (PSPBA) that were texpor the previous section. As
can be seen, our system is competitive with the SFST and they#Ems but underperforms
the results obtained by the PB and PSPBA IMT systems. It ishmorentioning that the
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Table 8.12: CER and PKSR obtained with the post-editing approach and KSR obtained
with our proposed IMT system based on error-correction modelsd(goaphs were
generated by means of a monotonic SMT system). The results were axbfainthe
Xerox corpora.

Corpus CER | PKSR | KSR
Eng-Spa | 21.6 16.8 11.8
Eng-Fre | 47.9 | 356 | 245
Eng—Ger | 55.2 39.1 | 283

AT and the SFST systems are also based on word graphs andeterrection techniques to
generate the suffixes required in IMT, as well as our proptgddsystem; specifically, these
systems obtain the translation of minimum edit distancé¢ogiven prefix. By contrast, the
PB and PSPBA IMT systems generate a new translation of thhesgentence at each inter-
action of the IMT process instead of generating a word gragheabeginning. This allows
such IMT systems to obtain better results but generally higher time costs per interaction.

Table 8.13: KSMR results comparison of our IMT system based on stochastic error-
correction models and four different state-of-the art IMT systemwdvgraphs were
generated by means of a monotonic SMT system). 95% confidenceailstare shown.
The experiments were executed on the Xerox corpora. Best restibaawn in bold.

Corpus AT PB SFST PSPBA | PB-SECM
Spa-Eng | 24.0+£1.3 | 18.1£1.2 | 26.9£1.3 | 19.6£1.1 | 21.2+1.2
Eng-Spa | 23.2£1.3 | 16.74+1.2 | 21.8+1.4 | 17.6:1.1 | 19.8£1.3
Fre-Eng | 40.5+1.4 | 37.2:1.3 | 45.5£1.3 | 37.0+1.4 | 41.1£14
Eng-Fre | 40.4:1.4 | 35.8:1.3 | 43.8:1.6 | 34.4+:1.2 | 37.5t1.2
Ger-Eng | 45.9+1.2 | 36.41.2 | 46.6:1.4 | 39.5£1.1 | 41.0+1.2
Eng-Ger | 44.41.2 | 40.1£1.2 | 45.7+1.4 | 39.2+1.1 | 42.7+£1.1

8.2.2 Experiments with the EU Corpus

We executed experiments on the EU corpora using our IMT Bybtsed on stochastic error-
correction models. Tabk 14shows the obtained KSMR results when translating from Span-
ish, French and German to the English language. The wordhgnaguired in the IMT pro-
cess were generated by means of a monotonic SMT system. Tightsvef the log-linear
models were tuned via MERT. The table also shows the avenagecosts per each inter-
action of the interactive translation. Again, we observesgdKSMR results and lower time
costs per interaction of the IMT system based on stochastic-eorrection models with re-
spect to the results obtained by the IMT system based orapphiase-based alignments (see
Table8.7).

We also performed experiments to compare the results ofropoged IMT system with
those of the post-editing approach. TabBlé5shows the CER, PKSR and KSR results for the
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Table 8.14: KSMR results for the three EU corpora, using an IMT system based on
stochastic error-correction models. Word graphs were generatetthgs of a mono-
tonic SMT system. MERT was performed. The average time in secomdieaion is

also reported.

Corpus | KSMR | sfinter.
Spa—Eng 26.9 0.021
Fre—Eng 23.2 0.027
Ger-Eng 31.9 0.024

Table 8.15: CER and PKSR obtained with the post-editing approach and KSR obtained
with our proposed IMT system based on error-correction modelsd(\goaphs were
generated by means of a monotonic SMT system). The results were aabfainthe

EU corpora.

Corpus | CER | PKSR | KSR
Spa—Eng | 37.4 26.7 16.7
Fre-Eng | 32.8 234 | 14.3
Ger-Eng | 43.5 30.7 | 201

Table 8.16: KSMR results comparison of our IMT system based on stochastic error-
correction models and four different state-of-the art IMT systemwdvgraphs were
generated by means of a monotonic SMT system). 95% confidenceailstare shown.
The experiments were executed on the EU corpora. Best resultscava shbold.

Corpus AT PB SFST PSPBA | PB-SECM
Spa—-Eng | 33.3:1.3 | 23.8£1.0 | 31.1+1.3 | 21.941.0 | 26.9£1.0
Fre-Eng | 28.6£1.2 | 21.5£1.0 | 28.0£1.2 | 19.5£0.9 | 23.2+1.0
Ger-Eng | 38.1+1.4 | 31.741.0 | 39.1£1.5 | 28.2+1.2 | 31.9+1.1

three EU test corpora. Again, the required human effort wast for the interactive system.

As in previous sections, we also present a comparison battheeresults obtained by
our IMT system and those obtained by state-of-the-art IM$teyps following different
translation approaches, including the alignment templé#d), the stochastic finite-state
transducers (SFST) and the phrase-based (PB) approaci¥$.tAgain, we have also in-
cluded the results obtained by our proposed IMT system bais@drtial phrase-based align-
ments (PSPBA). Table.16shows the obtained KSMR results (95% confidence intervals ar
shown). Again, the PB and PSPBA IMT systems obtained therbsslts, and our PB-SECM
IMT system outperformed the results of the AT and the SFST ByiStems, which are also
based on error-correction techniques to generate the esiffidquired in IMT.
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8.3 IMT with Online Learning

This section describes the experiments that we carriedootgtst our proposed online IMT
system presented in Chaptér In our experiments, the basic IMT system is restricted to
obtain monotonic alignments between the source and thettaegmtences. The incremental
language and phrase-based models involved in the integacéinslation process were gen-
erated and accessed by means of a yet unpublished extefsfaTHOT toolkit presented

in this thesis.

We evaluated our IMT system with online learning by meanshef KSMR measure
described in sectiof.9.3 In addition to this, we also used the well-known BLEU scare t
measure the translation quality of the first translationdtlgpsis produced by the IMT system
for each source sentence (which is automatically geneveitbdut user intervention).

8.3.1 Experiments with the Xerox Corpus

To test our proposed techniques, we carried out experinvgttighe Xerox corpora in two
different scenarios. In the first one, the fitt000 sentences extracted from the training cor-
pora were interactively translated by means of an IMT systéimout any preexistent model
stored in memory. Each time a new sentence pair was validateds used to incrementally
train the system. To save computation time, monotonic se&es used in all cases. Default
values for the weights of the log-linear model were adoptEjures8.1g 8.1band8.1c
show the evolution of the KSMR with respect to the number otesece pairs processed by
the IMT system; the results correspond to the translatiemfEnglish to Spanish, French and
German, respectively. In addition to this, for each langupagir we interactively translated
the original portion of the training corpus and the sameiporof the original corpus after
being randomly shuffled.

As the above mentioned figures show, the results clearly dsetrate that the IMT system
is able to learn from scratch. The results were similar fer ttree languages. It is also
worthy of note that the obtained results were better in absdor the original corpora than
for the shuffled ones. This is because, in the original capsimilar sentences appear more
or less contiguously (due to the organisation of the costefthe printer manuals). This
circumstance increases the accuracy of the online legrsiimce with the original corpora the
number oflateral effectsoccurred between the translation of similar sentencesdsedsed.
The online learning of a new sentence pair produces a latéfegdt when the changes in the
probability given by the models not only affect the newlyinied sentence pair but also other
sentence pairs. A lateral effect can cause that the systaarages a wrong translation for a
given source sentence due to undesired changes in theisshtisodels.

The accuracy were worse for shuffled corpora, since shufftingeases the number of
lateral effects that may occur between the translationrofiai sentences (because they no
longer appear contiguously). These results illustrateirtiportance of the order in which
knowledge is acquired when executing incremental learalggrithms that was mentioned
in section7.3. A good way to compare the quality of different online IMT s is to
determine their robustness in relation to sentence orglerkiowever, it can generally be
expected that the sentences to be translated in an interacinslation session will be in a
non-random order.
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Figure 8.1: KSMR evolution translating a portion of the Xerox training corpora. A
monotonic online IMT system with log-linear weights tuned via MERT was used.
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Alternatively, we carried out experiments in a differerdari@ng scenario. Specifically,
the Xerox test corpora were interactively translated frbm English language to the other
three languages, comparing the performance of a batch IMiesywith that of an online
IMT system. The batch IMT system is a conventional IMT systehich is not able to
take advantage of user feedback after each translatiom wielonline IMT system uses the
new sentence pairs provided by the user to revise the statistodels. Both systems were
initialised with a log-linear model trained in batch moderbgans of the Xerox training cor-
pora. The weights of the log-linear combination were adjdgor the development corpora
by means of the MERT algorithm.

Table8.17 shows the obtained results. The table shows the BLEU scar¢h@nKSMR
for the batch and the online IMT systent ¢ confidence intervals are shown). Both sys-
tems used monotonic search. The log-linear weights werestadj by means of the MERT
algorithm. The BLEU score was calculated from the first taien hypothesis produced
by the IMT system for each source sentence (see, for exathgléitial interaction in Fig-
ure 1.3). The table also shows the average online learning time f&T®ach new sample
presented to the system. All the improvements obtained thighonline IMT system were
statistically significant. Also, the average learning tinatearly allow the system to be used
in a real-time scenatrio.

Table 8.17: BLEU and KSMR results for the Xerox test corpora using the batch and
the online IMT systems. Both systems used monotonic search with log-livedghts
tuned via MERT. The average online learning time (LT) in seconds is sHomthe
online system.

Corpus IMT system BLEU KSMR LT (s)
Eng-Spa bat_ch 55.1+2.3 | 18.2+1.1 -
online 60.6+ 2.3 | 15.8£1.0 | 0.04
Eng-Fre bat_ch 33.7+2.0| 33.9£13 -
online 42.2£2.2 | 27.9-1.3 | 0.09
Eng-Ger bat_ch 20.4+-1.8 | 40.3+1.2 -
online 28.0+ 2.0 | 35.0£1.3 | 0.07

Finally, as in previous sections, a comparison of the KSMgults (95% confidence
intervals are shown) obtained by the online IMT system wittesof-the-art IMT systems
is reported in Tabl&.18 These IMT systems are based on different translation ajghes,
including the alignment templates (AT), the stochastiddhsitate transducer (SFST), and the
phrase-based (PB) approaches to IMT. Our system outpestbtine results obtained by these
systems.

8.3.2 Experiments with the EU Corpus

We executed additional experiments on the EU corpus tohiedetrning capabilities of our

proposed online IMT system. In this case, the experimentatias restricted to the French-
English language pair. In addition to this, only the secotfmbeimentation scenario described
in section8.3.1was considered here.
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Table 8.18: KSMR results comparison of our system and three different stateeedith
batch systems. The experiments were executed on the Xerox coBestresults are
shown in bold.

Corpus AT PB SFST Online

Eng-Spa | 23.2£1.3 | 16.41.2 | 21.8+1.4 | 15.8: 1.0
Eng-Fre | 40.4:1.4 | 35.8+1.3 | 43.8£1.6 | 27.9£ 1.3
Eng-Ger | 44.741.2 | 40.1+1.2 | 45.41.4 | 35.0£ 1.3

Table8.19shows a comparison of the performance of a batch IMT systetin twat of
an online IMT system when translating the French-Englist set of the EU corpus. Both
systems used monotonic search and were initialised witly-dinear model trained in batch
mode by means of the EU training corpus. The weights of thditegar model were adjusted
via MERT. The table shows the BLEU score (calculated fronfitis¢ translation hypothesis
produced by the IMT system) and the KSMR measure for the bamchthe online IMT
systems §5% confidence intervals are shown). The table also shows thexgeeonline
learning time (LT) for each new sample presented to the Bysfes can be seen in the table,
the online IMT system is not able to improve the results algdiby the batch IMT system.
The accuracy of online learning may depend of a series abfscincluding the ordering of
the test sentences, the presence or not of similar sentératesinnot be correctly translated
by the IMT system or the size of the test set (online learnéogniques are to be evaluated in
the long term). We think that one possible reason to explarésults can be the small size
of the EU test set, which is composed of o8lj0 sentences (below we show the results of
an additional experiment that tries to validate this hypei$). Regarding the learning time
per sample, a small increase can be observed with respdut tedrning times that were
reported for the Xerox corpora (see TalBld7), despite this, the proposed techniques can
still be applied in a real time scenario.

Table 8.19: BLEU and KSMR results for the French-English EU test corpus using the
batch and the online IMT systems. Both IMT systems used monotonictsddERT

was performed. The average online learning time (LT) in seconds isrsfar the
online system.

Corpus | IMT system BLEU KSMR LT (s)
batch 47.6£2.0 | 21.5+1.3 -
online 47.6+1.9 | 21.5-1.0 | 0.342

Fre-Eng

In order to determine the influence of the size of the testrs¢hie performance of the
online IMT system, we repeated the same experiment usindtamative partition of the
French-English EU corpus. Specifically, the 1a800 sentence pairs of the French-English
EU training corpus were used as the new test set and all thkepsones as the new training
set. Table8.20 shows the BLEU score, the KSMR measure and the averagergaime
(LT) in seconds that were obtained during the interactie@gtation of the alternative test
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set using a batch and an online IMT system. Both systems usadtanic search and their
log-linear weights were adjusted using the MERT algorithm.

Table 8.20:BLEU and KSMR results for an alternative partition of the French-English
EU corpus using the batch and the online IMT systems. Both systems usextanic
search. The log-linear weights were tuned by means of the MERT algoriffime
average online learning time (LT) in seconds is shown for the online system

Corpus | IMT system BLEU KSMR LT (s)
batch 45.1+0.8 | 21.6+0.4 -
online 46.5£0.8 | 20.9+0.4 | 0.380

Fre-Eng

As can be seen in the table, the online IMT system is now abbbdtain slight improve-
ments both in terms of BLEU and KSMR with respect to the baM kystem. There are
no significant differences between the obtained averageiteptime and that obtained while
interactively translating the standard test corpus.

8.4 Summary

In this chapter we have empirically demonstrated that thecept of partial phrase-based
alignment can be successfully used to implement IMT systérhe details of the proposal
were described in sectidgh2 The experiments we carried out show the great impact of the
smoothing techniques in the accuracy of our system. The t@tibn of a phrase-based
model estimator with a lexical distribution yielded the tresults. Three different combina-
tion techniques were tested: backing-off, linear intesioh and log-linear interpolation. As
we expected, backing-off and linear interpolation workettésr.

We have also compared the results obtained by our systenthvatie obtained by state-
of-the-art IMT systems. Our system obtained similar resaftd in some cases clearly out-
performed the results obtained by the state-of-the-atesys

In addition to this, we also carried out experiments to testiMT system based on error-
correction techniques described in sectiof The results of the experiments show that the
IMT system based on error-correction techniques obtainsevesults but is faster than the
IMT system based on partial phrase-based alignments thatisa proposed in this thesis.
Again, we compared the proposed IMT system with other siftbe-art IMT systems. Our
IMT system outperformed the results of those state-ofsthet IMT systems that are based
on word graphs.

We empirically demonstrated that the two IMT systems pregas this thesis were able
to reduce the user effort that is required to generate domatslations with respect to using
a conventional SMT system followed by human post-editirg.this purpose, we compared
the KSR results obtained by our proposed systems with the&@@ERPKSR results calculated
from the fully-automatic translations.

Finally, we also performed experiments to test the IMT gystéth online learning tech-
nigues proposed in Chaptér The results of the experiments show that our techniquewsall
the IMT system to learn from scratch or from previously estied models. In addition to this,
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the online learning techniques proposed in this thesisvalibus to significantly outperform
the results obtained by other state-of-the-art IMT systdesxribed in the literature.
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CHAPTER9

CONCLUSIONS

In this chapter we summarise the achievements of this tlaesigrovide a list of publica-
tions related with these achievements. Additionally, thapter is concluded with a list of
directions for future work.

9.1 Summary

In Chapter2, we defined the list of scientific ([SC]) and technologic ([[y @oals of this
thesis. These goals were classified into fully automatic iatetactive phrase-based SMT
goals. In this section we summarise the achievements ofttegss with respect to the list of
scientific and technologic goals:

1. Fully-automatic phrase-based SMT achievements

e Improved phrase-based model estimatiofiSC]

We proposed an alternative estimation technique for pkHvased models which
we have called BRF (bisegmentation-based relative fregp)esstimation. BRF
estimation tries to reduce the strong heuristic compongtiteostandard estima-
tion method by considering the extracted phrase pairs aopaomplete biseg-
mentations of the source and target sentences. We thethestudied the com-
putational complexity of the estimation algorithm, finditizat the problem is
tractable under some conditions that are commonly met tstiegicorpora. This
was empirically demonstrated by means of a series of expetsnlt is also im-
portant to stress that the proposed technique did not reqduitional constraints
to be executed.

Additionally, we also carried out translation quality expgents. The standard
estimation technique slightly outperformed our propossihnique, but the dif-
ferences were not statistically significant. In spite o6{HBRF estimation ob-
tained higher likelihood values than the standard estonagchnique for corpora
of different complexity. One possible explanation for tlegative results may be
that our estimation technique overfits the training datayway, we think that the
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acceptable time cost of BRF estimation makes it interestsg starting point to
implement more sophisticated estimation techniques foaggibased models.

e Phrase-based model estimation from very large corpordl C]

We proposed a specific training procedure that allows usaia phrase-based
models from corpora of an arbitrary size without introdgca significant time

overhead. The proposed training procedure works by traméfig memory re-

quirements into hard disk requirements. One advantagesgfitbposed estima-
tion technique is its ability to collect the information tha required to gener-
ate direct and inverse probabilities in only one iteratiorrahe set of training

samples. The direct and inverse probabilities can be effigi@btained from

the collected information using appropriate data stresuExperimental results
obtained on the Europarl corpus shows that the proposeditpats efficiently

estimate the parameters of phrase-based models, in soegeaan outperform-
ing the efficiency of the standard estimation algorithm. didition to this, the

proposed technique can be easily parallelised.

e Development of open-source software for phrase-based SMTC]
We developed the open-sourcel@T toolkit for SMT (see AppendixB). The
THoT toolkit allows to estimate phrase-based models using tfferdit estima-
tion techniques, namely, the well-known, standard phkesged model estimation
technique and the BRF estimation technique proposed irthbss. The HoT
toolkit has been successfully used throughout this thesexecute SMT and
IMT experiments. The development of thei@T toolkit also aimed at offering
a publicly available resource for the research communitye Molkit is hosted
by SourceForgkand released under GPL license. According to informatian pr
vided by the SourceForge web sitesi@T has been downloaded more than one
thousand times since its first release. In addition to thistdolkit has been cited
in different research papers.

e Specific phrase-based model derivatiofSC]

We proposed a specific derivation for phrase-based modatistlows us to ob-
tain a set of statistical submodels governing differeneatpof the translation
process. In addition to this, these submodels can be intemtias individual
components of a log-linear model. Such log-linear model suesessfully used
throughout this thesis to define and implement differenistaoncluding a phrase-
based SMT decoder, a tool to generate alignments at phraslealed a set of
IMT systems using different technologies.

e Branch-and-bound search for phrase-based SMTSC]

We described a search algorithm for SMT which is based on thlékmown
branch-and-bound search paradigm. The computational leaitypof the pro-
posed algorithm can be bounded by the complexity of a weblakn dynamic
programming algorithm described in the literature. Theppeed algorithm in-
corporates different pruning techniques. Among such mgitéchniques, the
most important one is the maximum stack size limitation. phaing efficiency

ahttp://sourceforge.net/
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is improved by using multiple stacks. Specifically, thos@dtheses with the
same number of aligned source words are stored into the dawtie s

The initial search algorithm can be modified to obtain nevoatgms with dif-
ferent properties, including the breadth-first searchritlym and the generalised
multiple-stack search algorithms. Such generalised #lgos can explore the
search space either in a best-first or a breadth-first manner.

The search space can be explored in a breadth-first fashimodifying the scor-
ing function of the initial search algorithm. We theoreligalemonstrated that
the computational complexity of best-first search canndidaended by the com-
plexity of breadth-first search when a maximum stack sizédition is imposed.
Nevertheless, empirical results show that best-first bearess time consuming
than breadth-first search when translating simple corpont@ddition to this, best-
first search executes a less aggressive pruning of the sgaack. As a result,
best-first search allowed us to slightly improve the avesagee per sentence for
a given test corpus with respect to breadth-first search.

Generalised best-first search algorithms determine thédauof stacks that will
be used during the search process by means of the so-callealgrity parameter.
This parameter allows us to make a tradeoff between the &atyesof single- and
multiple-stack algorithms. Empirical results were notifies, obtaining a worse
average score per sentence with respect to the initial idigor One possible
reason for these results may be that the proposed algoriglomss hypotheses
with different number of aligned words in the same stack.

Generalised breadth-first search algorithms improve tomipg efficiency by
defining equivalence classes for the partial hypothesesh 8quivalence classes
are used to map partial hypotheses to stacks. Empiricaltseshow that these
algorithms outperform conventional breadth-first seadgordthms in terms of
average score and time cost per sentence.

Finally, we compared the translation quality obtained byeadler using gener-
alised breadth-first search with that obtained with the Ma¥ecoder. The ob-
tained results were similar for both decoders when trainglahe test sets of
the Xerox and EU corpora. Regarding the Europarl corporasddmbtained
similar results to those obtained by our proposed decodenwtanslating from
French and German to the English language, and significaatfyerformed our
decoder for the Spanish-English language pair. Nevedhgléthe lexical log-
linear components of the Moses decoder are removed (ouopedaiecoder does
not include them), then the observed differences betweetwtb decoders were
not statistically significant.

Efficient decoding with large phrase-based modelgT C]

We proposed a technique to efficiently handle phrase-basee@lsicomposed of
millions of parameters. The proposed technique is stronglgired by a clas-
sic concept of computer architecture: cache memory. Thpgsed technique
allows to transform main memory requirements into disk nesgents without
introducing significant time overhead. In addition to thig also proposed a spe-
cific data structure with very low memory requirements torespnt the phrase

183



Chapter 9. Conclusions

pairs that compose the phrase models. Experiments cauiteshahe Europarl
corpus show that the proposed cache memory architectura bgsemely low
rate of cache misses, allowing a very efficient access tosphbased model pa-
rameters. Regarding the proposed data structure, we ealpirdemonstrated
that it greatly reduces the memory requirements with rdgpebe requirements
of standard representation techniques.

e Generation of phrase-based alignmentfSC]
We studied the problem of generating alignments at phrasd [&he main dif-
ficulty that may be encountered during the generation ofgghtavel alignments
are those situations in which the phrase pairs that are nemjto compose the
phrase alignments are not contained in the phrase table pripesed solution
is based on the use of a phrase-based statistical alignneelntogether with
a set of smoothing techniques. The smoothing techniquesisterof different
statistical phrase-based model estimators and a lexisttiition which can be
combined by means of backoff techniques, linear interpmiadr log-linear inter-
polation. In addition to this, a specific search algorithreab efficiently explore
the space of possible phrase alignments was proposedf{spigionly the hy-
pothesis expansion algorithm has to be modified).
Although we were interested in evaluating the quality of fease-to-phrase
alignments, there is not a gold standard for them. As a restiitis, we needed
to refine the obtained phrase alignments to word alignmentsder to compare
them with other existing word alignment techniques. Expental results for a
well-known shared task on word alignment evaluation wetaiabd. The results
show the great impact of the smoothing techniques on alighmeality. As
we expected, backing-off and linear interpolation workedtdr than log-linear
interpolation.

2. Interactive phrase-based SMT achievements

e Alternative IMT techniques [SC]
A common problem in IMT arises when the user sets a prefix wbécimot be ex-
plained by the statistical models used by the IMT system.higyreason, existing
systems use specific techniques to robustly generate tfeesutequired in IMT.
In this thesis we presented two novel IMT techniques whickl&athis problem
in different ways. The first one constitutes an applicatibithe techniques to
generate alignments at phrase level that were also presiritas thesis. In this
technique, robustness is ensured via the application ob8rimg techniques over
the phrase-based models as well as by means of a specifib ségocithm.
The second IMT technique proposed in this thesis is basedhe@mpplication
of error-correction techniques over the target senteneesrgted by the SMT
system, allowing us to obtain the translation that bettptains the user prefix. In
contrast with other similar IMT systems described in theréiture, we modify the
statistical formalisation of the IMT process to justify thee of error-correction
techniques. As it is explained in Chapt&rthis new IMT formalisation can be
generalised for its use in other pattern recognition apfibos.
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Empirical results obtained on the Xerox and the EU corporaatestrate that the
two IMT systems proposed in this thesis are competitive siitte-of-the-art IMT
systems. The IMT system based on the application of erngection techniques
was faster than the IMT system based on phrase-level aligtsmleut obtained
worse results.

Additionally, we also empirically demonstrated that th@tgroposed IMT sys-
tems reduced the user effort that is required to generateatdranslations with
respect to using a conventional SMT system followed by huptet-editing.
Finally, the IMT techniques proposed in this thesis havenbeglemented into
an IMT prototype. Such prototype is described in Appertix

e Online learning for IMT [SC]

We presented an IMT system that is able to learn from usebfegdby means
of online learning techniques. This contrasts with exgsli T systems, which
are based on the well-known batch learning paradigm. Thpgsed system
is able to incrementally extend the statistical models live@ in the translation
process, breaking technical limitations encountered lerotvorks. Empirical
results obtained on the Xerox and the EU corpora show thaectiniques allow
the IMT system to learn from scratch or from previously estiadl models. One
key aspect of the proposed system is the use of HMM-basednadigt models
trained by means of the incremental EM algorithm.

9.2 Scientific Publications

In this section we summarise the list of publications detifrem the work presented in this
thesis.

The BRF phrase-based model estimation procedure alongthétiTHOT toolkit pre-
sented in Chapte3, were described in an international conference:

e D. Ortiz, I. Gar¢a-Varea, and F. Casacuberta. Thot: a toolkit to train ghimsed
statistical translation models. Proceedings of the Machine Translation Summit X
pages 141-148. Asia-Pacific Association for Machine Tedimsi, Phuket, Thailand,
September 2008CORE B

The THOT toolkit also yielded a publication in an international wshlop as an invited
talk as well as in a national and an international conference

e D. Ortiz, I. Garéa-Varea, F. Casacuberta, L. Ragrez, and J. Toas. Thot. New
features to deal with larger corpora and long sentencesTChHETAR OpenLab on
Speech Translation Workshoprento, Italy, 30th March - 1st April 2006. http://tc-
star.itc.it/openlab2006/dayl/GarciaVarea.pafited talk .

e D. Ortiz, I. Garda-Varea, and F. Casacuberta. Estirbadle modelos de traduéai
de secuencias de palabras a partir de corpus muy grandeanteettiot. InActas de
las IV Jornadas en Tecnol@s del Habla pages 65-70, Zaragoza, Spain, November
2006.
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e R. San-Segundo, A.é&ez, D. Ortiz, L. F. D'Haro, I. Torres, and F. CasacubertealE
uation of alternatives on speech to sign language traaslatiin Proceedings of the
Interspeech conferengpages 2529-2532, Antwerp, Belgium, August 2000RE A

The techniques to estimate phrase-based models from vegy ¢@rpora presented in
Chapter3; as well as the technigues to access the resulting modetgdhe decoding stage
presented in Chapter were described in a national and an international conéeren

e D. Ortiz, |. Garéa-Varea, and F. Casacuberta. Algunas soluciones al pnabtiz|
escalado en tradudm autonatica estattica. InActas del Campus Multidisciplinar
en Percepdin e Inteligenciapages 830-842, Albacete, Spain, July 2006.

e D. Ortiz, |. Gar¢a-Varea, and F. Casacuberta. A general framework to dehlthe
scaling problem in phrase-based statistical machinelaéms. InProceedings of the
3rd Iberian Conference on Pattern Recognition and Imagelysig volume 4478 of
Lecture Notes in Computer Scienpages 314-322. Springer Verlag, Girona (Spain),
June 2007CORE C

These techniques also yielded a publication in an intewnatijournal:

e D. Ortiz-Martinez, I. Garta-Varea, and F. Casacuberta. The scaling problem in the
pattern recognition approach to machine translatioRattern Recognition Letters
29:1145-1153, 2008CR

A predecessor of the work on decoding with branch-and-b@aatch algorithms pre-
sented in Chaptet was published in an international conference. In this weitkgle-word
alignment models instead of phrase-based models were used:

e D. Ortiz, I. Garda-Varea, and F. Casacuberta. An empirical comparisonaukst
based decoding algorithms for statistical machine traiosla In Proceedings of the
1st Iberian Conference on Pattern Recognition and Imageyaig volume 2652 of
Lecture Notes in Computer Scienpages 654-663. Springer Verlag, Mallorca, Spain,
June 2003CORE C

Some of the features of the generalised branch-and-bowardhsalgorithm for phrase-
based models were presented in an international workshop:

e D. Ortiz, |. Garda-Varea, and F. Casacuberta. Generalized stack decddmgtlams
for statistical machine translation. Rroceedings of the HLT-NAACL Workshop on
Statistical Machine Translatigmpages 64—71, New York City, USA, June 4-9 2006.

The proposed branch-and-bound search algorithms propogbis thesis were used to
implement an improved IMT system in the following intermetal conference:

e G. Sanchs-Trilles, D. Ortiz-Martnez, J. Civera, F. Casacuberta, E. Vidal, H. Hoang.
Improving interactive machine translation via mouse axgio In Proceedings of the
Empirical Methods in Natural Language Processing confeeepages 485—-494, Hon-
olulu, Hawaii, November 2008CORE A
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Additionally, The proposed branch-and-bound search @lgos were also used to em-
pirically demonstrate theoretical results related to lwsgtions in SMT. This work was
presented in an international journal:

¢ J. Andies Ferrer, D. Ortiz Mamez, |. Garca Varea, F. Casacuberta Nolla. On the use of
different loss functions in statistical pattern recogmitapplied to machine translation.
In Pattern Recognition Letter29(8):1072-1181, 2008CR

The phrase-level alignment generation technique destnib&haptert was published in
an international conference:

e D. Ortiz-Marfinez, |. Garéa-Varea, and F. Casacuberta. Phrase-level alignmentazene
tion using a smoothed loglinear phrase-based statistigainaent model. IrProceed-
ings of the Conference of the European Association for Mecfiranslation pages
160-169, Hamburg, Germany, September 2@@8t paper award CORE B

This contribution received the best paper award sponsoréldebSpringer Verlag edi-
torial to a paper accepted for publication in the EAMT coafere.

A predecessor of the work on phrase-level alignment geioeratentioned above was
presented in an international conference:

e |. Garda-Varea, D. Ortiz, F. Nevado, P. A.6Bez, and F. Casacuberta. Automatic
segmentation of bilingual corpora: A comparison of differeechniques. IfProceed-
ings of the 2nd Iberian Conference on Pattern Recognitiahlarage Analysisvolume
3523 ofLecture Notes in Computer Sciengages 614—621. Springer Verlag, Estoril,
Portugal, June 20052ORE C

The generation of phrase-level alignments was applied péeiment a technique to prune
the parameters of phrase-based models. Such techniqueresented in an international
conference:

e G. Sancks-Trilles, D. Ortiz-Martnez, J. Gonalez-Rubio, J. Gorédez, F. Casacuberta.
Bilingual segmentation for phrasetable pruning in statiétmachine translation. In
Proceedings of the European Association for Machine Tetisst, pages 257-264,
Leuven, Belgium, May, 2011CORE B

The IMT system based on partial phrase-based alignmentsilded in Chaptef was
published in an international conference:

e D. Ortiz-Martinez, |. Garta-Varea, and F. Casacuberta. Interactive machine ttéorsla
based on partial statistical phrase-based alignmentsPrdoeedings of the Interna-
tional Conference Recent Advances in Natural Languaged2sing pages 330-336,
Borovets, Bulgaria, September 200pafer selected to appear in the volume “Best
RANLP papers”). CORE C

This contribution has been selected to appear in the voluBest‘RANLP papers”

published by John Benjamins, due to the excellent revieasived at this conference.
In addition to this, the authors have been invited to submigéended version of the
paper to the JNLE (Journal of Natural Language Engineering)
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The IMT techniques presented in Chapsewere used to build different prototypes that
were presented in international conferences:

e V. Alabau, D. Ortiz, V. Romero, and J. Ocampo. A multimodadictive-interactive
application for computer assisted transcription and tedios. In Proceedings of the
International Conference on Multimodal interfacgmges 227-228, New York, NY,
USA, 2009. ACM.CORE B

e D. Ortiz-Marfinez, L. A. Leiva, V. Alabau, and F. Casacuberta. Interacthachine
translation using a web-based architecture. Ptacedings of the International Con-
ference on Intelligent User Interfacesages 423-425. Hong Kong, China, February
2010.CORE A

e V. Alabau, D. Ortiz-Marinez, A. Sancls, F. Casacuberta. Multimodal interactive
machine translation. IRroceedings of the International Conference on Multimodal
Interfaces Beijing, China, November 201@CORE B

Additionally, the IMT system based on error-correctionhtgiques was the basis of two
new IMT system proposals which were presented in internaticonferences:

¢ J. Gonalez-Rubio, D. Ortiz-Maihez, F. Casacuberta. On the use of confidence mea-
sures within an interactive-predictive machine transtasystem. IrProceedings of
the European Association for Machine Translation confeeeBaint Raphael, France,
May, 2010.CORE B

e J. Gonalez-Rubio, D. Ortiz-Maitez, F. Casacuberta. Balancing user effort and trans-
lation error in interactive machine translation via confide measures. IAroceedings
of the 48th Annual Meeting of the Association for Computetid_inguistics pages
173-177, Uppsala, Sweden, July, 200DRE A

The online learning techniques for IMT presented in Chaptess well as a prototype of
an IMT system with online learning capabilities were puidid in two international confer-
ences:

e D. Ortiz-Martinez, |. Garta-Varea, F. Casacuberta. Online learning for interactive
statistical machine translation. Rroceedings of the North American Chapter of
the Association for Computational Linguistics - Human Laage Technologiepages
546-554, Los Angeles, USA, June 20000RE A

e D. Ortiz-Martinez, L. A. Leiva, V. Alabau, |. Gafa-Varea, and F. Casacuberta. An
interactive machine translation system with online legni In Proceedings of the
49th Annual Meeting of the Association for Computationalgiistics - Human Lan-
guage Technologiepages 68—73, companion volume, system demonstratiomss, Po
land, USA, June 2011ICORE A

Finally, part of the work on IMT presented in this thesis wB®gublished in three book
chapters:

188 DOM-DSIC-UPV



9.3. Future Work

e J. Civera, J. Gorddlez-Rubio, D. Ortiz-Maihez. Interactive machine translation. In
Multimodal Interactive Pattern Recognition and Applicats pages 135-152, Springer,
June, 2011.

e D. Ortiz-Martinez, |. Gar@-Varea. Incremental and adaptive learning for intevacti
machine translation. IMultimodal Interactive Pattern Recognition and Applicats
pages 169-178, Springer, June, 2011.

e L.A. Leiva, V. Alabau, V. Romero, F. M. Segarra, Rar®hez Sez, D. Ortiz-Maiinez,
L. Rodiiguez. Prototypes and demonstratorsMirtimodal Interactive Pattern Recog-
nition and Applicationspages 227-266, Springer, June, 2011.

9.3 Future Work

In this section we outline future directions for further deapments of the work presented in
this thesis.

e Richer phrase-based models using BRF estimation

In this thesis, an alternative estimation technique foapafbased models called BRF
estimation has been proposed. As was explained in Chaptiee proposed technique
can be straightforwardly modified to obtain more detailddrimation about the biseg-
mentation process, including information about bisegitiom lengths, about source
and target phrase lengths or about reorderings. This agtnath the vast majority of
phrase-based models described in the literature, wheydlmphrase-to-phrase prob-
abilities and (in some cases) the reordering probabildresestimated from training
data.

e Improved phrase-based model estimation using EM algorithm

As was explained in Chapté&r the BRF estimation algorithm can be modified to effi-
ciently compute the sum of the probability for each posdilidegmentation composed
of consistent phrase pairs. This extension can be used tialfyacompute the E step
of the EM algorithm. This partial computation can be justifizy means of the sparse
version of the EM algorithm proposed iNIH98]. The resulting estimation procedure
would be similar to that proposed iD{5ZK06]. However, in that work the maximum
phrase length is limited to three words and only lexical aistbttion parameters are
estimated. We think that our proposed computation of thesp &fll allow us to re-
move the maximum phrase length limitation. In addition tig,tbur proposed specific
phrase-based model derivation can be applied to determinenplete set of distribu-
tions to be estimated.

Additionally, the information generated by our proposedB#3timation algorithm can
be used to generate random samples from the set of bisegioeatéat are composed
of consistent phrase pairs. For the future we plan to stuttyisfsampling technique
can be useful to estimate phrase-based models by meanshbtite-Carlo EM algo-
rithm [WTOQ].
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Chapter 9. Conclusions

e Further development of open-source software

The THOT toolkit constitutes a publicly available resource for thdTSscientific com-
munity and has been successfully used to carry out expetapessented in this thesis.

In addition to this, HOT has also been the starting point to develop new code and tools
for SMT and IMT also used in this thesis, including a phraasddl translation decoder,

a tool to generate alignments at phrase level, IMT engioeds to incrementally esti-
mate statistical translation models, etc. In the near &jtare plan to study the interest

of releasing public versions of this software.

e Further applications of statistical phrase-level alignmats

We studied the problem of generating alignments at phraség lehich can be seen as a
slightly modified version of the search problem. One possilpiplication of the gener-
ation of phrase-level alignments is in the area of multirse SMT [ONO1]. In that pa-
per, the PROD ranking technique is described. This teclknigquires the generation
of phrase-level alignments between two languages, but suthors report coverage
problems that make the technique impractical. These pmbtan be solved by means
of the techniques proposed here. In addition to this, thegiease alignments for each
sentence pair can be used to perform a Viterbi-like estomatdf phrase-based models
as it is proposed inWMN10]. Phrase-level alignments have been also used in dis-
criminative training [BCKTO06], training of phrase segmentation mode&DAS0],
etc.

e Development of more complex error-correction models for IMT

In this thesis we proposed an IMT system based on stochasticarrection mod-
els. These stochastic error-correction models allow usnib the target translation
that better explains the prefix given by the user. We have psebabilistic finite
state machines (PFSMs) with ad-hoc parameters as ern@etion models. One pos-
sible continuation of the presented work is to estimate #rameters of the PFSMs
by means of the EM algorithm. In addition to this, PFSMs camdpaced by more
complex models, such as the IBM or the HMM-based alignmerdetso One advan-
tage of these models with respect to models based on PFSh& ihey can represent
non-monotonic alignments between the target translatiortlae user prefix.

e Implementation of interactive systems using the proposedeaneralised formalisa-
tion
One of the IMT techniques presented in this thesis uses amattve formalisation
of the IMT process in which the target sentence generatetidgystem and the user
prefix constitute separated entities. As it was explainkis, alternative formalisa-
tion can be generalised for its use in other pattern reciognétpplications, including
multi-source translation, computer assisted speechdrigtion, multimodal computer
assisted translation and computer assisted transcriptitext images. For the future,
we plan to implement the pattern recognition applicatioemntioned above following
our general formalisation.
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9.3. Future Work

e Further applications of incremental learning in SMT and IMT

We implemented an IMT system with online learning which isdxhon the application
of incremental learning techniques. It is worth noting et incremental techniques
proposed here can also be exploited to extend SMT systenfadtinour proposed
IMT system is based on an incrementally updateable SMT systeor the near future
we plan to study possible applications of our techniques loothe SMT and IMT
frameworks. One example of these applications is activaileg (the interested reader
can find a survey on active learning i84t09). In the active learning paradigm, the
learner pose queries, usually in the form of unlabelled destmnces to be labelled by
an oracle. Incremental learning can help in those activanileg scenarios in which
the time required to process a newly labelled sample is slogvtd the necessity of
performing a complete retraining of the set of labelled sasp

¢ Apply online learning techniques in other interactive appications

In this thesis we presented an IMT system with online learni@nline learning fits
nicely into the IMT framework, since the user generates maiming samples as a by-
product of the use of the IMT system. The proposed onlinenlagrtechniques require
the definition of incremental versions of the statisticald®is involved in the inter-
active translation process. These online learning teclesiq¢gan be exported to other
interactive applications, such as computer assisted bes@tscription, interactive im-
age retrieval, etc (se& RCGVO07] for a complete list).
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APPENDIXA

INCREMENTAL EM ALGORITHM
FOR HMM A LIGNMENT MODEL

This appendix shows the details of the derivation of thedrmmntal EM algorithm for HMM-
based alignment models. Specifically, we have applied that&fdtion given by 7.8). The
general details of such derivation were presented in Chapte

A.1 Sufficient Statistics

The application of the incremental view of the EM algorithiveq by iteration {.8) requires
the definition of a vector of sufficient statistics for HMM<4mad alignment model. The set of
parameter® for HMM-based alignment models is defined by Equatior().

The vector of sufficient statistics f@, s(f,e,a) = >, sn(f,, en,a,), is obtained as
the sum of a set of counts for each training sampléf,,, e,,, a,,). Such set of counts for the
samplen is given by Equationq.24) and includes counts of aligned words§f |e; £, e,,, a,,),
and counts of the width of alignment jumps;l|i, I;£,, e,,a,). It can be demonstrated
that s(f, e, a) constitutes a sufficient statistic by means of the FishgmiNm factorisation
theorem.

Theorem 1 (Fisher-Neyman factorization theorem)Let f(O,x) be the density or mass
function for the random vectax, parametrised by the vect@. The statistics(x) is suf-
ficient for © if and only if there exist functions(x) (not depending o®) and b(O, s(x))
such that

f(8,x) = a(x) - (8, s(x))

for all possible values at.

We use the Fisher-Neyman factorisation theorem to denaiesthats(f, e, a) consti-
tutes a vector of sufficient statistics for the HMM-basedmahent model. For this purpose,
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the log-likelihood function of the complete data that canob¢ained by combining equa-
tions (7.22 and (7.23) is represented in terms of the sufficient statistics:

N [fn] |en|

@ f,e, a Zzzanj7 10gp nj|enz)

n=1j=1 i=1

‘enl

Z(an(j—l)i/ anji) : 10gp(i|il, |en|) (Al)

/=1

N
=33 elflesfn, en,an) - logp(fle)+

feEF e€& n=1

I N
> Z D D clili' Ik en,an) logplili', 1) (A2)

VI i=1 =0 n=1
= a(f>e7a) : b(®75(fae7a)) (AS)

wherea(f,e,a) = 1 andb(0, s(f, e, a)) is equal to the right-hand side of Equatioh ).
By the Fisher-Neyman factorisation theorettt, e, a) is sufficient for©.

A.2 E step

The E step of the incremental EM algorithm requires the cdatmn of the expected values
of the sufficient statistics for each data itefy) = E, [sn(fn,en,a,)], whereg,(a,) =
p(an|f,, e,, O¢1); 5% includes expected counts of the foretf|e; £, e,,a,)") and
c(ili', I; £y e, 2, ).

To computec(f|e; £, en, a,)® andc(ili’, I; £, e,, a,)®, the expected values af, ;;
and(a,,(;_1)ir an;i), respectively, are to be calculated.

The terma'’). is calculated as follows:

nji

’Efj)’b = p(anji =1 ‘ fn,en, @(t))
(£, a5 = 1]en, @(t))

len|

Z p(fn>anﬁ =1 | €n, @(t))
=1

p(f f7anji = 1|en7®(t)) (f |erl) | nlaanji = 1>ena®(t)>

n

Ienl

f,
2 p( £, @ = 1en, 00) - p(f, 1 1,1, = 1,e,, 00)

Qnji * Bnji

- (A4)

len|
Ongi * Bnji

i=1
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A.3. M step

where then and recursive functions are given by Equatiois3) and (7.33, respectively.
The term(a,, ;1) anji)“) is given by the following expression:

(an(j—l)i’anji)(t) = plap—ni = Lag; = 1|f,, ey, o)

p(fnsan—1e = Lag; =1|e,, 01)

- |en‘ lenl
p(fruan(jfl)f’ = Lanji =1 | €n, @(t))

=11=1

(A.5)
where
P(fns a1y =1 anji = 1]€,:01) = p(£, 17 a1y = 1] e,, 00).
pangi = 1|£,07 " an1yp = 1,e,,0)-
P | 87~ @Gy = L = 1,,,0)-
(fn(fl‘lﬂ s anGo iy = Lag = 1,e,,00)
=an(j— 1y P(li', |en)” p(fnsleni) ™ Brji (A.6)
Then,

Qn(j—1)i’ * p(2|z/, |en|)(f) p(fnj|enz)(f) : ani
len] |en]

Z Z Qn(j—1)1" (I | i/» |en|)(t) 'p(fnj|eni)(t) . ani

=11=1

(an(jfl)i’anji)(t) = (A.7)

A.3 Mstep

The M step of the incremental EM algorithm obtains the modeameters@®), that max-
imises the log-likelihood of the complete data given theestpd values of the sufficient
statistics 5.

If we replaces,, by 59 in EquationA.2, we obtain the functio)(©|0®~1)) expressed
in terms of the sufficient statistics:

N
QO ) =" > clflefu enan)® logp(fle)

fEF e€€ n=1

I I N
3N NS eilif I fa en,20) M - logp(ili', 1) (AB)

VI i=1 =0 n=1
(A.9)
The maximum-likelihood parameters are given by:

O = argmax{Q(0|0¢ 1)} (A.10)
(]
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where © includes lexical and alignment parameters that are sulgettte following con-
straints:

>, p(fle)=1 Ve

feF

I (A.11)
@, I)=1 Vv1<¢ <Tandl
i=1

To ensure that the previous constraints are satisfied, weedefigrange multipliers:

-2 e <Z p(f|6)1>

A= 6615 fer (A.12)
- % S (Satltn 1)
=11 i=1
which are introduced in Equatioi(L0), resulting in the following expression:
O = arg max{m}iax QB0 V) + A} (A.13)
e

The maximum-likelihood parameters are obtained by takimgivdtives of Equa-
tion (A.13) with respect t® andA and equating to zero.

According to this maximisation procedure, the lexical paetersp(f|e), are updated as
follows:

Q(e]et-1) al
( (f|9p(f| Z f‘e fnaenyan) (f‘ ) - O (Al4)
(t=1)y
9616 Z ~1=0 (A.15)
OAe —
Reorganising terms

N
p(fle) =AY el fle; fus en, an)? (A.16)

n=1
> p(fle) =1 (A.17)

fer

N
substitutingp(fle) by A\Z1 S ¢(fle; £, en, a,) ) in Equation A.17), we get:

n=1
N
AT el flesfa en,a,)® =1 (A.18)
feFn=1
where
N
Ae =D c(fle;fn, en,a,)? (A.19)

feFn=1
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A.3. M step

Replacing)\. into Equation A.16) we obtain

c(fle; £y enyan)

HMZ lmz

p(fle)® = —=
Z
frerF

(A.20)
(f,|€? f’ﬂ) enﬂ a’n)(t)

Finally, the update equations for the alignment paramgi¢ils’, I), are given by:

QO60¢D) + A

c(i|i’ I; £ny en,a,) - p(i)i’, 1)~ = Xop =0 (A.21)

N
Op(ili', I) n;
I
QO )+ A 1
= N—-1= A.22
Y ;p(ZIZ ) 0 (A.22)
SO
N
D) =N Y el T e, an) (A.23)
n=1
I
> p(ili' 1) =1 (A.24)
=1
N
substitutingp(ili’, I) by A\;;; S e(i|i’, I; £,, e,, a,)® in Equation @.24), we obtain
n=1
I N
Mot DO eili I en,a,) P =1 (A.25)
i=1n=1
where
I N
Xer =3 elili ;£ en,2,) " (A.26)
i=1n=1

and replacing\; ; into Equation A.23), we obtain

N

Z C(i‘ilkanaenaan)(t)
plili', )" = = (A.27)
> (i, I; £y enya,)®

1n=1

M~

—
Il
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Appendix A. Incremental EM Algorithm for HMM Alignment Model
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APPENDIXB

THE OPEN-SOURCE THOT
TOOLKIT

Open-source software constitutes a valuable resourcbhdaesearchers. We have developed
the open-source HOT toolkit for PB-SMT, which is freely and publicly availabled it has
been extensively used throughout this thesis.

B.1 Design Principles

The open-sourceHOT toolkit has been developed using the C++ and the AWK programgmi
languages. The design principles that have led the deve&oppnocess were:

e Modularity and extensibility : The THOT code is organised into classes for each as-
pect of its main functionality. Abstract classes are usedmaégppropriate to define the
basic behaviour of the functional components of the toolkitaddition to this, the use
of abstract classes also allows to easily extend the tdoikdtionality by means of the
well-known object-oriented programming mechanism of fitaace.

e Flexibility : it works with different and well-known data formats, inding data for-
mats used by the well-known GIZA++, Pharaoh or Moses toalkit

e Usability: the toolkit functionality is easy to use, the code is easgtorporate to new
code.

e Portability : It is known to compile in the following architectures: Lixtested for
different kernel versions), Windows (using cygwin), Sura®p Sun Solaris, MacOS
X, DEC Alpha and FreeBSD.

B.2 Toolkit Functionality

The THOT toolkit implements the following functionality:
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Appendix B. The Open-SourdeoT Toolkit

e Operations between alignments As stated in sectior3.2, it is common to apply
operations between alignments in order to make them bétter.toolkit provides the
following operations:

Union: Obtains the union of two matrices.

Intersection: Obtains the intersection of two matrices.

Sum Obtains the sum of two or more matrices.

Symmetrisation Obtainssomethingoetween the union and the intersection of
two matrices. It was defined i©fch03 for the first time, and there exist different
versions.

e RF and BRF estimatiort The THOT toolkit implements both the relative frequency
(RF) and the bisegmentation-based RF (BRF) estimatiomiquhs described in sec-
tions3.2and3.3respectively.

e Scalable estimation The estimation techniques implemented by theT toolkit can
be applied on very large corpora by means of the techniquasided in sectior3.4.
The maximum size of the corpus is only restricted by avadalisk space.

e Parallel estimation: The THOT toolkit incorporates a specific utility that allows the
parallel execution of the main functionality of the toolkit multiprocessors or PBS
(portable batch system) clusters.

e Phrase-based models library The toolkit provides a library of functions that allows
us to generate phrase-based models as well as to accesstistecat parameters con-
tained in them.

B.3 Documentation

The THOT toolkit includes the following documentation resources:
e A tutorial in pdf format.
e README file and man pages.

e Class diagrams showing the software architecture.

B.4 Public Availability and License

The THOT toolkit is released under the GNU General Public LicenselL{&F he toolkit can
be downloaded dtttp://sourceforge.net/projects/thot/

aFor more information on the GPL, skép://www.gnu.org/copyleft/gpl.html
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APPENDIXC

WEB-BASED INTERACTIVE
M ACHINE TRANSLATION
PROTOTYPE

This appendix describes the main features of a web-basedpiidibtype that has been de-
veloped following the techniques proposed in this thesisis prototype is not intended to
be a production-ready application. Rather, it providesrdnitive interface which aims at
showing that the IMT approaches presented in this thesisvoakin practise. The prototype
is publicly available ahttp://cat.iti.upv.es/imt/

Itis important to stress here that this prototype has beeeldped with the collaboration
of other persons. Specifically, the web interface has beeelaged by Luis A. Leiva and
the application programming interface (API) that allowsiat and server applications to
communicate through sockets has been developed by VicabbAl

The rest of the appendix is organised as follows: first, tretesy architecture is intro-
duced. Second, we describe the protocol that rules theaittien process. Next, the proto-
type functionalities are enumerated, and finally we desdtile interface of the prototype.

C.1 System Architecture

The system architecture has been built on two main aspextgly, accessibility and flexibil-
ity. The former is necessary to reach a larger number of fiatarsers. The latter allows the
researchers to test different techniques and interactimogols reducing the implementation
effort.

For that reason, an application programming interface #&F ©ols was developed. This
API allows a neat separation between the client interfackthe actual translation system
by using a network communication protocol and by exposingb#efined set of functions.
Furthermore, it allows the customisation of professionalg to use the IMT system with
minimal implementation effort.

219


http://cat.iti.upv.es/imt/

Appendix C. Web-based Interactive Machine Translation Prototype

Web Server

IMT Client IMT Server Models
% -
Figure C.1: IMT system architecture.

A diagram of the architecture is shown in Fig@el. Onthe one hand, the IMT client pro-
vides a user interface (Ul) which uses the API to communieadtie the IMT server through
the Web. The hardware requirements in the client are very é&@athe translation process
is carried out remotely on the server, so virtually any cotep(including netbooks, tablets
or 3G mobile phones) should be enough. On the other handgtlrerswhich is unaware
of the implementation details of the IMT client, uses the rlednd the statistical methods
described in this thesis to perform the translation.

C.2 User Interaction Protocol

The protocol that rules the IMT process has the followingste
1. The system proposes a full translation of the selectadsegment.

2. The user validates the longest prefix of the translatioithvis error-free and/or cor-
rects the first error in the suffix. Corrections are enteredrngndment keystrokes or
mouse-clicks operations.

3. In this way, a new extended consolidated prefix is produmskd on the previous
validated prefix and the interaction amendments. Usingribis prefix, the system
suggests a suitable continuation of it.

4. Steps 2 and 3 are iterated until the user-desired trémslatproduced.

C.3 Prototype Functionality
The following is a list of the features that the prototypesus:

e When the user corrects the solution proposed by the systesw énmproved suffix is
proposed.

e The user is able to perforactionsby means of keyboard shortcuts or mouse gestures.
The supported actions on the proposed suffix are:
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C.4. Prototype Interface

Substitution Substitute the first word or character of the suffix.
Deletion Delete the first word or character of the suffix.
Insertion Insert a word before the suffix.

e At any time, the user is able to visualise the original docuhiEigureC.29, as well
as a draft of the current translation properly formatted(FeC.2b).

e Alist of documents is presented to the user (FigQr8 so that she can test the proto-
type under different conditions, i.e. corpora and langyzejes.

CHAPTER 1
ECONOMIC POLICY

Article 101 (ex Article 104) Article 104 (ex Article 104c)

1. Overdraft facilities or any other type of credit facility with the ECB or with the central 1. Member States shall avoid excessive government deficits.

banks of the Member States (hereinafter referred to as ‘national central banks’) in . The Commission shall monitor the development of the budgetary situation and of the
I favour of Community institutions or bodies, central governments, regional, local or stock of government debt in the Member States with a view to identifying gross I

~

other public authorities, other bodies governed by public law, or public undertakings errors. In particular it shall examine compliance with budgetary discipline on the
of Member States shall be prohibited, as shall the purchase directly from them by the basis of the following two criteria

ECB or national central banks of debt instruments. a. whether the ratio of the planned or actual government deficit to gross domestic

(a) Source document example, created from the EuroParl corpus.

CAPITULO 1

Article 101 (ex Article 104)| Articulo 104 (antiguo articulo 104c)

1. Descubrir instalaciones o cualquier otro tipo de crédito el BCE o con los bancos 1. Los Estados miembros evitardn déficits piblicos excesivos.
centrales de los Estados miembros (en lo sucesivo "bancos centrales nacionales’) en Pl The Commission shall monitor the development of the budgetary situation and of the}
favor de instituciones u érganos rios o, Gobiernos centrales, i« [Stock of government debt in the Member States with a view to identifying gross
reglonales o locales u otras autoridades publicas, organismos de Derecho piblico o fin particular it shall ocxamine compliance with budgetary discipline on the)
empresas piiblicas del Estado serén prohibidas, ya que seran compradas directamente [oasis of the Tollowing two critorial
por el BCE o bancos centrales nacionales de instrumentos deudores. Pl cther the ratio of the planned or actual government deficit to gross domestid

(b) Translated example document, preserving original format @gtdighting non-translated sentences.

Figure C.2: Translating documents with the proposed system.

C.4 Prototype Interface

This prototype exploits the WWW to enable the connection oldiameous accesses across
the globe, coordinating client-side scripting with sersigle technologies. The interface is
built by using Web technologies such as HTML, JavaScriptActibnScript; while the IMT
engine is written in C++ using theHOT toolkit.

To begin with, the Web Ul (WUI) loads an index of all availabtartslation corpora
(FigureC.3). The user chooses a corpus and navigates to the main oegdage (Figur€.4),
where she starts translating the text segments one by ore’slflsedback is then processed
by the IMT server. Predictive interaction is approacheduohsa way that both the main
and the feedback data streams help each-other to optimésalbperformance and usability.
All corrections are stored in plain text logs on the serverthe user can retake them in any
moment, also allowing other users to help to translate thelédicuments.
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B
Choose demo
LexUriServ (Espanol) EuroParl (English) EuroParl (Espanol)
— Parsed from the TMX 2.0
draft specification. E
use custom server? £t [/ e
i ] =77

use custom server?

use custom server?

Usage instructions

Please read the main instructions to interact with the application.

© 2008 MIPRCV & PRHLY, [TI, UPV

Figure C.3: Index of available corpora.
CHAPTER 1
ECONOMIC POLICY

more demos: EuroParl (English) =] t
Article 101 (ex Article 104)

Overdraft facilities or any other type of credit facility with the ECB or with the central banks of the Member States
(hereinafter referred to as 'national central banks') in favour of Community Institutions or bodies,

central governments, regional, local or other public authorities, other bodies governed by public law, or public
undertakings of Member States shall be prohibited,

Any measure, not based on prudential considerations, establishing privileged access by Community
institutions or bodies,

Cualguier  medida, que no @ esté ba&ada en  consideraciones  prudenciales  gue

central governments, regional, local or ether public autherities, other bodies governed by public law,
or public undertakings of Member States to financial instituti shall be prohibited

The Council, acting in accordance with the procedure referred to in Article 252, shall, before 1 January 1994, specify
definitions for the application of the prohibition referred to in paragraph 1.

Figure C.4: Prototype interface. The source text segments are automatically edtracte
from source document.

Since the users operate within a Web browser, the systenpatsides crossplatform
compatibility and requires neither computational power disk space on the client's ma-
chine. Client-Web server communication is based on aspncus HTTP connections, pro-
viding thus a richer interactive experience (no page rbfssare required, only for chang-
ing the corpus to translate). Moreover, the Web server conicates with the IMT engine
through binary TCP sockets. Thus, response times are dovte(a desired requirement for
the user’s solace). Additionally, cross-domain requestpassible. In this way, it is possible
to switch between different IMT engines from the same WUI.
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APPENDIXD

SYMBOLS AND ACRONYMS

D.1 Mathematical Symbols

[ cardinal of a set or word sequence

BOS begin of sentence symbol

EOS end of sentence symbol
X=m...7;...75 datavector composed pf| elements
T; 7'th element of the data vector
H=fhfi . f source sentence composedjofvords
=f o fh phrase off/, wherel < j; < jy < J
F source vocabulary

f source word

J length of the source sentence

fi j'th word of the source sentence
el=ei...e;...e1 target sentence composed/ofvords
R = e, ... € phrase ok!, wherel < i, <iy <1
£ target vocabulary

e target word

1 length of the target sentence

e; 1'th word of the target sentence

€o null word of the target sentence

a{ =ay...a;...a;  word alignment vector

a; j'th position of the word alignment vector
K length of a phrase sequence

k index for a phrase sequence
fE=/fi...fu...fx source phrase sequence

fr k'th source phrase

f source phrase of an arbitrary length
e =¢,...6,...6x target phrase sequence

ek k'th target phrase

223



Appendix D. Symbols and Acronyms

!

Qr Q1 M
> FEx
Il
s}
i
S
B

=
[q]
—~

N
~

)

Ay (fi,ef)
A
BP(f{,ef, A)
MS iy et
fi el

SBP(f7 el,A)

SP
TP

target phrase of an arbitrary length

phrase alignment vector

k'th position of the phrase alignment vector
bisegmentation or phrase-based alignment betwéen
ande!

Viterbi phrase-based alignment betweghande!
word alignment matrix

set of consistent phrase pairs fif, e/ and A

set of monotonic bisegmentations fff, !

set of bisegmentations fgi/, ef

set of bisegmentations fg¥/, e/ constrained

to BP(f{, e, A)

set of unaligned source positions

set of unaligned target positions

prefix of the target sentence

suffix of the target sentence

set of training samples

n'th training sentence pair

j'th word of f,,

7'th word of e,,

alignment variable for the'th training sentence pair
indicator variable for alignment of source positipmith
target positioni corresponding to the'th training pair
real probability distribution

model probability distribution

parameter vector for a model

likelihood for the set of training samples given©
count of a given event
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D.2. Acronyms

D.2 Acronyms

AER alignment error rate

BLEU bilingual evaluation understudy
BRF bisegmentation-based relative frequency
CAT computer-assisted translation
CER character error rate

EM expectation-maximisation

EU European Union

HMM hidden Markov model

GIS generalized iterative scaling

IBM international business machines
IMT interactive machine translation
KSR key-stroke ratio

KSMR key-stroke and mouse-action ratio
MAR mouse-action ratio

MERT minimum error rate training

ML maximum likelihood

MT machine translation

NLP natural language processing

PB-SMT phrase-based statistical machine translation
PSPBA partial statistical phrase-based alignment

PFSM probabilistic finite state machine
PKSR post-editing key stroke ratio

RF relative frequency

SMT statistical machine translation
SFST stochastic finite state transducer
SCFG synchronous context free grammar
WER word error rate
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