
The Prague Bulletin of Mathematical Linguistics
NUMBER 94 SEPTEMBER 2010 7–14

Dependency Parsing
as a Sequence Labeling Task

Drahomíra ”johanka” Spoustová, Miroslav Spousta
Institute of Formal and Applied Linguistics, Charles University in Prague

Abstract
The aim of this paper is to explore the feasibility of solving the dependency parsing prob-

lem using sequence labeling tools. We introduce an algorithm to transform a dependency tree
into a tag sequence suitable for a sequence labeling algorithm and evaluate several parameter
settings on the standard treebank data. We focus mainly on Czech, as a high-inflective free-
word-order language, which is not so easy to parse using traditional techniques, but we also
test our approach on English for comparison.

1. Introduction

Dependency parsing became very popular in the recent years and many different
algorithms were suggested and evaluated for this task.

Dependency structure is a rooted tree where each node (except the root) corre-
sponds to one word of the underlying sentence. The dependency relation between
two nodes (parent and child) is captured by an edge between these two nodes. The
actual type of the relation is given as a function label of the edge.

The aim of a dependency parser is to assign correct parent node index to each child
node, optionally also with the dependency relationship label. The standard method
of evaluating dependency parser accuracy is computing the percentage of children
that got the correct parent index (and optionally the dependency relationship label),
among all words in a test data set.

Sequence labeling is a process where each token in a sentence is assigned a label
from a fixed set. Common examples include Part-of-Speech (POS) tagging, Named

© 2010 PBML. All rights reserved. Corresponding author: johanka@ucw.cz
Cite as: Drahomíra ”johanka” Spoustová, Miroslav Spousta. Dependency Parsing as a Sequence Labeling
Task. The Prague Bulletin of Mathematical Linguistics No. 94, 2010, pp. 7–14.
doi: 10.2478/v10108-010-0017-3.



PBML 94 SEPTEMBER 2010

entity recognition and Semantic Role Labeling tasks, where we label every word with
a tag. There are many well-studied algorithms that proved to be successful, many of
them based on the Hidden Markov models and the Viterbi algorithm, such as Condi-
tional Random Fields (Lafferty et al., 2001) or Averaged Perceptron (Collins, 2002).

In the area of parsing, the sequence labeling techniques were applied mainly to
the NP-chunking (shallow parsing) task.

In the following sections, we would like to explore the possibility to turn the de-
pendency parsing into a sequence labeling task.

Our approach is somewhat similar to LTAG supertagging introduced by (Banga-
lore and Joshi, 1999), but their approach mas been deeply explored mainly for English
and cannot be directly applied to free-word-order non-projective languages with rich
inflection, like Czech.

The paper is organized as follows: Section 2 introduces the data used for our exper-
iments. In section 3, we propose a tagset and conversion algorithm for the sequence
labeling task and evaluate the performance of selected settings of the proposed al-
gorithm on the English and Czech data sets. Section 4 presents current results and
concludes.

2. The data

In order to demonstrate that our approach is not restricted to a specific language,
we performed our data conversion experiments on two languages with completely
different morphological characteristics and tagsets, English and Czech.

For English, we used CoNLL Shared Task 2009 data, which is a dependency rep-
resentation of (a part of) the Penn Treebank (Marcus et al., 1994). We used the columns
PLEMMA, PPOS (automatically assigned part-of-speech tag and morphological lemma),
HEAD and DEPREL (manually annotated labeled dependency relationship). For Czech,
we selected the corresponding data (i.e. manual annotation of the dependency re-
lationships and automatic POS tagging) from the Prague Dependency Treebank 2.0
(Hajič et al., 2006), analytical layer. The Czech morphological tagset is described in
(Hajič, 2004).

Main characteristics of the data1 can be found in Table 1.

3. The data conversion algorithm

Standard dependency tree representation assigns a parent node index to every
word in a sentence. The process of turning dependency parsing into a sequence la-

1All experiments were performed using only the Train and the Development data sets. We save the
Evaluation data set for the final evaluation of the (hypothetical) parser.

8



D. Spoustová, M. Spousta Dependency Parsing as a Sequence Labeling Task (7–14)

Table 1. The data characteristics

data set tokens sentences tagset size
English train 958,167 39,278 46
English dev 33,368 1,335 45
Czech train 1,172,299 68,562 1330
Czech dev 158,962 9,270 1041

Table 2. The example sentence

FORM PLEMMA PPOS HEAD DEPREL DEPTAG
1 The the DT 4 NMOD NN_R3 NMOD
2 luxury luxury NN 3 NMOD NN_R1 NMOD
3 auto auto NN 4 NMOD NN_R1 NMOD
4 maker maker NN 7 SBJ VBD_R1 SBJ
5 last last JJ 6 NMOD NN_R1 NMOD
6 year year NN 7 TMP VBD_R1 TMP
7 sold sell VBD 0 ROOT 00_00 ROOT
8 1,214 1,214 CD 9 NMOD NNS_R1 NMOD
9 cars car NNS 7 OBJ VBD_L1 OBJ
10 in in IN 7 LOC VBD_L1 LOC
11 the the DT 12 NMOD NNP_R1 NMOD
12 U.S. u.s. NNP 10 PMOD IN_L1 PMOD

beling task must turn this ”relative” information into an absolute label, which is to be
assigned to the words. Let us call this label deptag2.

We designed the deptag to contain the following parts:
1. parent node’s POS tag
2. additional information needed to decide between more possible parent-candidates

with the same POS tag: direction and distance3.
3. The DEPREL label is added to the deptag (no transformation is needed here) to

be also predictable by the sequence labeling algorithm.
An example sentence transformation can be found in Table 2.

2Unfortunately, the word supertag was already taken in (Bangalore and Joshi, 1999).
3We use L (R) for left (right) direction, respectively, and a positive number as a distance marker. E.g.

VB_R2 means ”second VB token on the right” (i. e. the first VB candidate on the right is omitted)

9



PBML 94 SEPTEMBER 2010

3.1. Tagset reduction

Naturally, a too large deptagset (tagset of the deptags) leads to the data sparseness
problem. It turns out that the size of the tagset may be reduced by adjusting two
parameters of the algorithm:

1. Considering only a fragment of the full POS tag during the deptag construction.
This is mainly useful for a rich POS-tag set language (such as Czech with more
than 4000 possible POS-tags and only 1330 of them appearing in the training
data) and is much less important for English (with only 46 tags). We tried to
reduce the 15-positions tagset to 5 or 2 most important positions for Czech4.
At this point, the assigned deptag corresponds to exactly one parent node. In
other words, the transformation from the tree into a deptag sequence remains
lossless.

2. Constraining maximum distance to reduce the deptagset. Here the distance does
not mean the absolute number of tokens between parent and its child, but the
maximum number of possible candidates with the same POS tag to be distin-
guished. For example, if the maximum is set to 3, then all third, fourth and
further candidates will be labeled with 3 and translated back to the third candi-
date.
This constraint, however, makes the transformations lossy.

Let us define the transformation error rate of the selected algorithm configuration as
following: For each node n let p1

n be the parent node index assigned to the node n in
the source dependency tree, Dn a deptag, to which p1

n is translated using the selected
algorithm configuration, and p2

n a parent node index, to which the the deptag Dn is
translated back (the process of translating back is unambiguous). Transformation error
rate is the percentage of nodes, where p2

n ̸= p1
n.

Table 3 shows the deptagset size (labeled, unlabeled) and transformation error rates
for a few selected configurations. Considering usual performance of dependency
parsers lying between 80 % and 90 %, setting the maximum distance to 3 introduces
only a small decrease of performance (lower than 1% transformation error rate).

3.2. The list of possibilities

Usually, the sequence labeling algorithm chooses one label from a list of plausible
labels for every token. There are several methods how to generate such a list. We
can compare the methods for generating the list of possible deptags using a standard
measure: precision and recall.

45 — Part of speech, Detailed part of speech, Gender, Number, Case; 2 (originating from (Collins et al.,
1999)) — first letter is the main POS, second letter is the Case field if the main POS is the one that displays
case, while otherwise the second letter is the detailed POS.

10



D. Spoustová, M. Spousta Dependency Parsing as a Sequence Labeling Task (7–14)

Table 3. deptagset size (labeled, unlabeled) and transformation error rate. (POS -
Part-of-speech tag size, max - maximum distance.)

language POS max. distance tagset size errorlabeled unlabeled
en full - 1523 244 0.00
en full 3 1305 159 0.52
en full 1 809 78 7.56
cz full - 10449 1979 0.00
cz full 3 9949 1882 0.30
cz full 1 8679 1601 2.29
cz 5 - 7820 1319 0.00
cz 5 3 7299 1214 0.30
cz 5 1 6016 958 2.45
cz 2 - 3760 389 0.00
cz 2 3 3127 244 0.36
cz 2 1 2054 122 3.32

In order to enable sequence labeling algorithm to work well on our transformed
data, we aim to keep recall as high as possible, while introducing a reasonable preci-
sion.

• To achieve 100% recall, we need to consider every token in the sentence to be
possible parent of all other tokens. I.e. in a n-token (incl. root) sentence, every
token has n− 1 possible parents, thus translated into n− 1 unlabeled deptags.
Every deptag can (theoretically) be combined with every deprel label. Let dep
be size of the set of the deprel labels. So the final list of possibilities contains
(n− 1) ∗ dep labeled deptags for every token.
This approach achieves 100% recall, but very poor precision.

• The list of possible combinations deptag + dependency relationship label (labeled
deptags) can be simply derived from the training data. To avoid the data sparse-
ness problem, we choose to discriminate the tokens only through their morpho-
logical tags, i.e. to ignore their form and lemma. For example, if a token has
the NNP POS tag, we add to its list of possible labeled deptags manually anno-
tated parents (translated into the labeled deptags) of all NNP tokens found in the
training data.
This approach achieves 100% recall only for the training data. Its precision is
much better than the precision of previous approach, but still remains low.

• Precision of the previous approach can be increased by restricting the maxi-
mum ”length of relationship” (in absolute number of tokens) between parent
and child. We omit every possible relationship which is ”longer” (in terms of

11



PBML 94 SEPTEMBER 2010

Table 4. Generating a labeled list of possibilities; recall2 = recall including conversion
back to the tree representation

basic options list options precision recall recall2
en full - full 0.06 100 100
en full 3 full 0.06 100 99.48
en full 3 train 1.42 99.77 99.26
en full 3 train+length 2.45 99.43 98.93
cz 5 3 full 0.05 100 99.70
cz 5 3 train 1.28 98.21 97.93
cz 5 3 train+length 2.28 96.86 96.58
cz 2 3 full 0.05 100 99.64
cz 2 3 train 0.82 99.53 99.18
cz 2 3 train+length 1.46 99.01 98.67

absolute value of the subtraction between the nodes indexes) than the longest
relationship seen in the training data between nodes with the same POS tags as
the ones of the considered tokens.

Precision and recall of selected variants of the approaches described above can be
found in Tables 4 (labeled) and 5 (unlabeled), as measured on the development data
set.

4. Results and Conclusion

We have shown that our data conversion algorithm can fully represent a labeled
dependency tree, both for a rich morphology language with large tagset and for a
language with very small tagset.

The parameters of the conversion can be theoretically set in the manner that keeps
the conversion absolutely lossless. We have proposed various kinds of (slightly lossy)
reductions of the solution space.

As we have proposed in the introduction section, this article focuses on the data
conversion algorithm, i.e. data preparation for the sequence labeling algorithm.

As a proof-of-concept and possible baseline, we have processed the converted data
with the averaged perceptron algorithm (Collins, 2002) with trivial trigram feature set,
the results (accuracy of the final labeled tree) varied (depending on configuration)
between 5-10 % below state-of-the-art (according to CoNLL Shared Task 2009 results
and the http://ufal.mff.cuni.cz/czech-parsing page). Additional up to about
1 % will be loosed if we use as a postprocessing some sort of greedy algorithm which
will fix the cycles to ensure the result is tree.

Our approach can thus be used as a simple and fast way to build an ”approxima-
tive” parser in case there is no better solution available (e.g. due to license restrictions).

12

http://ufal.mff.cuni.cz/czech-parsing


D. Spoustová, M. Spousta Dependency Parsing as a Sequence Labeling Task (7–14)

Table 5. Generating an unlabeled list of possibilities; recall2 = recall including
conversion back to the tree representation

basic options list options precision recall recall2
en full - full 3.24 100 100
en full 3 full 3.52 100 99.48
en full 3 train 4.80 99.92 99.39
en full 3 train+length 6.68 99.75 99.24
cz 5 3 full 4.17 100 99.70
cz 5 3 train 6.52 99.08 98.79
cz 5 3 train+length 9.76 98.20 97.91
cz 2 3 full 4.27 100 99.64
cz 2 3 train 5.18 99.91 99.55
cz 2 3 train+length 7.26 99.67 99.32

The performance can be further improved by selection of the sequence labeling
algorithm and its configuration (such as feature set selection).

Acknowledgments

The research described here was supported by the project GA405/09/0278 of the
Grant Agency of the Czech Republic.

Bibliography

Bangalore, Srinivas and Aravind K. Joshi. Supertagging: An approach to almost parsing. Com-
putational Linguistics, 25:237–265, 1999.

Collins, Michael. Discriminative Training Methods for Hidden Markov Models: Theory and
Experiments with Perceptron Algorithms. In EMNLP ’02: Proceedings of the ACL-02 confer-
ence on Empirical methods in natural language processing, volume 10, pages 1–8, Philadelphia,
PA, 2002.

Collins, Michael, Jan Hajič, Lance Ramshaw, and Christoph Tillmann. A Statistical Parser for
Czech. In Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics,
pages 505–512, College Park, Maryland, USA, June 1999. Association for Computational
Linguistics. URL http://www.aclweb.org/anthology/P99-1065.

Hajič, Jan. Disambiguation of Rich Inflection (Computational Morphology of Czech). Nakladatelství
Karolinum, Prague, 2004. ISBN 80-246-0282-2.

Hajič, Jan, Eva Hajičová, Jarmila Panevová, Petr Sgall, Petr Pajas, Jan Štěpánek, Jiří Havelka, and
Marie Mikulová. Prague Dependency Treebank v2.0, CDROM, LDC Cat. No. LDC2006T01.
Linguistic Data Consortium, Philadelphia, PA, 2006.

13

http://www.aclweb.org/anthology/P99-1065


PBML 94 SEPTEMBER 2010

Lafferty, John, Andrew McCallum, and Fernando Pereira. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data. In Proc. 18th International Conf.
on Machine Learning. Morgan Kaufmann, San Francisco, CA, USA, 2001.

Marcus, Mitchell P., Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large anno-
tated corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330, 1994.
ISSN 0891-2017.

Address for correspondence:
Drahomíra ”johanka” Spoustová
johanka@ucw.cz
Institute of Formal and Applied Linguistics
Charles University in Prague
Malostranské náměstí 25
118 00 Praha 1, Czech Republic

14


	Introduction
	The data
	The data conversion algorithm
	Tagset reduction
	The list of possibilities

	Results and Conclusion

