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Abstract
This paper presents a set of preliminary
experiments which show that identifying
translationese is possible with machine
learning methods that work at character
level, more precisely methods that use
string kernels. But caution is necessary
because string kernels very easily can in-
troduce confounding factors.

1 Introduction

The term translationese designates the specific
characteristics of translated texts compared to non
translated text, the trace that the translation pro-
cess leaves on translated texts. The term was intro-
duced by Gellerstam in (1986). In an initial stage
various features specific to translated texts, uni-
versal features of translation, were identified and
corpus based approaches were employed to test
the statistical significance of these translation uni-
versals (Baker, 1993; Laviosa, 2002). Recently,
machine learning techniques have started to be
used to investigate translationese: to distinguish
between translated texts and non-translated ones,
to identify the source language of a translated text,
etc. (Baroni and Bernardini, 2006; Kurokawa et
al., 2008; van Halteren, 2008; Ilisei et al., 2010;
Koppel and Ordan, 2011).

These learning systems use a variety of features:
(grammatical) words, part of speech tags, sentence
length, etc.. By using this kind of features these
methods implicitly handle the text at word level
or above. Perhaps surprisingly, recent results have
proved that methods that handle the text at char-
acter level can also be very effective in text anal-
ysis tasks. In (Lodhi et al., 2002) string kernels
were used for document categorization with very
good results. String kernels were also successfully
used in authorship identification (Sanderson and
Guenter, 2006; Popescu and Dinu, 2007) and pla-
giarism detection (Grozea et al., 2009).

In this paper we set to investigate if identify-
ing translationese is possible with machine learn-
ing methods that work at the character level. More
precisely, we will use string kernels in conjunction
with different kernel methods in a series of experi-
ments to see what performance can be achieved.
Doing this we hope to answer the question if
looking at the texts as just sequences of symbols
(strings) is enough to identify translationese, and
provide a method of identifying translationese that
is language independent and theory neutral.

In the next section the related work and how our
approach differs from it is discussed. In section
3 we briefly describe the kernel methods we used
and string kernels. Section 4 describes the per-
formed experiments and the obtained results, and
the last section contains a discussion of these re-
sults and suggestions for future work.

2 Related Work

Using words is natural in text analysis tasks like
text categorization (by topic), authorship identi-
fication and plagiarism detection. Perhaps sur-
prisingly, recent results have proved that meth-
ods handling the text at character level can also
be very effective in text analysis tasks. In (Lodhi
et al., 2002) string kernels were used for docu-
ment categorization with very good results. Trying
to explain why treating documents as symbol se-
quences and using string kernels led to such good
results the authors suppose that: “the [string] ker-
nel is performing something similar to stemming,
hence providing semantic links between words
that the word kernel must view as distinct”. String
kernels were also successfully used in author-
ship identification (Sanderson and Guenter, 2006;
Popescu and Dinu, 2007). A possible reason for
the success of string kernels in authorship identifi-
cation is given in (Popescu and Dinu, 2007): “the
similarity of two strings as it is measured by string
kernels reflects the similarity of the two texts as it
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is given by the short words (2-5 characters) which
usually are function words, but also takes into ac-
count other morphemes like suffixes (‘ing’ for ex-
ample) which also can be good indicators of the
authors style”.

Even more interesting is the fact that two meth-
ods that obtained very good results for text catego-
rization (by topic) (Lodhi et al., 2002) and author-
ship identification (Popescu and Dinu, 2007) are
essentially the same, both are based on SVM and
a string kernel of length 5. How is this possible?
Traditionally, the two tasks, text categorization (by
topic) and authorship identification are viewed as
opposed. When words are used as features, for
text categorization the (stemmed) content words
are used (the stop words being eliminated), while
for authorship identification the function words
(stop words) are used as features, the others words
(content words) being eliminated. Then, why did
the same string kernel (of length 5) work well in
both cases? In our opinion the key factor is the
kernel-based learning algorithm. The string ker-
nel implicitly embeds the texts in a high dimen-
sional feature space, in our case the space of all
(sub)strings of length 5. The kernel-based learning
algorithm (SVM or another kernel method), aided
by regularization, implicitly assigns a weight to
each feature, thus selecting the features that are
important for the discrimination task. In this way,
in the case of text categorization the learning al-
gorithm (SVM) enhances the features (substrings)
representing stems of content words, while in the
case of authorship identification the same learning
algorithm enhances the features (substrings) rep-
resenting function words.

Support Vector Machines (SVM) were also
used in identifying translationese. Actually it is
the dominant approach. In (Baroni and Bernar-
dini, 2006) and (Kurokawa et al., 2008) the learn-
ing method used was SVM, In (van Halteren,
2008) and (Ilisei et al., 2010) several learning
methods were used, SVM being included among
them and reported to be among the top perform-
ers. Only in (Koppel and Ordan, 2011) a ker-
nel method was not used. All these approaches
use features computed at the word level or above:
words, part of speech tags, sentence length, etc.. It
might appear, because of the linguistically shallow
representation, that these methods are language in-
dependent, but they directly or indirectly depend
on resources specific to a given language. Most

of the methods use part of speech tags (directly
as features or indirectly as the proportion of some
specific POS tags in text) and this implies the ex-
istence of a POS tagger for that language which is
not always available. Even a method that uses as
features only function words like the one in (Kop-
pel and Ordan, 2011) is not completely language
independent because it needs a way to segment a
text into words which is not an easy task for some
languages, like Chinese.

Using string kernels will make the correspond-
ing learning method completely language inde-
pendent because the texts will be treated as se-
quences of symbols (strings). Such a method
will also have the advantage of being theory neu-
tral. Methods working at the word level or above
very often restrict their feature space according to
theoretical or empirical principles. For example,
they select only features that reflect simplification
universal (Ilisei et al., 2010) or only some type
of words (function words) (Koppel and Ordan,
2011), etc.. These features prove to be very ef-
fective for specific tasks, but other, possibly good
features, depending on the particular task, may ex-
ist, for example source language specific features
(Koppel and Ordan, 2011). String kernels embed
the texts in a very large feature space (all sub-
strings of length k) and leave it to the learning al-
gorithm (SVM) to select important features for the
specific task, by highly weighting these features.

3 Kernel Methods and String Kernels

Kernel-based learning algorithms work by embed-
ding the data into a feature space (a Hilbert space),
and searching for linear relations in that space.
The embedding is performed implicitly, that is by
specifying the inner product between each pair of
points rather than by giving their coordinates ex-
plicitly.

Given an input set X (the space of examples),
and an embedding vector space F (feature space),
let φ : X → F be an embedding map called fea-
ture map.

A kernel is a function k, such that for all x, z ∈
X , k(x, z) =< φ(x), φ(z) >, where < ., . >
denotes the inner product in F .

In the case of binary classification problems,
kernel-based learning algorithms look for a dis-
criminant function, a function that assigns +1 to
examples belonging to one class and −1 to exam-
ples belonging to the other class. This function

635



will be a linear function in the spaceF , that means
it will have the form:

f(x) = sign(< w,φ(x) > +b),

for some weight vector w. The kernel can be
exploited whenever the weight vector can be ex-
pressed as a linear combination of the training

points,
n∑

i=1
αiφ(xi), implying that f can be ex-

pressed as follows:

f(x) = sign(
n∑

i=1

αik(xi, x) + b)

.
Various kernel methods differ by the way in

which they find the vector w (or equivalently the
vector α). Support Vector Machines (SVM) try to
find the vector w that defines the hyperplane that
maximally separates the images in F of the train-
ing examples belonging to the two classes. Math-
ematically, SVMs choose the w and the b that sat-
isfy the following optimization criterion:

min
w,b

1

n

n∑
i=1

[1− yi(< w,φ(xi) > +b)]+ + ν||w||2

where yi is the label (+1/−1) of the training ex-
ample xi, ν a regularization parameter and [x]+ =
max(x, 0).

Kernel Fisher Discriminant (KFD) selects the
w that gives the direction on which the training
examples should be projected in order to obtain
a maximum separation between the means of the
two classes scaled according to the variances of
the two classes in that direction. The optimization
criterion is:

max
w

(µ+
w − µ−w)2

(σ+
w )2 + (σ−w )2 + λ||w||2

where µ+
w is the mean of the projection of positive

examples onto the direction w, µ−w is the mean for
the negative examples, σ+

w and σ−w are the corre-
sponding standard deviations and λ is a regulariza-
tion parameter. Details about SVM and KFD can
be found in (Taylor and Cristianini, 2004). What
is important is that the above optimization prob-
lems are solved in such a way that the coordinates
of the embedded points are not needed, only their
pairwise inner products, which in turn are given by
the kernel function k, are required.

The kernel function offers to the kernel methods
the power to naturally handle input data that are

not in the form of numerical vectors, for example
strings. The kernel function captures the intuitive
notion of similarity between objects in a specific
domain and can be any function defined on the
respective domain that is symmetric and positive
definite. For strings, many such kernel functions
exist with various applications in computational
biology and computational linguistics (Taylor and
Cristianini, 2004).

Perhaps one of the most natural ways to mea-
sure the similarity of two strings is to count how
many substrings of length p the two strings have
in common. This gives rise to the p-spectrum ker-
nel. Formally, for two strings over an alphabet Σ,
s, t ∈ Σ∗, the p-spectrum kernel is defined as:

kp(s, t) =
∑

v∈Σp

numv(s)numv(t)

where numv(s) is the number of occurrences of
string v as a substring in s 1. The feature map de-
fined by this kernel associates to each string a vec-
tor of dimension |Σ|p containing the histogram of
frequencies of all its substrings of length p. Taking
into account all substrings of length less than p, a
kernel that is called the blended spectrum kernel
will be obtained:

kp
1(s, t) =

p∑
q=1

kq(s, t)

The p-spectrum kernel will be the kernel that we
shall be using in conjunction with SVM and KFD
in our experiments. More precisely we shall use
a normalized version of the kernel to allow a fair
comparison of strings of different lengths:

k̂p(s, t) =
kp(s, t)√

kp(s, s)kp(t, t)

4 Evaluation

4.1 The Corpus
For our experiments we have assembled a corpus
of literary works, most of them dating from the
nineteenth century, with very few dating from the
end of the eighteenth century or the beginning of
twentieth century. All of them are book-length, the
majority are novels, but also some essays, mem-
oirs or autobiographies are included. In total we

1Note that the notion of substring requires contiguity. See
(Taylor and Cristianini, 2004) for a discussion about the am-
biguity between the terms ”substring” and ”subsequence”
across different traditions: biology, computer science.
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have collected 214 books. Half of them, 108, were
originally written in English by both American
and British authors. The other half of the corpus
consists of translated works: 76 from French au-
thors and 30 from German authors. The type of
works we collected is very diverse, from classical
works (works of Goethe, Balzac, Dickens) to pop-
ular fiction of the time (Eugène Sue’s The Wander-
ing Jew, the works of Karl May, Reynolds’s Mys-
teries of London).

The source of the books was the Project Guten-
berg2, but in rare cases we also used other
sources3. The Project Gutenberg policy - ”We
carry high quality ebooks: Our ebooks were pre-
viously published by bona fide publishers...” - en-
sures at least a minimal quality of the translated
texts.

There is no space to list here all the titles in our
corpus. Instead, in Table 1, we enumerate the au-
thors represented in the corpus and the number of
books by each author contained in the corpus.

Group Authors
French Balzac(10), Paul Bourget(1), Alphonse Daudet(3),
authors Alexandre Dumas père(9), Alexandre Dumas fils(1),

Flaubert(6), Anatole France(4), Théophile Gautier(1),
Hugo(3), Hector Malot(2), Maupassant(6),
Henry Murger(1), Prosper Mérimée(1), George Sand(1),
Count Philip de Segur(1), Nahum Slouschz(1),
Eugène Sue(1), Alexis de Tocqueville(1),
Jules Verne(14), Émile Zola(9)

German Berthold Auerbach(10), Gustav Freytag(1),
authors E. T. A. Hoffmann(2), Goethe(2), Brothers Grimm(1),

Friedrich Maximilian von Klinger(1), Karl May(5),
Albert Pfister(1), Wilhelm Raabe(1),
Leopold von Sacher-Masoch(1), Christoph von Schmid(1),
Theodor W. Storm(1), Johann Ludwig Tieck(3)

American James Fenimore Cooper(4), Stephen Crane(2),
authors Nathaniel Hawthorne(4), Henry James(4),

Herman Melville(4)
British Jane Austen(5), Emily Brontë(1), Anne Brontë(2),
authors Charlotte Brontë(4), George Bulwer-Lytton(4),

Lewis Carroll(3), William Wilkie Collins(3),
Joseph Conrad(4), Charles Dickens(13),
Sir Arthur Coman Doyle(2), George Eliot(4),
H. Rider Haggard(2), Thomas Hardy(5),
George Reynolds(2), Sir Walter Scott(23),
William Makepeace Thackeray(5), Anthony Trollope(5),
H. G. Wells(3)

Table 1: The list of authors and the number of their
books contained in the corpus

4.2 Experimental Setup

In all our experiments the objective was to learn a
classifier able to distinguish translated texts from
non-translated ones, thus obtaining a binary clas-
sification problem. The texts in the corpus were
labeled as translated (T) if they were works of

2http://www.gutenberg.org
3For example, the works of Karl May were taken from:

http://www.karl-may-gesellschaft.de

French and German authors translated into En-
glish or were labeled as original English (O) if
they were works originally written in English by
British or American authors.

Because the string kernels work at the character
level, we didn’t need to split the texts into words or
to do any preprocessing. The only editing done to
the texts was the replacing of sequences of consec-
utive space characters (space, tab new line, etc.)
with only one space character. This normalization
was needed in order to not artificially increase or
decrease the similarity between texts because of
different spacing.

In all experiments we have used a p-spectrum
normalized kernel of length 5 (k̂5). We chose the
length 5 to see if the same kernel that was reported
to work well in the case of document categoriza-
tion (Lodhi et al., 2002) and authorship identifica-
tion (Popescu and Dinu, 2007) will also work for
translationese identification. We did not attempt to
optimize the value of the length of the p-spectrum
kernel.

In all experiments the results obtained by KFD
and SVM were almost identical. Here we reported
only the result obtained by SVM.
p-spectrum kernel implicitly embeds the texts

in a high dimensional feature space. Because we
have a small number of examples (214), in a high
dimensional feature space, the data set is separa-
ble and the best working SVM is a hard margin
SVM that can be obtained setting the C parameter
of the SVM to a high value (Taylor and Cristian-
ini, 2004). In all our experiments the value of C
was set to 100.

4.3 Experiments and Results

In the first experiment we have performed a cross-
validation on the entire corpus. The goal of the
cross-validation was not to set or tune any param-
eter of the learning method (all parameters were
set by other criteria, see the previous section). The
purpose of the cross-validation was to obtain a first
estimation of the accuracy of the classifier learned
by SVM based on a p-spectrum kernel of length 5.
The 10-fold cross-validation accuracy was 99.53%
and the leave one out cross-validation accuracy
was 100%. The obtaine results are higher than the
ones reported in other studies. In fact, the results
were so good they made us suspicious.

In the second experiment we have prepared a
much harder setting to test the learning method.
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We have used for training all the texts translated
from French and the original English texts written
by British authors. We have tested the obtained
classifier on the texts translated from German and
the original English texts written by American au-
thors. This scenario is more difficult because train-
ing texts for the class T were translations from
some fixed source language (French), while all test
texts in T were translations from a different source
language (German). Similar cases are discussed in
(Koppel and Ordan, 2011). This setting also vio-
lates one of the fundamental assumptions in ma-
chine learning: that the training and test data are
drawn from the same distribution. The accuracy
obtained in this setting was 45.83%. This means
that nothing was learned and the obtained classi-
fier is a random one.

The great discrepancy between cross-validation
accuracy and the accuracy obtained in the sec-
ond experiment is a clear symptom of over-fitting.
Most probable, the learning method found some
features (substrings) that can be used to distin-
guish with very high accuracy between translated
and non-translated texts in the case of training
data, but failed to do the same thing in the case of
test data. Because we have used a kernel method
it is hard to examine individual features in order to
see their importance within the classification func-
tion. But because we know the difference between
training data and test data (the different source lan-
guages of the translated texts) we can guess what
kind of features can act as confounding variables.
Most likely these are substrings extracted from
foreign proper names. Such substrings that differ
from typical English substrings can be very good
indicators of translationese. In the case of cross-
validation typical French and German substrings
can be seen in the training examples and this ex-
plains the good results. In the second experiment
the learning method sees only French translations
and thus fails to recognize German translations as
translated texts.

One possible remedy to this problem would be
to replace all proper names with a special string
or symbol, solution adopted by others (Baroni and
Bernardini, 2006) as well. But this would mean
that our method treats texts at word level and not
at character level. We opted for a more direct ap-
proach.

For the third experiment we have collected the
French original of all the works of French authors

in the corpus. These French texts formed a ref-
erence corpus. We modified the p-spectrum ker-
nel so as to exclude all substrings that appear in
the reference corpus. More precisely, when the p-
spectrum kernel is computed between two texts,
if a substring of length p that is common to the
two texts is found, it will be counted as a com-
mon substring only if it does not appear as a sub-
string of a text in the reference corpus. In this way,
the substrings belonging to French proper names
in the corpus will be eliminated from the feature
space, but, of course, many other substrings will
also be eliminated. This procedure was applied
when the kernel was computed between any pair
of texts from the corpus regardless of the source
language (translated from French, translated from
German or English original).

When we have repeated the previous experi-
ment, training on texts from French and British au-
thors and testing on texts from German and Amer-
ican authors, with the new kernel, the obtained ac-
curacy was 77.08%. In a similar experiment, train-
ing using translated texts from French and testing
using translated texts from German, but on a dif-
ferent data set (Europarl corpus), Koppel and Or-
dan (2011) reported an accuracy of 68.5%.

This third experiment proves that identifying
translationese is possible with machine learning
methods that work at the character level, using
SVM and a modified string kernel.

Finally, we have performed a fourth experiment
to see if the fact that we have used for training the
works of British authors and for testing the works
of American authors had any consequence regard-
ing accuracy. As in the previous experiments we
used for training translated texts from French au-
thors and for testing translated texts from Ger-
man authors. The original English texts, regard-
less of the nationality of the author, were ran-
domly partitioned into 6 parts, one part being kept
for testing and the other 5 being used for train-
ing (like in cross-validation, with the difference
that the procedure was followed only for origi-
nal English texts). The average accuracy obtained
was 76.88%, being not significantly different from
the accuracy obtained in the previous experiment
(77.08%).

5 Conclusions and Further Work

In this paper we have performed a set of ex-
periments regarding the identification of transla-
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tionese using string kernel in conjunction with ker-
nel methods. We have found that identifying trans-
lationese is possible with machine learning meth-
ods that work at the character level, SVM and
string kernels, but caution is necessary because
string kernels very easily can introduce confound-
ing factors.

More experiments are needed in order to clar-
ify all aspects of identifying translationese at the
character level.

To eliminate the confounding factors introduced
by p-spectrum kernel when training examples
come from one source language and testing exam-
ples from another we used the original version of
the translated texts in the training set. This is a
strong requirement. Can we use as reference cor-
pus other texts in the source language, not neces-
sarily the original version of the translated texts?
We plan to investigate this question.

It is likely that the confounding factors will not
appear if a corpus more suited for studying transla-
tionese (comparable corpora (Laviosa, 1997)) will
be used. We plan to test the method on such cor-
pora (like Europarl).

Acknowledgments

Work supported by the National University Re-
search Council of Romania (the “Ideas” research
programme, PN II-IDEI), Contract No. 659/2009.

References
M. Baker. 1993. Corpus linguistics and trans-

lation studies, implications and applications. In
M. Baker, editor, Text and Technology, In honour
of John Sinclair. John Benjamins Publishing Com-
pany., Philadelphia/Amsterdam.

M. Baroni and S. Bernardini. 2006. A new approach
to the study of translationese: Machine-learning the
difference between original and translated text. Lit-
erary and Linguistic Computing, 21(3):259–274.

M. Gellerstam. 1986. Translationese in swedish
novels translated from english. In L. Wollin and
H. Lindqvist, editors, Translation studies in Scan-
dinavia.

C. Grozea, C. Gehl, and M. Popescu. 2009. EN-
COPLOT: Pairwise Sequence Matching in Linear
Time Applied to Plagiarism Detection. In 3rd PAN
WORKSHOP. UNCOVERING PLAGIARISM, AU-
THORSHIP AND SOCIAL SOFTWARE MISUSE,
page 10.

I. Ilisei, D. Inkpen, G. Corpas Pastor, and R. Mitkov.
2010. Identification of translationese: A machine

learning approach. In A. F. Gelbukh, editor, CI-
CLing, volume 6008 of Lecture Notes in Computer
Science, pages 503–511. Springer.

M. Koppel and N. Ordan. 2011. Translationese and its
dialects. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistic:
Human Language Technologiess, Portland, Oregon,
USA, June. Association for Computational Linguis-
tics.

D. Kurokawa, C. Goutte, and P. Isabelle. 2008. Auto-
matic detection of translated text and its impact on
machine translation. In Proceedings of MT-Summit
XII.

S. Laviosa. 1997. How comparable can ’comparable
corpora’ be? Targe, 9(2):289–320.

S. Laviosa. 2002. Corpus-based Translation Studies.
Theory, Findings, Applications. Amsterdam & New
York: Rodopi.

Huma Lodhi, Craig Saunders, John Shawe-Taylor,
Nello Cristianini, and Christopher J. C. H. Watkins.
2002. Text classification using string kernels. Jour-
nal of Machine Learning Research, 2:419–444.

Marius Popescu and Liviu P. Dinu. 2007. Kernel meth-
ods and string kernels for authorship identification:
The federalist papers case. In Proceedings of the In-
ternational Conference on Recent Advances in Nat-
ural Language Processing (RANLP-07), Borovets,
Bulgaria, September.

Conrad Sanderson and Simon Guenter. 2006. Short
text authorship attribution via sequence kernels,
markov chains and author unmasking: An investi-
gation. In Proceedings of the 2006 Conference on
Empirical Methods in Natural Language Process-
ing, pages 482–491, Sydney, Australia, July. Asso-
ciation for Computational Linguistics.

J. S. Taylor and N. Cristianini. 2004. Kernel Methods
for Pattern Analysis. Cambridge University Press,
New York, NY, USA.

H. van Halteren. 2008. Source language markers
in EUROPARL translations. In Proceedings of the
22nd International Conference on Computational
Linguistics (Coling 2008), pages 937–944, Manch-
ester, UK, August. Coling 2008 Organizing Com-
mittee.

639


