
Proceedings of Recent Advances in Natural Language Processing, pages 640–647,
Hissar, Bulgaria, 12-14 September 2011.

Linear Transduction Grammars and Zipper Finite-State Transducers

Markus Saers and Dekai Wu
Human Language Technology Center

Dept. of Computer Science and Engineering
Hong Kong University of Science and Technology

Hong Kong
{masaers|dekai}@cs.ust.hk

Abstract

We examine how the recently explored
class of linear transductions relates to
finite-state models. Linear transductions
have been neglected historically, but gain-
ined recent interest in statistical machine
translation modeling, due to empirical
studies demonstrating that their attractive
balance of generative capacity and com-
plexity characteristics lead to improved
accuracy and speed in learning alignment
and translation models. Such work has
until now characterized the class of linear
transductions in terms of either (a) linear
inversion transduction grammars (LITGs)
which are linearized restrictions of inver-
sion transduction grammars or (b) lin-
ear transduction grammars (LTGs) which
are bilingualized generalizations of lin-
ear grammars. In this paper, we offer a
new alternative characterization of linear
transductions, as relating four finite-state
languages to each other. We introduce
the devices of zipper finite-state automata
(ZFSAs) and zipper finite-state transducers
(ZFSTs) in order to construct the bridge be-
tween linear transductions and finite-state
models.

1 Introduction

Linear transductions are a long overlooked class
of transductions positioned between finite-state
transductions and inversion transductions in terms
of complexity. In the Aho–Ullman hierarchy, lin-
ear transductions are those that can be generated
by SDTGs1 of rank 1, but that is about all that is
said about them.

1Syntax-directed transduction grammars or SDTGs (Lewis
and Stearns, 1968; Aho and Ullman, 1972) have also been
referred to recently in the statistical machine translation sub-
community as synchronous context-free grammars.

Recently, however, linear transduction gram-
mars (LTGs) have been shown to be both effective
and efficient for learning word alignments in sta-
tistical machine translation models (Saers et al.,
2010b; Saers et al., 2010a). LTGs can align words
more accurately than FSTs since they allow words
to be reordered, and yet alignment and training
complexity is two orders of magnitude lower than
with ITGs (Wu, 1997).

The added efficiency means that LTGs can be
learned directly from parallel corpora rather than
relying on external word alignment tools for a pri-
ori annotation. The added efficiency does, how-
ever, come at a price in expressivity, and it is vital
to understand the nature of this trade-off. The au-
tomaton/transducer perspective of linear transduc-
tions described in this paper offers another vec-
tor towards understanding the properties of linear
transductions.

Thus far, such work has not characterized the
class of linear transductions in terms of finite-state
models. Saers et al. (2010b) define linear trans-
ductions in terms of linear inversion transduction
grammars (LITGs), which are inversion transduc-
tion grammars with a linear restriction. Alterna-
tively, Saers et al. (2010a) introduce linear trans-
duction grammars (LTGs), which are the natural
bilingual generalization of linear grammars, and
show that they define the same class of linear
transductions as LITGs.

In this paper, we offer a new alternative charac-
terization of linear transductions based on finite-
state models. We will start by giving a definition
of LTGs, as the principal mechanism for generating
linear transductions (Section 2). As an intermedi-
ate step, we will note that linear languages (which
are related by linear transductions) can be handled
by FSTs under some conditions: we treat linear
languages as two finite-state languages dependent
on each other, by introducing the device of zipper
finite-state automata (Section 3). We then general-

640



G = 〈{S, F} ,Σ,∆, S,R〉 such that

Σ = {b, l, sandwich, t, -} ,
∆ = {bacon, bread, lettuce,mayonnaise, tomato} ,

R =



S → ε/bread F sandwich/bread,

F → b/ε F ε/bacon,

F → l/lettuce F,

F → t/tomato F,

F → -/ε,

F → -/mayonnaise


(a) Linear transduction grammar

S =⇒
G
ε/bread F sandwich/bread

=⇒
G

b/bread F sandwich/bacon bread

=⇒
G

b l/bread lettuce F sandwich/bacon bread

=⇒
G

b l t/bread lettuce tomato F sandwich/bacon bread

=⇒
G

b l t - sandwich/bread lettuce tomato mayonnaise bacon bread

(b) Generation

Figure 1: A linear transduction grammar (a) generating a bistring (b). The transduction defined estab-
lishes the concept “BLT-sandwich” and the ordered components of its realization: bacon, lettuce and
tomato (with optional mayonnaise) sandwiched between two slices of bread.

ize this to introduce zipper finite-state transducers,
treating linear transductions as relating two linear
languages to each other (Section 4). Since lin-
ear languages relate two finite-state languages to
each other, and linear transductions relate two lin-
ear languages to each other, linear transductions
can be said to relate four finite-state languages to
each other.

2 Linear transduction grammars

A linear transduction grammar (LTG) is an in-
version transduction grammar (ITG) or syntax-
directed transduction grammar (SDTG), of rank 1,
which means that any rule may produce at most
one nonterminal, eliminating any branching. Fig-
ure 1 contains an example of an LTG, and how it
generates a bistring.

Definition 1 A linear transduction grammar
(LTG) over languages L1 and L2 is a tuple:

G = 〈N,Σ,∆, S,R〉

whereN is a finite nonempty set of nonterminal
symbols, Σ is a finite nonempty set of L1 sym-
bols, ∆ is a finite nonempty set of L2 symbols,

S ∈ N is the designated start symbol and R is
a finite nonempty set of production rules on the
forms:

A→ a/x B
b/y

A→ a/x

where the nonterminalsA,B ∈ N and the biter-
minals a/x ,

b/y ∈ Σ∗ ×∆∗.

Definition 2 The rules in an LTG G =
〈N,Σ,∆, S,R〉 define a binary relation =⇒

G
over

(Σ∗ × ∆∗) (N ∪ (Σ∗ × ∆∗)) (Σ∗ × ∆∗) such
that:

a/wA
d/z =⇒

G

ab/wxB
cd/yz iff A→ b/xB

c/y ∈ R
a/wA

d/z =⇒
G

abd/wxz iff A→ b/x ∈ R

Note that both the biterminal expressions a/w
b/x

and ab/wx can designate the translation between the
terminal strings ab and wx. The reflexive transi-
tive closure of this relation can be used to define
the transduction generated by an LTG as the set of
bistrings that can be generated from the grammar’s
start symbol.

641



Definition 3 The transduction generated by the
LTG G = 〈N,Σ,∆, S,R〉 is:

T (G) =

{
〈a, x〉

∣∣∣∣S ∗
=⇒
G

a/x

}
∩ (Σ∗ ×∆∗)

Even though no normal form is given in Aho and
Ullman (1972) for LTGs or SDTGs of rank 1, it is
useful to have such a normal form. In this work
we will adopt the following normal form for LTGs.

Definition 4 An LTG in normal form is an LTG

where the rules are constrained to have one of
the forms:

A→ a/x′ B
b′/y′ A→ a′/x B b′/y′

A→ a′/x′ B
b/y′ A→ a′/x′ B

b′/y

A→ ε/ε

where A,B ∈ N , a, b ∈ Σ, a′, b′ ∈ Σ ∪ {ε},
x, y ∈ ∆ and x′, y′ ∈ ∆ ∪ {ε}.

That is: only rules where at least one terminal
symbol is produced together with a nonterminal
symbol, and rules where the empty bistring is pro-
duced, are allowed. The “primed” symbols are al-
lowed to be the empty string, whereas the others
are not. It is possible to construct an LTG in nor-
mal form from an arbitrary LTG in the same way
that a linear grammar (LG) is normalized.

Theorem 1. Grammars of type LTG and type LTG

in normal form generate the same class of trans-
ductions.

Proof. Given an LTG G = 〈N,Σ,∆, S,R〉, we
can construct an LTG in normal form G′ =
〈N ′,Σ,∆, S,R′〉 that generates the same lan-
guage. For every rule inR we can produce a series
of corresponding rules in R′. We start by remov-
ing useless nonterminals, rules where one nonter-
minal rewrites into another nonterminal only. This
can be done in the same way as for SDTGs, see
Aho and Ullman (1972). The rules can then be re-
cursively shortened until they are in normal form.

If the ruleA→ a/x B c/z is not in normal form,
it can be rephrased as two rules:

A→ a/x 1 B̄
c/z m

B̄ → a/x 2 . . .
a/x n B c/z 1 . . .

c/z m−1

where B̄ is a newly created unique nonterminal,
n is the length of the biterminal a/x and m is the
length of the biterminal c/z . The first rule is in
normal form by definition. The second rule can

be subjected to the same procedure until it is in
normal form. Having either a/x or c/z be empty
does not affect the results of the procedure, and
since we started by eliminating useless rules, one
of them is guaranteed to be nonempty.

If the ruleA→ b/y is not in normal form (mean-
ing that b/y is nonempty), it can be replaced by two
rules:

A→ b/y 1 B̄

B̄ → b/y 2 . . .
b/y n

where B̄ is a newly created unique nonterminal,
and n is the length of the biterminal b/y . The set of
nonterminals N ′ is the old set N in union with the
set of all nonterminals that were created when R′

was constructed.
Whenever there is a production in G such that:

a/w A
d/z =⇒

G

ab/wx B
cd/yz

or
a/x A

c/z =⇒
G

abc/xyz

There is, by construction, a sequence of produc-
tions in G′ such that:

a/w A
d/z

∗
=⇒
G′

ab/wx B
cd/yz

or
a/x A

c/z
∗

=⇒
G′

abc/xyz

This means that G′ is capable of generating any
string that G can generate, giving us the inequal-
ity:

L(G) ⊆ L(G′)

Since the normal form constitutes a restriction,
we also know that:

L(G′) ⊆ L(G)

Which leads us to conclude that:

L(G) = L(G′)

For statistical machine translation applications,
LTGs can be made weighted or stochastic (Saers
et al., 2010b; Saers et al., 2010a) in the same way
as ITGs Wu (1997).

642



3 Linear languages revisited

In this section we will take a look at the connec-
tion between linear languages (LLs) and FSTs, and
leverage the relationship to define a new type of
automaton to handle LLs. The new class of au-
tomata is referred to as zipper finite-state automata
(ZFSAs), which will replace one-turn pushdown
automata (Ginsburg and Spanier, 1966, 1-PDAs)
and nondeterministic two-tape automata (Rosen-
berg, 1967, 2-NDAs) as the principal machine for
handling linear languages. This is mainly to facili-
tate the move into the bilingual domain, and offers
nothing substantially new.

Ginsburg and Spanier (1966, Theorem 6.1)
show that a linear language can be seen as the
input to an FST concatenated with the reverse of
its output. Rosenberg (1967, Theorems 9 and 10)
shows that any linear grammar can be said to gen-
erate the concatenation of the first tape from a 2-
NDA with the reverse of the second. Instead of giv-
ing the original theorems, we will give two lem-
mas in the spirit of the previous works.

Lemma 2. For every one-restricted finite-
state transducer (1-FST) M there is an LG

in normal form that generates the language
{ab←|〈a, b〉 ∈ T (M)}.2

Proof. Given that M = 〈Q,Σ,∆, q0, F, δ〉 is a 1-
FST, we can construct an LG in normal form G =
〈Q,Σ ∪∆, q0, R〉 where

R =
{
q → a q′ b

∣∣〈q, a, b, q′〉 ∈ δ}∪
{q → ε|q ∈ F}

where q, q′ ∈ Q, a ∈ Σ ∪ {ε} and b ∈ ∆ ∪ {ε}.
Whenever there is a transition sequence with M
such that:

〈q0, a, b〉 = 〈q0, a1 . . . an, b1 . . . bn〉
`M 〈q1, a2 . . . an, b2 . . . bn〉
`∗M 〈qn−1, an, bn〉
`M 〈qn, ε〉

where qi ∈ Q, ai ∈ Σ∪{ε}, a ∈ Σ∗, bi ∈ ∆∪{ε}
and b ∈ ∆∗ for all i, and where the state qn is a
member of F , there is, by construction, a deriva-

2Where b← is used to mean the reverse of b.

tion with G such that:

q0 =⇒
G
a1q1b1

∗
=⇒
G
a1 . . . anqnbn . . . b1

=⇒
G
a1 . . . anbn . . . b1 = ab←

Thus: whenever the bistring 〈a, b〉 is a member of
T (M), the string ab← is a member of L(G). By
construction, G cannot generate any other strings.
We thus conclude that

L(G) = {ab←|〈a, b〉 ∈ T (M)}

Lemma 3. For every LG in normal form (G), there
exists a 1-FST (M ) such that, for all string s ∈
L(G), there exists a partition s = ab← such that
〈a, b〉 ∈ T (M).

Proof. Given that G = 〈N,Σ, S,R〉 is an LG in
normal form, we can construct a 1-FST M =
〈N,Σ,Σ, S, F, δ〉 where:

F = {A|A→ ε ∈ R} ,
δ = {〈A, a, b, B〉|A→ a B b ∈ R}

where A,B ∈ N and a, b ∈ Σ ∪ {ε}. Whenever
there is a derivation with G such that:

S =⇒
G
a1X1b1

∗
=⇒
G
a1 . . . anXnbn . . . b1

=⇒
G
a1 . . . anbn . . . b1 = ab←

there is, by definition, a sequence of transitions
with M such that:

〈S, a, b〉 = 〈S, a1 . . . an, b1 . . . bn〉
`M 〈X1, a2 . . . an, b2 . . . bn〉
`∗M 〈Xn−1, an, bn〉
`M 〈Xn, ε, ε〉

(where qi ∈ Q, ai ∈ Σ∪{ε}, a ∈ Σ∗, bi ∈ ∆∪{ε}
and b ∈ ∆∗ for all i) and the state Xn is by defini-
tion a member of F . Thus: whenever G generates
ab←, M can recognize 〈a, b〉. By construction, M
cannot recognize any other bistrings. We thus con-
clude that

T (M) = {〈a, b〉|ab← ∈ L(R)}

643



Figure 2: A zipper finite-state automata relates the
two parts of a string to each other, and define the
partitioning of the string at the same time.

There is a discrepancy between FSTs and linear
languages in that every string in the language has
to be partitioned into two strings before the FST

can process them. Naturally, the number of ways
to partition a string is proportional to its length.
Naı̈vely trying all possible partitions would take
O(n3) time (O(n) partitions and O(n2) time to
run the FST on each string pair), which is equal to
CFGs. If linear languages are as time-consuming
to process as CFLs, we might as well use the more
expressive language class. If, however, the parti-
tion point could be found as a part of the analysis
process rather than conjectured a priori, the pro-
cess would be faster than CFGs.

It is possible to reinterpret the transition rela-
tion defined by an FST such that it reads from both
tapes, rather than reads from one and writes to the
other. We define this relation as:

〈q, aα, βb〉 `M,r 〈q′, α, β〉 iff 〈q, a, b, q′〉 ∈ δ

where q, q′ ∈ Q, a ∈ Σ, b ∈ ∆, α ∈ Σ∗ and
β ∈ ∆∗. Using this interpretation of the FST

M (designated M ′ under this reinterpretation) we
have that:

〈α, β←〉 ∈ T (M) iff 〈α, β〉 ∈ T (M ′)

which, by lemmas 2 and 3, means that the con-
catenation of α and β over the entire transduction
constitutes a linear language. This is the intuition
behind zipper finite-state automata. By construct-
ing a string γ ∈ (Σ ∪ ∆)∗ such that γ = αβ, we
can rewrite the reinterpreted FST relation as:

〈q, aγb〉 `M ′,r 〈q′, γ〉 iff 〈q, a, b, q′〉 ∈ δ

which define a linear language over (Σ ∪ ∆)∗.
The partitioning of the string is also implicitly de-
fined since the automaton will end up somewhere

in the original string, defining the place of parti-
tioning that makes the two parts related (or con-
cluding that they are not, and that the string is not
a member of the language defined by the automa-
ton). The attribute “zipper” comes from the visual-
ization, where the control of the automaton slides
down two ends of the tape until it reaches the bot-
tom after having drawn all connections between
the two parts of the tape—like a zipper (see Fig-
ure 2). Again, this is merely a reinterpretation of
previous work. The idea of a dedicated automa-
ton to process a single tape containing strings from
a linear language with finite control (as opposed
to using a stack as the 1-PDAs do, or partitioning
the tapes as 2-NDAs strictly speaking have to do)
is not new. Nagy (2008) presents 5′ → 3′ sens-
ing Watson-Crick finite automata which are used
to process DNA strings, and Loukanova (2007)
presents nondeterministic finite automata to han-
dle linear languages. Our reinterpretation is made
to facilitate the transition into the bilingual do-
main.

Definition 5 A zipper finite-state automaton
(ZFSA) is a tuple:

M = 〈Q,Σ, q0, F, δ〉

where Q is a finite nonempty set of states, Σ
is a finite set of symbols, q0 ∈ Q is the start
state, F ⊆ Q is a set of accepting states and
δ ⊆ Q×Σ∗×Σ∗×Q is a finite set of transitions.
Transitions define a binary relation overQ×Σ∗

such that:

〈q, αγβ〉 `M 〈q′, γ〉 iff 〈q, α, β, q′〉 ∈ δ

where q, q′ ∈ Q and α, β, γ ∈ Σ∗.

Lemma 4. Every FST can be expressed as a ZFSA.

Proof. Let M = 〈Q,Σ,∆, q0, F, δ〉 be an FST,
and let M ′ = 〈Q,Σ ∪ ∆, q0, F, δ〉 be the corre-
sponding ZFSA. The only differences are that M ′

uses the union of the two alphabets that M trans-
duces between, and that the interpretation of the
relation defined by δ is different inM andM ′.

Lemma 5. Every ZFSA can be expressed as an
FST.

Proof. Let M = 〈Q,Σ, q0, F, δ〉 be a ZFSA, and
let M ′ = 〈Q,Σ,Σ, q0, F, δ〉 be the corresponding
FST transducing within the same alphabet. The
only differences are that M ′ uses two copies of

644



M = 〈Q,Σ,∆, qS ,
{
q′
}
, δ〉 such that

Q =
{
qS , qF , q

′} ,
Σ = {b, l, sandwich, t, -} ,
∆ = {bacon, bread, lettuce,mayonnaise, tomato} ,

δ =



〈qS , ε, bread, sandwich, bread, qF 〉,
〈qF , b, ε, ε, bacon, qF 〉,
〈qF , l, lettuce, ε, ε, qF 〉,
〈qF , t, tomato, ε, ε, qF 〉,
〈qF , -, ε, ε, ε, q′〉
〈qF , -,mayonnaise, ε, ε, q′〉


(a) Zipper finite-state transducer

〈qS , b l t - sandwich, bread lettuce tomato mayonnaise bacon bread〉
`M 〈qF , b l t -, lettuce tomato mayonnaise bacon〉
`M 〈qF , l t -, lettuce tomato mayonnaise〉
`M 〈qF , t -, tomato mayonnaise〉
`M 〈qF , -,mayonnaise〉
`M 〈q′, ε, ε〉

(b) Recognition

Figure 3: A zipper finite-state transducer (a) recognizing a bistring (b). This is the same bistring that was
generated in Figure 1.

the same alphabet (Σ), and that the interpretation
of the relation defined by δ is different in M and
M ′.

Theorem 6. FSTs in recognition mode are equiv-
alent to ZFSAs.

Proof. Follows from Lemmas 4 and 5.

Theorem 7. The class of languages recognized by
ZFSAs is the class of linear languages.

Proof. From Lemmas 2 and 3 we have that FSTs
generate linear languages, and from theorem 6 we
have that ZFSAs are equivalent to FSTs.

To recognize with a ZFSA is as complicated as rec-
ognizing with an FST, which can be done inO(n2)
time. Since we are effectively equating a transduc-
tion with a language, it is helpful to instead con-
sider this as “finite-state in two dimensions.” For
the finite-state transduction, this is easy, since it re-
lates two finite-state languages to each other. For
the linear languages it takes a little more to con-
sider them as languages that internally relate one
part of every string to the other part of that string.

The key point is that they are both relating some-
thing that is in some sense finite-state to something
else that is also finite-state.

4 Zipper finite-state transducers

Having condensed a finite-state relation down to
a language, we can relate two such languages to
each other. This is what zipper finite-state trans-
ducers (ZFSTs) do. If linear languages relate one
part of every string to the other, linear transduc-
tions relate these two parts to the two parts of all
the strings in another linear language. There are
in all four kinds of entities involved, 〈a, b〉 ∈ L1

and 〈x, y〉 ∈ L2, and linear transduction have to
relate them all to each other. We claim that this is
what LTGs do, and in this section we will see that
the transducer class for linear languages, ZFSTs, is
equivalent to LTGs. An example of a ZFST can be
found in Figure 3.

Definition 6 A ZFST over languages L1 and L2

is a tuple:

M = 〈Q,Σ,∆, q0, F, δ〉

where Q is a finite nonempty set of states, Σ
is a finite nonempty set of L1 symbols, ∆ is a

645



finite nonempty set of L2 symbols, q0 ∈ Q is
the designated start state, F ⊆ Q is a set of
accepting states and:

δ ⊆ Q× Σ∗ ×∆∗ × Σ∗ ×∆∗ ×Q

is a finite set of transitions. The transitions de-
fine a binary relation over Q × Σ∗ × ∆∗ such
that:

〈q, abc, xyz〉 `M 〈q′, b, y〉
iff 〈q, a, x, c, z, q′〉 ∈ δ

where q, q′ ∈ Q, a, b, c ∈ Σ∗ and x, y, z ∈ ∆∗.

We know that ZFSTs relate linear languages to
each other, they are defined to do so, and we con-
jecture that LTGs relate linear languages to each
other. By proving that ZFSTs and LTGs handle
the same class of transductions we can assert that
LTGs do indeed generate a transduction relation
between linear languages.

Lemma 8. For every LTG there is a ZFST that rec-
ognizes the language generated by the LTG.

Proof. Let G = 〈N,Σ,∆, S,R〉 be an LTG, and
let M = 〈N ′,Σ,∆, S, {S′}, δ〉 be the correspond-
ing ZFST where S′ is a unique final state, N ′ =
N ∪ {S′} and:

δ =
{
〈A, a, x, c, z, B〉

∣∣A→ a/x B c/z ∈ R
}
∪{

〈A, b, y, ε, ε, S′〉
∣∣A→ b/y ∈ R

}
where A,B ∈ N , a, b, c ∈ Σ∗ and x, y, z ∈ ∆∗.
Whenever there is a derivation with G such that:

S =⇒
G

a1/x1 A1
c1/z1

∗
=⇒
G

a1/x1 . . .
an/xn An

cn/zn . . .
c1/z1

=⇒
G

a1/x1 . . .
an/xn

b/y
cn/zn . . .

c1/z1

(where S,Ai ∈ N , ai, bi ∈ Σ∗ and xi, yi ∈ ∆∗

for all i),3 we have, by construction, a sequence of
transitions inM that takes it from an initial config-
uration with the generated bistring to an accepting
configuration:

〈S, a1 . . . anbcn . . . c1, x1 . . . xnyzn . . . z1〉
`M 〈A1, a2 . . . anbcn . . . c2, x2 . . . xnyzn . . . z2〉
`∗M 〈An, b, y〉
`M 〈S′, ε, ε〉

3These i indices are not indicating individual symbols in
a string, but different strings.

This means that M can recognize all strings gen-
erated byG. By construction,M cannot recognize
any other strings. We thus conclude that

T (M) = T (G)

Lemma 9. For every ZFST, there is an LTG

that generates the transduction recognized by the
ZFST.

Proof. Let M = 〈Q,Σ,∆, q0, F, δ〉 be a ZFST,
and let G = 〈Q,Σ,∆, q0, R〉 be the correspond-
ing LTG where:

R =
{
q → a/x q′ b/y

∣∣〈q, a, x, b, y, q′〉 ∈ δ}∪{
q → ε/ε

∣∣q ∈ F}
where q, q′ ∈ Q, a, b, c ∈ Σ∗ and x, y, z ∈ ∆∗.
For every bistring that M can recognize:

〈q0, a1 . . . anbn . . . b1, x1 . . . xnyn . . . y1〉
`M 〈q1, a2 . . . anbn . . . b2, x2 . . . xnyn . . . y2〉
`∗M 〈qn, ε, ε〉

(where qi ∈ Q, ai, bi ∈ Σ∗ and xi, yi ∈ ∆∗ for all
i,4 and where qn ∈ F ), we have, by construction,
a derivation with G that generates that bistring:

q0 =⇒
G

a1/x1 q1
b1/y1

∗
=⇒
G

a1/x1 . . .
an/xn qn

bn/yn . . .
b1/y1

=⇒
G

a1/x1 . . .
an/xn

bn/yn . . .
b1/y1

This means that G can generate all strings that M
can recognize. By construction,G cannot generate
any other strings. We thus conclude that

T (G) = T (M)

Theorem 10. The class of transductions gener-
ated by LTGs is the same as that recognized by
ZFSTs.

Proof. Follows from lemmas 8 and 9.

4Again, these indices do not refer to individual symbols
in a string, but different strings.

646



5 Conclusion

We have examined how the class of linear trans-
ductions relates to finite-state models. Our anal-
ysis complements earlier characterizations of lin-
ear transductions in terms of LITGs (linearized
restrictions of inversion transduction grammars)
and LTGs (bilingualized generalizations of linear
grammars). Our new alternative characterization
has shown how linear transductions relate four
finite-state languages to each other, with the aid of
the devices zipper finite-state automata and trans-
ducers.

Acknowledgments

This work was funded by the Defense Ad-
vanced Research Projects Agency under GALE

Contract Nos. HR0011-06-C-0023 and HR0011-
06-C-0023, and the Hong Kong Research Grants
Council (RGC) under research grants GRF621008,
GRF612806, DAG03/04.EG09, RGC6256/00E,
and RGC6083/99E. Any opinions, findings and
conclusions or recommendations expressed in this
material are those of the authors and do not nec-
essarily reflect the views of the Defense Advanced
Research Projects Agency. We would also like to
thank the four anonymous reviewers, whose feed-
back made this a better paper.

References
Alfred V. Aho and Jeffrey D. Ullman. 1972. The

Theory of Parsing, Translation, and Compiling.
Prentice-Halll, Englewood Cliffs, NJ.

Seymour Ginsburg and Edwin H. Spanier. 1966.
Finite-turn pushdown automata. Society for Indus-
trial and Applied Mathematics Journal on Control,
4(3):429–453.

Philip M. Lewis and Richard E. Stearns. 1968. Syntax-
directed transduction. Journal of the Association for
Computing Machinery, 15(3):465–488.

Roussanka Loukanova. 2007. Linear context free
languages. In Cliff Jones, Zhiming Liu, and Jim
Woodcock, editors, Theoretical Aspects of Comput-
ing – ICTAC 2007, volume 4711 of Lecture Notes
in Computer Science, pages 351–365. Springer
Berlin/Heidelberg.

Benedek Nagy. 2008. On 5′ → 3′ sensing Watson–
Crick finite automata. In Max Garzon and Hao
Yan, editors, DNA Computing, volume 4848 of Lec-
ture Notes in Computer Science, pages 256–262.
Springer Berlin/Heidelberg.

Arnold L. Rosenberg. 1967. A machine realization of
the linear context-free languages. Information and
Control, 10:175–188.

Markus Saers, Joakim Nivre, and Dekai Wu. 2010a. A
systematic comparison between inversion transduc-
tion grammar and linear transduction grammar for
word alignment. In Proceedings of the 4th Work-
shop on Syntax and Structure in Statistical Transla-
tion, pages 10–18, Beijing, China, August. Coling
2010 Organizing Committee.

Markus Saers, Joakim Nivre, and Dekai Wu. 2010b.
Word alignment with stochastic bracketing linear
inversion transduction grammar. In Human Lan-
guage Technologies: The 2010 Annual Conference
of the North American Chapter of the Association
for Computational Linguistics, pages 341–344, Los
Angeles, California, June. Association for Compu-
tational Linguistics.

Dekai Wu. 1997. Stochastic inversion transduction
grammars and bilingual parsing of parallel corpora.
Computational Linguistics, 23(3):377–403.

647


