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Abstract

Research on statistical machine transla-
tion has focused on particular translation
directions, typically with English as the
target language, e.g., from Arabic to En-
glish. When we reverse the translation di-
rection, the multiple reference translations
turn into multiple possible inputs, which
offers both challenges and opportunities.
We propose and evaluate several strategies
for making use of these multiple inputs:
(a) select one of the datasets, (b) select the
best input for each sentence, and (c) syn-
thesize an input for each sentence by fus-
ing the available inputs. Surprisingly, we
find out that it is best to tune on the hardest
available input, not on the one that yields
the highest BLEU score. This finding has
implications on how to pick good transla-
tors and how to select useful data for pa-
rameter optimization in SMT.

1 Introduction

Nowadays, statistical machine translation (SMT)
systems are data-driven, and thus critically depend
on the available resources for training, tuning and
evaluation. These resources are hard to obtain,
which has limited research to a small number of
language pairs for which biligual sentence-aligned
parallel corpora, called bitexts, are available.

What is often not realized is that SMT research
has further been restricted to only some transla-
tion directions, e.g., those of interest to evaluation
campaigns such as NIST and IWSLT or to funding
agencies such as DARPA. This is because stable
SMT evaluation requires multiple reference trans-
lations for the target language. Such multiple ref-
erences are often available for the English (target)
side of the tuning and the evaluation dataset, but
not for the source language, e.g., Arabic, Chinese.

Reversing the translation direction yields (i) a
single reference translation and (ii) multiple ver-
sions for each tuning/testing input sentence. There
is little we can do about (i),1 but (ii) offers inter-
esting opportunities for tuning and evaluation.

Below we focus on the question of how to make
best use of the multiple available inputs at tuning
time. We propose and evaluate several strategies
for making use of these multiple inputs: (a) select
one of the datasets, (b) select the best input for
each sentence, and (c) synthesize an input for each
sentence by fusing the available inputs.

2 Related Work

One relevant line of research is on multi-source
translation, which generates a single translation
given multiple versions of the input. This line was
started by Och and Ney (2001), who translated the
different inputs in isolation and then selected one
of them. It has been further extended with vari-
ous strategies for generating a consensus transla-
tion by combining either the inputs (Schroeder et
al., 2009) or the outputs (Matusov et al., 2006) of
the SMT system. In contrast, we assume having
multiple sources at tuning but not at testing time.

A related line focused on data selection. For
training data, this includes filtering (Moore and
Lewis, 2010; Foster et al., 2010), instance-
weighting (Axelrod et al., 2011; Matsoukas et al.,
2009) and model adaptation (Hildebrand et al.,
2005). For tuning data, Liu et al. (2012) built
a separate tuning dataset for each test sentence,
which is too costly for real-world translation.

To the best of our knowledge, ours is the first
attempt to make best use at tuning time of mul-
tiple input versions of the same tuning sentence
and a single reference translation for it. Previous
English–Arabic SMT has used the first input (Al-
Haj and Lavie, 2012; Kholy and Habash, 2012).

1One could hire translators, but this would be costly.
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3 Method

3.1 Choosing a dataset
We can select one of the input datasets.

Select-first. One possible baseline is to select
randomly, e.g., the dataset that is listed first.

Concat-all. Another baseline is to concatenate
all tuning datasets: using each of the available En-
glish versions of a given sentence as input, each
paired with the only available Arabic reference.

Then, there are a number of strategies that select
the dataset yielding the highest BLEU score:

Backtranslate. We can backtranslate the single
target-language reference to English, then evalu-
ate this translation with respect to each of the En-
glish inputs, and select the one yielding the highest
BLEU score. We can do this using our own sys-
tem, trained in the opposite, X-English direction;
this makes the results potentially more relevant to
a system trained and tuned on the same dataset,
but in the English-X direction. Another option is
to use Google Translate, which would avoid the
bias to our datasets. One could argue in favor of
either option, and we experiment with both.

X-vs-all-but-X. Here we pretend that one of the
English inputs is in fact a translation, and we eval-
uate this “translation” with respect to the remain-
ing English datasets. We calculate the BLEU score
for each of the English datasets using the remain-
ing English datasets as references, and we select
the one with the highest BLEU. This minimizes
the risk of selecting an outlier dataset for tuning.

Best-on-tuning. Given an English input, we
use it to tune the parameters of our SMT system,
then we use these learned parameters to translate
each of the English inputs, and we evaluate them
using BLEU. Then, we average the BLEU scores,
where the averaging is over (a) the translations of
all English inputs or (b) all but the one used for
tuning. The rationale behind (a) is to make all
BLEU scores comparable, while that for (b) is to
clearly separate tuning from testing, i.e., not to test
on the particular dataset that was used for tuning.
In either case, we select the dataset that achieved
the highest such average.

3.2 Synthesizing a dataset from full sentences
Instead of selecting an entire input dataset, we can
synthesize a new dataset by fusing the available
inputs. The easiest way is to do selection at the
sentence-level: for each tuning reference sentence,
we can select one of the available English inputs.

We will do the selection with respect to some
English reference, e.g., backtranslation of the Ara-
bic reference generated by our own system or by
Google translate. Below, we present the similarity
measures that we use for the selection.

BLEU+1 (B1). BLEU+1 (Lin and Och, 2004)
is a smoothed version of BLEU (Papineni et al.,
2002) used to address sparseness problems with
n-gram matches when comparing sentences.

BLEU+1 BP smooth (B1-BP). The BLEU+1
approximation of BLEU smooths the n-gram
counts but not the brevity penalty, thus destroy-
ing the balance between the two; it also assigns
a non-zero precision to cases with zero matches.
Thus, we experiment with a version of BLEU+1
from (Nakov et al., 2012) that smooths the brevity
penalty and also uses a “grounding” factor.

BLEU+1 Sigmoid LP (B1-SG). Note that
the brevity penalty of BLEU/BLEU+1 penalizes
shorter but not longer sentences. Thus, we also
experiment with a version of BLEU+1 with a sym-
metric length penalty, which penalizes the squared
differences in length using a sigmoid function:

LP (si, r) = 3− 4 ∗ sig

([
l(si)− l(r)

α

]2
)

where l(si) and l(r) are the length of the i-th in-
put and of the reference, respectively, and α is a
tolerance factor (set to 5 in our experiments).

Length Difference (DL). We also try to mini-
mize the difference in length.

Minimum BLEU+1 (MIN-B1). Next, instead
of maximizing BLEU+1, we can minimize it,
i.e., pick the hardest input sentence, and tune the
SMT system to perform well on such hard input.

Minimum Length (MIN-L). Finally, we can
just pick the shortest sentence.

3.3 Synthesizing a dataset by fusing sentences
MEMT. Instead of selecting one of the possible
inputs, we can synthesize a new input by mixing
different inputs at the sub-sentence level. Here, we
use the Multi-Engine Machine Translation system,
or MEMT, (Heafield and Lavie, 2010) to merge
different input sentences. It merges all input sen-
tences into a lattice and then extracts a new candi-
date from that lattice using features such as length,
language model, and n-gram matches; it tries to
maximize BLEU with respect to a given reference:
again, a backtranslation of the reference to English
using own SMT system or Google Translate.
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TEST⇒ MT050 MT051 MT052 MT053 MT054 AVERAGE
TUNE ⇓ BLEU len BLEU len BLEU len BLEU len BLEU len BLEU len
MT040 34.63 0.984 30.96 0.984 29.73 0.973 40.40 1.014 35.46 0.988 34.24 0.989
MT041 34.37 0.969 30.59 0.966 29.44 0.954 40.91 0.999 35.31 0.972 34.12 0.972
MT042 34.34 0.967 30.57 0.964 29.08 0.952 40.64 0.998 35.12 0.970 33.95 0.970
MT043 33.99 0.957 30.23 0.952 29.06 0.943 40.62 0.988 34.81 0.960 33.74 0.960
MT044 33.87 0.961 30.18 0.957 28.96 0.947 40.51 0.992 34.82 0.965 33.67 0.964
MT04ALL 34.37 0.970 30.49 0.967 29.42 0.957 40.72 1.001 35.15 0.973 34.03 0.974
best−worst 0.76 0.78 0.77 0.51 0.65 0.57

Table 1: Tuning on MT04 and testing on MT05. Shown are BLEU scores and hypothesis/reference
length ratios. The best and the worst BLEU scores for each test MT05 dataset are in bold and stroke out,
respectively; the last row shows the absolute difference between them.

4 Experiments and Evaluation

4.1 Experimental Setup

We used the phrase-based SMT model (Koehn et
al., 2003), as implemented in the Moses toolkit
(Koehn et al., 2007), to train an SMT system trans-
lating from English to Arabic.

For tuning and evaluation, we used two multi-
reference datasets, MT04 and MT05, from the
NIST 2012 OpenMT Evaluation,2 each with a sin-
gle Arabic input and five English reference trans-
lations, which we inverted, ending up with five En-
glish inputs and one Arabic reference for each one.

We trained the English-Arabic system (trans-
lation, reordering, and language models) on all
training data from NIST 2012 except for UN data.
Following Kholy and Habash (2012), we normal-
ized the Arabic training, development and test data
using MADA (Roth et al., 2008), fixing automati-
cally all wrong instances of alef, ta marbuta and
alef maqsura. We segmented the Arabic words
by splitting out conjunctions (MADA scheme D1).
For English, we converted all words to lowercase.

We built our phrase tables using the standard
Moses pipeline with max-phrase-length 7 and
Kneser-Ney smoothing. We also built a lexi-
calized reordering model (Koehn et al., 2005):
msd-bidirectional-fe. We used a 5-gram language
model trained on the GigaWord v.5 with Kneser-
Ney smoothing using KenLM (Heafield, 2011).
For optimization, we used MERT. For evaluation,
we used NIST’s BLEU scoring tool v13a, which
we ran on a desegmented Arabic output, where
conjunctions are attached to the following word.

In order to ensure stability, we performed three
reruns of MERT for each experiment, and we re-
port evaluation results averaged over the three re-
runs, as suggested by Foster and Kuhn (2009).

2www.nist.gov/itl/iad/mig/openmt12.cfm

4.2 Tuning on MT04, testing on MT05

TEST⇒ AVERAGE AVG, no self
TUNE ⇓ BLEU len BLEU len
MT040 29.41 1.014 30.30 1.020
MT041 30.13 0.993 30.18 0.993
MT042 30.07 0.991 30.14 0.990
MT043 30.03 0.983 29.36 0.981
MT044 30.14 0.986 29.32 0.982

Table 2: Tuning and testing on MT04. We tune
on the English input in the first column, then we
translate all MT04x inputs. We report BLEU and
hyp/ref length ratios averaged over (a) all MT04
datasets, and (b) all but the one used for tuning.

Table 1 shows the results when tuning on MT04
and testing on MT05. There are several interesting
observations we can make. First, the choice of test
dataset has a huge impact on the BLEU score: in
some cases, more than 11 BLEU points, e.g., com-
pare MT052 to MT053. Second, from the tuning
dataset perspective, we can see 0.51-0.78 abso-
lute difference in BLEU between the best (mostly
MT040) and the worst choice (mostly MT044).
These differences are large enough to justify our
interest in tuning input selection.

Table 1 also allows us to assess the performance
of the two baselines: select-first is optimal, achiev-
ing an overall BLEU score of 34.24, while concat-
all is in the middle (would be third best if ranked
with the rest) with a BLEU score of 34.03.

Table 2 shows the results when tuning on one
MT04 dataset, and testing on all MT04 datasets.
The results are averaged (a) over all MT04 datasets
and (b) over all but the one used for tuning. In
case (a) (see columns 2 and 3), MT044 is selected,
which is the worst possible choice. However, in
case (b) (see columns 4 and 5), the best score is
achieved for MT040, which is the optimal choice,
i.e., best-on-tuning yields optimal results when av-
eraging over all but the tuning dataset.
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Moreover, note that the BLEU scores in column
4 of Table 2 go in strictly decreasing order for
MT040, MT041, MT042, MT043, MT044, and
they do so also in Table 1. This suggests that the
best-on-tuning strategy is very reliable here.

REF: all-but-X
TEST BLEU len
MT040 52.81 0.976
MT041 57.16 1.005
MT042 58.55 1.007
MT043 63.28 1.008
MT044 62.56 1.013

Table 3: X vs. all-but-X for MT04. BLEU scores
and hyp/ref length ratios when testing on each En-
glish input, using all the rest as references.

Table 3 implements X-vs-all-but-X. It shows the
results when tuning on each English input, using
all other inputs as references. The highest BLEU
score is achieved by MT043, which is the second
worst choice. Thus, this is a very poor strategy
here; however, below we will see that it is quite
reliable if we make a choice based on length ratio.

Our System Google
TEST BLEU len BLEU len
MT040 26.04 1.036 26.29 0.992
MT041 29.46 0.979 28.11 0.937
MT042 29.99 0.977 28.00 0.935
MT043 32.21 0.974 30.36 0.933
MT044 32.27 0.962 29.94 0.921

Table 4: Backtranslate MT04. BLEU scores
and hyp/ref length ratios when backtranslating the
Arabic reference to English, and then evaluating it
with respect to each of the English inputs.

Table 4 shows the results when backtranslating
the Arabic reference to English, and then scoring
it with respect to each of the English inputs. The
backtranslation uses (a) our own system trained to
translate in the reverse direction, and (b) Google
Translate. We can see that backtranslate performs
poor: with (a), it selects MT044, the worst choice,
and with (b), it selects MT043, the second worst;
however, it works better if we use length ratios.

Table 5 shows the results when tuning on
datasets synthesized from full sentences (all but
the last line) or by fusing sentences (the last line),
where we optimize some function with respect to a
backtranslation obtained from (a) our own system
or (b) Google Translate. We can see that no com-
bination could improve over the best individual
system, but the best synthesized dataset yielded a
score matching that of the best individual system.

Our System Google
TUNE BLEU len BLEU len
B1 34.05 0.971 33.92 0.981
B1-BP 34.11 0.967 33.94 0.977
B1-SG 34.03 0.982 34.19 0.989
DL 34.21 0.982 34.07 0.990
MIN-L 33.53 1.020 34.24 1.005
MIN-B1 34.23 0.978 34.05 0.966
MEMT 33.71 0.998 33.47 1.000

Table 5: Tuning on synthesized MT04 datasets,
testing on MT05. BLEU scores and hyp/ref
length ratios averaged over all MT05 test datasets.

We believe that these results are due to our in-
ability to choose a reliable reference translation:
backtranslation generates an automatic translation,
which most of the time is arguably worse in qual-
ity than the English inputs, which are human, after
all. In future work, we plan to try other ways to
generate a good reference translation.

4.3 Tuning on MT05, testing on MT04

Table 6 shows the results when tuning on MT05
and testing on MT04. Once again, the choice of
test dataset has a huge impact on the BLEU score:
this time up to 7 BLEU points, e.g., compare
MT040 to MT044. We further see 0.5-1.5 abso-
lute difference in BLEU between the best (mostly
MT051) and the worst choice (mostly MT050).

This time, select-first does not work at all: it se-
lects MT050, which is the worst possible choice
(while it was best in the reverse, MT04-MT05,
translation direction). However, the concat-all
strategy performs reasonably well: it would be
second best if ranked together with the individual
inputs (it was third best in the reverse direction).

Table 7 shows that the best-on-tuning strategy
once again works quite well, selecting MT051,
which is the optimal choice. Note that this time
the optimal choice is made regardless of whether
the averaging is done over all datasets or over all
but the tuning dataset (in the reverse direction, av-
eraging over all made the worst possible choice,
while averaging over all but the one used for tun-
ing made an optimal choice).

Next, Table 8 shows that X-vs-all-but-X would
select MT054, which is in the middle of the possi-
ble choices: not the worst, but also not the best (it
was second worst in the reverse direction).

Table 9 shows that backtranslate does not work
well: for both our SMT system and Google Trans-
late, it selects MT053, the second worst choice (it
was also second worst in the reverse direction).
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TEST⇒ MT040 MT041 MT042 MT043 MT044 AVERAGE
TUNE ⇓ BLEU len BLEU len BLEU len BLEU len BLEU len BLEU len
MT050 25.23 0.989 28.41 1.018 28.28 1.022 30.98 1.026 31.08 1.031 28.80 1.017
MT051 25.49 0.963 29.38 0.987 29.23 0.990 32.22 0.996 32.61 1.001 29.79 0.987
MT052 25.27 0.971 28.67 0.994 28.87 0.996 31.58 1.003 31.85 1.008 29.25 0.994
MT053 24.98 0.921 28.72 0.944 28.85 0.945 31.90 0.953 32.30 0.957 29.35 0.944
MT054 25.42 0.973 29.27 0.986 28.66 1.000 31.90 1.005 32.19 1.009 29.49 0.994
MT05ALL 25.53 0.964 29.17 0.986 29.03 0.989 32.06 0.996 32.37 1.002 29.63 0.987
best−worst 0.55 0.97 0.95 1.24 1.53 0.99

Table 6: Tuning on MT05 and testing on MT04. Shown are BLEU scores and hypothesis/reference
length ratios. The best and the worst BLEU scores for each test MT04 dataset are in bold and stroke out,
respectively; the last row shows the absolute difference between them.

TEST⇒ AVERAGE AVG, no self
TUNE ⇓ BLEU len BLEU len
MT050 33.98 0.995 33.78 0.996
MT051 34.28 0.969 35.11 0.971
MT052 33.98 0.975 35.11 0.979
MT053 33.37 0.930 31.68 0.922
MT054 34.25 0.971 33.96 0.971

Table 7: Tuning and testing on MT05. We tune
on the English input in the first column, then we
translate all MT05x inputs. We report BLEU and
hyp/ref length ratios averaged over (a) all MT05
datasets, and (b) all but the one used for tuning.

REF: all-but-X
TEST BLEU len
MT050 63.38 0.998
MT051 58.20 0.992
MT052 62.73 0.994
MT053 66.88 1.026
MT054 70.53 1.005

Table 8: X vs. all-but-X for MT05. BLEU scores
and hyp/ref length ratios when testing on each En-
glish input, using all the rest as references.

Table 10 shows the results when tuning on syn-
thesized datasets. As before, this does not im-
prove over the best individual system. Again, we
can blame this on the bad selection of reference,
but there could be also something else: selection
strategies that synthesize input datasets based on
what is easiest to translate might not be as useful
as we have assumed. In the following section, we
give some insight on why this might be the case.

5 Discussion

So far, we have explored input selection alterna-
tives that make use of BLEU as a central criterion
(while we have also experimented with some sen-
tence selection strategies based on length, this was
peripheral), and, in many cases, these strategies
were very successful.

Our System Google
TEST BLEU len BLEU len
MT050 34.56 1.010 33.79 1.024
MT051 30.54 1.014 30.74 1.027
MT052 30.52 1.020 30.76 1.033
MT053 38.66 0.944 37.66 0.956
MT054 36.17 0.992 36.08 1.005

Table 9: Backtranslate MT05. BLEU scores
and hyp/ref length ratios when backtranslating the
Arabic reference to English, and then evaluating it
with respect to each of the English inputs.

Our System Google
TUNE BLEU len BLEU len
B1 29.64 1.011 29.33 1.017
B1-BP 29.36 1.014 29.43 1.017
B1-SG 28.93 1.023 29.38 1.020
DL 28.76 1.032 29.08 1.022
MIN-L 27.07 1.068 28.18 1.055
MIN-B1 28.57 1.020 28.82 1.030
MEMT 28.68 1.031 28.69 1.036

Table 10: Tuning on synthesized MT05 datasets,
testing on MT04. BLEU scores and hyp/ref
length ratios averaged over all MT04 test datasets.

Below we explore two alternative strategies for
best input dataset selection for tuning: (a) looking
for the dataset that yields a tuning length ratio that
is closest to 1, and (b) choosing the hardest input.
We further explore the potential of using perplex-
ity for tuning input selection.

5.1 Choosing length closest to 1

Above, we have considered the BLEU/BLEU+1
score as the main criterion for input dataset selec-
tion. This makes sense since this is the standard
evaluation measure, which we are optimizing at
test time. However, there are other reasonable cri-
teria that could be considered. For example, re-
cent work has suggested that length is an impor-
tant factor for parameter optimization in statistical
machine translation (Nakov et al., 2012).
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Thus, we considered how the above strategies
would work when selecting not the dataset yield-
ing the highest BLEU, but that for which the
source/reference length ratio is closest to 1. This
turned out to work in some but not all cases.

When tuning on MT04: Table 2 shows that
if looking for the best length instead of the best
BLEU, the best-on-tuning strategy would select
MT041, which is the second best choice.

The same choice would make X-vs-all-but-X
(see Table 3) and backtranslate when using our
system (see Table 4). With Google Translate, how-
ever, it would make the best choice: MT040.

When tuning on MT05: Table 7 shows that
best-on-tuning would select MT050, which is the
worst choice. The same choice would make X-vs-
all-but-X (see Table 8). Both strategies made the
second best choice for MT04. The backtranslate
strategy, however, selects MT054, both with our
SMT system and with Google Translate; this is the
second best choice (see Table 9). On MT04, this
strategy made an optimal choice.

Overall, the length ratio works great for back-
translate (best or second best choice), but for best-
on-tuning and X-vs-all-but-X results are mixed.

5.2 Choosing the hardest dataset

A closer look at the strategies for backtranslate
and X-vs-all-but-X reveals something unexpected:
Tables 3, 4, 8, and 9 show that selecting the in-
put dataset with the lowest BLEU would yield an
optimal choice in all these cases.

We had assumed that the input that yields the
highest BLEU score should be of highest quality,
and thus the best to learn from. Instead, a closer
inspection has found that the high-BLEU datasets
were more literal translations, which were less flu-
ent in English and thus ultimately of lower quality.
So, we should really train on the hardest dataset.

In fact, this is not very surprising: a student
would learn more from hard lessons than from
easy ones. Thus, the best strategy to prepare for
an exam is to learn hard rather than easy lessons.

It is reasonable to expect that hard inputs would
have lower perplexity with respect to our language
model, i.e., that they would be more similar to the
training data, and thus that they should be also
closer to the expected test time input. We tested
this hypothesis by calculating the perplexity for all
input MT04 datasets, and we found for MT040 the
perplexity is indeed lower than for MT044.

The results are shown in Table 11, where we
show the logarithm of the probability instead of
the perplexity because the perplexity was too low.

These numbers offer yet another possible expla-
nation about why combining inputs could not im-
prove: it looks like MT040 is much better than the
rest, and thus maybe there are simply no enough
good translations in the remaining datasets.

INPUT log P
MT040 -98,862
MT041 -106,022
MT042 -103,542
MT043 -104,780
MT044 -106,341

Table 11: Log-probability of the different inputs
calculated with respect to the language model.

6 Conclusion and Future Work

We have studied the question of how to se-
lect/synthesize a good tuning dataset for SMT in
the special case, when we have multiple possible
input (English) versions of the same sentence and
a single reference (Arabic) translation.

We have experimented with a number of strate-
gies, and we have found that it is best to tune on the
hardest available input, not on the one that yields
the highest BLEU score (i.e., the easiest). We be-
lieve that this finding has implications on how we
should pick good translators and how we should
select useful data for parameter optimization. On
the other hand, it might also indicate a problem
with BLEU as an evaluation measure.

In future work, we plan to test our methods
on other Arabic-English datasets that have mul-
tiple English references. We further plan exper-
iments with other language pairs, e.g., Chinese-
English, which are available from NIST and
IWSLT. We also want to study the effect of the tun-
ing dataset selection on evaluation measures other
than BLEU, e.g., TER (Snover et al., 2006) and
METEOR (Lavie and Denkowski, 2009). Look-
ing at tuning dataset selection that takes the test
data into account is another promising direction
for future work. Features from quality estimation
(Specia et al., 2010) might be also helpful to de-
termine the best input to tune on.

Another related, but different, research direc-
tion is about how to best evaluate (as opposed to
tune, which we have explored above) an SMT sys-
tem in case multiple possible versions of the input
sentences are available.
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