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Abstract

We invent referential translation machines
(RTMs), a computational model for identify-
ing the translation acts between any two data
sets with respect to a reference corpus selected
in the same domain, which can be used for
judging the semantic similarity between text.
RTMs make quality and semantic similarity
judgments possible by using retrieved rele-
vant training data as interpretants for reach-
ing shared semantics. An MTPP (machine
translation performance predictor) model de-
rives features measuring the closeness of the
test sentences to the training data, the diffi-
culty of translating them, and the presence of
acts of translation involved. We view seman-
tic similarity as paraphrasing between any two
given texts. Each view is modeled by an RTM
model, giving us a new perspective on the bi-
nary relationship between the two. Our pre-
diction model is the 15th on some tasks and
30th overall out of 89 submissions in total ac-
cording to the official results of the Semantic
Textual Similarity (STS 2013) challenge.

1 Semantic Textual Similarity Judgments

We introduce a fully automated judge for semantic
similarity that performs well in the semantic textual
similarity (STS) task (Agirre et al., 2013). STS is
a degree of semantic equivalence between two texts
based on the observations that “vehicle” and “car”
are more similar than “wave” and “car”. Accurate
prediction of STS has a wide application area in-
cluding: identifying whether two tweets are talk-
ing about the same thing, whether an answer is cor-
rect by comparing it with a reference answer, and

whether a given shorter text is a valid summary of
another text.

The translation quality estimation task (Callison-
Burch et al., 2012) aims to develop quality indicators
for translations at the sentence-level and predictors
without access to a reference translation. Bicici et
al. (2013) develop a top performing machine transla-
tion performance predictor (MTPP), which uses ma-
chine learning models over features measuring how
well the test set matches the training set relying on
extrinsic and language independent features.

The semantic textual similarity (STS) task (Agirre
et al., 2013) addresses the following problem. Given
two sentences S1 and S2 in the same language, quan-
tify the degree of similarity with a similarity score,
which is a number in the range [0, 5]. The semantic
textual similarity prediction problem involves find-
ing a function f approximating the semantic textual
similarity score given two sentences, S1 and S2:

f(S1, S2) ≈ q(S1, S2). (1)

We approach f as a supervised learning problem
with (S1, S2, q(S1, S2)) tuples being the training
data and q(S1, S2) being the target similarity score.

We model the problem as a translation task where
one possible interpretation is obtained by translat-
ing S1 (the source to translate, S) to S2 (the target
translation, T). Since linguistic processing can re-
veal deeper similarity relationships, we also look at
the translation task at different granularities of infor-
mation: plain text (R for regular) , after lemmatiza-
tion (L), after part-of-speech (POS) tagging (P), and
after removing 128 English stop-words (S) 1. Thus,

1http://anoncvs.postgresql.org/cvsweb.cgi/pgsql/
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we obtain 4 different perspectives on the binary re-
lationship between S1 and S2.

2 Referential Translation Machine (RTM)

Referential translation machines (RTMs) we de-
velop provide a computational model for quality and
semantic similarity judgments using retrieval of rel-
evant training data (Biçici and Yuret, 2011a; Biçici,
2011) as interpretants for reaching shared seman-
tics (Biçici, 2008). We show that RTM achieves very
good performance in judging the semantic similarity
of sentences and we can also use RTM to automat-
ically assess the correctness of student answers to
obtain better results (Biçici and van Genabith, 2013)
than the state-of-the-art (Dzikovska et al., 2012).

RTM is a computational model for identifying
the acts of translation for translating between any
given two data sets with respect to a reference cor-
pus selected in the same domain. RTM can be used
for automatically judging the semantic similarity be-
tween texts. An RTM model is based on the selec-
tion of common training data relevant and close to
both the training set and the test set where the se-
lected relevant set of instances are called the inter-
pretants. Interpretants allow shared semantics to be
possible by behaving as a reference point for simi-
larity judgments and providing the context. In semi-
otics, an interpretant I interprets the signs used to
refer to the real objects (Biçici, 2008). RTMs pro-
vide a model for computational semantics using in-
terpretants as a reference according to which seman-
tic judgments with translation acts are made. Each
RTM model is a data translation model between the
instances in the training set and the test set. We use
the FDA (Feature Decay Algorithms) instance se-
lection model for selecting the interpretants (Biçici
and Yuret, 2011a) from a given corpus, which can
be monolingual when modeling paraphrasing acts,
in which case the MTPP model (Section 2.1) is built
using the interpretants themselves as both the source
and the target side of the parallel corpus. RTMs map
the training and test data to a space where translation
acts can be identified. We view that acts of transla-
tion are ubiquitously used during communication:

Every act of communication is an act of
translation (Bliss, 2012).

src/backend/snowball/stopwords/

Translation need not be between different languages
and paraphrasing or communication also contain
acts of translation. When creating sentences, we use
our background knowledge and translate informa-
tion content according to the current context.

Given a training set train, a test set test, and
some monolingual corpus C, preferably in the same
domain as the training and test sets, the RTM steps
are:

1. T = train ∪ test.
2. select(T, C)→ I
3. MTPP(I,train)→ Ftrain
4. MTPP(I,test)→ Ftest
5. learn(M,Ftrain)→M
6. predict(M,Ftest)→ q̂

Step 2 selects the interpretants, I, relevant to the
instances in the combined training and test data.
Steps 3, 4 use I to map train and test to a new
space where similarities between translation acts can
be derived more easily. Step 5 trains a learning
model M over the training features, Ftrain, and
Step 6 obtains the predictions. RTM relies on the
representativeness of I as a medium for building
translation models for translating between train
and test.

Our encouraging results in the STS task provides
a greater understanding of the acts of translation we
ubiquitously use when communicating and how they
can be used to predict the performance of transla-
tion, judging the semantic similarity between text,
and evaluating the quality of student answers. RTM
and MTPP models are not data or language specific
and their modeling power and good performance are
applicable across different domains and tasks. RTM
expands the applicability of MTPP by making it fea-
sible when making monolingual quality and simi-
larity judgments and it enhances the computational
scalability by building models over smaller but more
relevant training data as interpretants.

2.1 The Machine Translation Performance
Predictor (MTPP)

In machine translation (MT), pairs of source and tar-
get sentences are used for training statistical MT
(SMT) models. SMT system performance is af-
fected by the amount of training data used as well
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as the closeness of the test set to the training set.
MTPP (Biçici et al., 2013) is a top performing ma-
chine translation performance predictor, which uses
machine learning models over features measuring
how well the test set matches the training set to pre-
dict the quality of a translation without using a ref-
erence translation. MTPP measures the coverage of
individual test sentence features and syntactic struc-
tures found in the training set and derives feature
functions measuring the closeness of test sentences
to the available training data, the difficulty of trans-
lating the sentence, and the presence of acts of trans-
lation for data transformation.

2.2 MTPP Features for Translation Acts
MTPP uses n-gram features defined over text or
common cover link (CCL) (Seginer, 2007) struc-
tures as the basic units of information over which
similarity calculations are made. Unsupervised
parsing with CCL extracts links from base words
to head words, which allow us to obtain structures
representing the grammatical information instanti-
ated in the training and test data. Feature functions
use statistics involving the training set and the test
sentences to determine their closeness. Since they
are language independent, MTPP allows quality es-
timation to be performed extrinsically. Categories
for the 289 features used are listed below and their
detailed descriptions are presented in (Biçici et al.,
2013) where the number of features are given in {#}.
• Coverage {110}: Measures the degree to

which the test features are found in the train-
ing set for both S ({56}) and T ({54}).
• Synthetic Translation Performance {6}: Calcu-

lates translation scores achievable according to
the n-gram coverage.
• Length {4}: Calculates the number of words

and characters for S and T and their ratios.
• Feature Vector Similarity {16}: Calculates the

similarities between vector representations.
• Perplexity {90}: Measures the fluency of the

sentences according to language models (LM).
We use both forward ({30}) and backward
({15}) LM based features for S and T.
• Entropy {4}: Calculates the distributional sim-

ilarity of test sentences to the training set.
• Retrieval Closeness {24}: Measures the de-

gree to which sentences close to the test set are
found in the training set.

• Diversity {6}: Measures the diversity of co-
occurring features in the training set.
• IBM1 Translation Probability {16}: Calculates

the translation probability of test sentences us-
ing the training set (Brown et al., 1993).
• Minimum Bayes Retrieval Risk {4}: Calculates

the translation probability for the translation
having the minimum Bayes risk among the re-
trieved training instances.
• Sentence Translation Performance {3}: Calcu-

lates translation scores obtained according to
q(T,R) using BLEU (Papineni et al., 2002),
NIST (Doddington, 2002), or F1 (Biçici and
Yuret, 2011b) for q.
• Character n-grams {4}: Calculates the cosine

between the character n-grams (for n=2,3,4,5)
obtained for S and T (Bär et al., 2012).
• LIX {2}: Calculates the LIX readability

score (Wikipedia, 2013; Björnsson, 1968) for
S and T. 2

3 Experiments

STS contains sentence pairs from news headlines
(headlines), sense definitions from semantic lexical
resources (OnWN is from OntoNotes (Pradhan et
al., 2007) and WordNet (Miller, 1995) and FNWN is
from FrameNet (Baker et al., 1998) and WordNet),
and statistical machine translation (SMT) (Agirre et
al., 2013). STS challenge results are evaluated with
the Pearson’s correlation score (r).

The test set contains 2250 (S1, S2) sentence pairs
with 750, 561, 189, and 750 sentences from each
type respectively. The training set contains 5342
sentence pairs with 1500 each from MSRpar and
MSRvid (Microsoft Research paraphrase and video
description corpus (Agirre et al., 2012)), 1592 from
SMT, and 750 from OnWN.

3.1 RTM Models
We obtain CNGL results for the STS task as fol-
lows. For each perspective described in Section 1,
we build an RTM model. Each RTM model views
the STS task from a different perspective using the
289 features extracted dependent on the interpre-
tants using MTPP. We extract the features both on

2LIX= A
B

+ C 100
A

, where A is the number of words, C is
words longer than 6 characters, B is words that start or end with
any of “.”, “:”, “!”, “?” similar to (Hagström, 2012).
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S1 → S2
RR .7904 .7502 .8200 .7788 .8074 .8232 .8101 .8247 .8218 .8509 .8266 .8172 .8304 .8530 .8323 .8499

SVR .8311 .8060 .8443 .8330 .8404 .8517 .8498 .8501 .8593 .8556 .8496 .8422 .8586 .8579 .8527 .8564

S2 → S1
RR .7922 .7651 .8169 .7891 .8064 .8196 .8136 .8219 .8257 .8257 .8226 .8164 .8284 .8284 .8313 .8324

SVR .8308 .8165 .8407 .8302 .8361 .8506 .8467 .8510 .8567 .8567 .8525 .8460 .8588 .8588 .8575 .8574

S1 � S2
RR .8079 .787 .8279 .8101 .8216 .8333 .8275 .8346 .8375 .8409 .8361 .8312 .8412 .8434 .8432 .844

SVR .8397 .8237 .8554 .841 .8432 .857 .851 .8557 .8605 .8626 .8505 .8505 .8591 .8622 .8602 .8588

Table 1: CV performance on the training set with tuning. Underlined are the settings we use in our submissions. RTM
models in directions S1 → S2, S2 → S1, and the bi-directional models S1 � S2 are displayed.

the training set and the test set. The training cor-
pus used is the English side of an out-of-domain
corpus on European parliamentary discussions, Eu-
roparl (Callison-Burch et al., 2012) 3. In-domain
corpora are likely to improve the performance. We
use the Stanford POS tagger (Toutanova et al., 2003)
to obtain the perspectives P and L. We use the train-
ing corpus to build a 5-gram target LM.

We use ridge regression (RR) and support vec-
tor regression (SVR) with RBF kernel (Smola and
Schölkopf, 2004). Both of these models learn a re-
gression function using the features to estimate a nu-
merical target value. The parameters that govern the
behavior of RR and SVR are the regularization λ
for RR and the C, ε, and γ parameters for SVR. At
testing time, the predictions are bounded to obtain
scores in the range [0, 5]. We perform tuning on a
subset of the training set separately for each RTM
model and optimize against the performance evalu-
ated with R2, the coefficient of determination.

We do not build a separate model for different
types of sentences and instead use all of the train-
ing set for building a large prediction model. We
also use transductive learning since using only the
relevant training data for training can improve the
performance (Biçici, 2011). Transductive learning
is performed at the sentence level where for each test
instance, we select 1250 relevant training instances
using the cosine similarity metric over the feature
vectors and build an individual model for the test in-
stance and predict the similarity score.

3We use WMT’13 corpora from www.statmt.org/wmt13/.

3.2 Training Results

Table 1 lists the 10-fold cross-validation (CV) re-
sults on the training set for RR and SVR for differ-
ent RTM systems using optimized parameters. As
we combine different perspectives, the performance
improves and we use the L+S with SVR for run 1
(LSSVR), L+P+S with SVR for run 2 (LPSSVR),
and L+P+S with SVR using transductive learning
for run 3 (LPSSVRTL) all in the translation direc-
tion S1 → S2. Lemmatized RTM, L, performs the
best among the individual perspectives. We also
build RTM models in the direction S2 → S1, which
gives similar results. The last main row combines
them to obtain the bi-directional results, S1 � S2,
which improves the performance. Each additional
perspective adds another 289 features to the repre-
sentation and the bi-directional results double the
number of features. Thus, S1 � S2 L+P+S is us-
ing 1734 features.

3.3 STS Challenge Results

Table 2 presents the STS challenge r and ranking
results containing our CNGL submissions, the best
system result, and the mean results over all submis-
sions. There were 89 submissions from 35 compet-
ing systems (Agirre et al., 2013). The results are
ranked according to the mean r obtained. We also
include the mean result over all of the submissions
and its corresponding rank.

According to the official results, CNGL-LSSVR
is the 30th system from the top based on the mean r
obtained and CNGL-LPSSVR is 15th according to
the results on OnWN out of 89 submissions in total.
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System head OnWN FNWN SMT mean rank
CNGL-LSSVR .6552 .6943 .2016 .3005 .5086 30
CNGL-LPSSVRTL .6385 .6756 .1823 .3098 .4998 33
CNGL-LPSSVR .6510 .6971 .1180 .2861 .4961 36
UMBC-EB.-PW .7642 .7529 .5818 .3804 .6181 1
mean .6071 .5089 .2906 .3004 .4538 57

Table 2: STS challenge r and ranking results ranked ac-
cording to the mean r obtained. head is headlines and
mean is the mean of all submissions.

CNGL submissions perform unexpectedly low in the
FNWN task and only slightly better than the average
in the SMT task. The lower performance is likely to
be due to using an out-of-domain corpus for building
the RTM models and it may also be due to using and
optimizing a single model for all types of tasks.

3.4 Bi-directional RTM Models

The STS task similarity score is directional invari-
ant: q(S1, S2) = q(S2, S1). We develop RTM mod-
els in the reverse direction and obtain bi-directional
RTM models by combining both. Table 3 lists the
bi-directional results on the STS challenge test set
after tuning, which shows that slight improvement in
the scores are possible when compared with Table 2.
Transductive learning improves the performance in
general. We also compare with the performance ob-
tained when combining uni-directional models with
mean, min, or max functions. Taking the minimum
performs better than other combination approaches
and can achieve r = 0.5129 with TL. One can also
take the individual confidence scores obtained for
each score when combining scores.

4 Conclusion

Referential translation machines provide a clean
and intuitive computational model for automatically
measuring semantic similarity by measuring the acts
of translation involved and achieve to be the 15th on
some tasks and 30th overall in the STS challenge out
of 89 submissions in total. RTMs make quality and
semantic similarity judgments possible based on the
retrieval of relevant training data as interpretants for
reaching shared semantics.

System head OnWN FNWN SMT mean

LS

mean .6552 .6943 .2016 .3005 .5086
mean TL .6397 .6808 .1776 .3147 .5028
min .6512 .6947 .2003 .2984 .5066
min TL .6416 .6853 .1903 .3143 .5055
max .6669 .6680 .1867 .2737 .4958
max TL .6493 .6805 .1846 .3127 .5059
S1 � S2 .6388 .6695 .1667 .2999 .4938
S1 � S2 TL .6285 .6686 .0918 .2931 .4816

LPS

mean .6510 .6971 .1179 .2861 .4961
mean TL .6524 .6918 .1940 .3176 .5121
min .6608 .6953 .1704 .2922 .5053
min TL .6509 .6864 .1792 .3156 .5084
max .6588 .6800 .1355 .2868 .4961
max TL .6493 .6805 .1846 .3127 .5059
S1 � S2 .6251 .6843 .0677 .2994 .4845
S1 � S2 TL .6370 .6978 .0951 .2980 .4936

RLPS

mean .6517 .7136 .1002 .2880 .4996
mean TL .6383 .6841 .2434 .3063 .5059
min .6615 .7099 .1644 .2877 .5072
min TL .6606 .6987 .1972 .3059 .5129
max .6589 .7019 .0995 .2935 .5008
max TL .6362 .6896 .2044 .3153 .5063
S1 � S2 .6300 .7011 .0817 .2798 .4850
S1 � S2 TL .6321 .6956 .1995 .3128 .5052

Table 3: Bi-directional STS challenge r and ranking re-
sults ranked according to the mean r obtained. We com-
bine the two directions by taking the mean, min, or the
max or use the bi-directional RTM model S1 � S2.
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Association for Computational Linguistics.
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Ergun Biçici and Deniz Yuret. 2011a. Instance selec-
tion for machine translation using feature decay al-
gorithms. In Proceedings of the Sixth Workshop on
Statistical Machine Translation, pages 272–283, Edin-
burgh, Scotland, July. Association for Computational
Linguistics.
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