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Abstract

In this paper, we present an approach to
statistical machine translation that com-
bines the power of a discriminative model
(for training a model for Machine Transla-
tion), and the standard beam-search based
decoding technique (for the translation of
an input sentence). A discriminative ap-
proach for learning lexical selection and
reordering utilizes a large set of feature
functions (thereby providing the power to
incorporate greater contextual and linguis-
tic information), which leads to an effec-
tive training of these models. This model
is then used by the standard state-of-art
Moses decoder (Koehn et al., 2007) for the
translation of an input sentence.

We conducted our experiments on
Spanish-English language pair. We used
maximum entropy model in our exper-
iments. We show that the performance
of our approach (using simple lexical
features) is comparable to that of the
state-of-art statistical MT system (Koehn
et al., 2007). When additional syntactic
features (POS tags in this paper) are used,
there is a boost in the performance which
is likely to improve when richer syntactic
features are incorporated in the model.

1 Introduction

The popular approaches to machine translation
use the generative IBM models for training
(Brown et al., 1993; Och et al., 1999). The param-
eters for these models are learnt using the stan-
dard EM Algorithm. The parameters used in these
models are extremely restrictive, that is, a simple,
small and closed set of feature functions is used
to represent the translation process. Also, these
feature functions are local and are word based. In
spite of these limitations, these models perform
very well for the task of word-alignment because
of the restricted search space. However, they per-
form poorly during decoding (or translation) be-
cause of their limitations in the context of a much
larger search space.

To handle the contextual information, phrase-
based models were introduced (Koehn et al.,
2003). The phrase-based models use the word
alignment information from the IBM models and
train source-target phrase pairs for lexical se-
lection (phrase-table) and distortions of source
phrases (reordering-table). These models are still
relatively local, as the target phrases are tightly as-
sociated with their corresponding source phrases.
In contrast to a phrase-based model, a discrim-
inative model has the power to integrate much
richer contextual information into the training
model. Contextual information is extremely use-
ful in making lexical selections of higher quality,
as illustrated by the models for Global Lexical Se-
lection (Bangalore et al., 2007; Venkatapathy and
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Bangalore, 2009).
However, the limitation of global lexical se-

lection models has been sentence construction.
In global lexical selection models, lattice con-
struction and scoring (LCS) is used for the pur-
pose of sentence construction (Bangalore et al.,
2007; Venkatapathy and Bangalore, 2009). In our
work, we address this limitation of global lexi-
cal selection models by using an existing state-of-
art decoder (Koehn et al., 2007) for the purpose
of sentence construction. The translation model
used by this decoder is derived from a discrimina-
tive model, instead of the usual phrase-table and
reordering-table construction algorithms. This al-
lows us to use the effectiveness of an existing
phrase-based decoder while retaining the advan-
tages of the discriminative model. In this paper,
we compare the sentence construction accuracies
of lattice construction and scoring approach (see
section 4.1 for LCS Decoding) and the phrase-
based decoding approach (see section 4.2).

Another advantage of using a discriminative ap-
proach to construct the phrase table and the re-
ordering table is the flexibility it provides to in-
corporate linguistic knowledge in the form of ad-
ditional feature functions. In the past, factored
phrase-based approaches for Machine Translation
have allowed the use of linguistic feature func-
tions. But, they are still bound by the local-
ity of context, and definition of a fixed struc-
ture of dependencies between the factors (Koehn
and Hoang, 2007). Furthermore, factored phrase-
based approaches place constraints both on the
type and number of factors that can be incorpo-
rated into the training. In this paper, though we do
not extensively test this aspect, we show that us-
ing syntactic feature functions does improve the
performance of our approach, which is likely to
improve when much richer syntactic feature func-
tions (such as information about the parse struc-
ture) are incorporated in the model.

As the training model in a standard phrase-
based system is relatively impoverished with re-
spect to contextual/linguistic information, integra-
tion of the discriminative model in the form of
phrase-table and reordering-table with the phrase-
based decoder is highly desirable. We propose to
do this by defining sentence specific tables. For

example, given a source sentence s, the phrase-
table contains all the possible phrase-pairs condi-
tioned on the context of the source sentence s.

In this paper, the key contributions are,

1. We combine a discriminative training model
with a phrase-based decoder. We ob-
tained comparable results with the state-of-
art phrase-based decoder.

2. We evaluate the performance of the lattice
construction and scoring (LCS) approach to
decoding. We observed that even though the
lexical accuracy obtained using LCS is high,
the performance in terms of sentence con-
struction is low when compared to phrase-
based decoder.

3. We show that the incorporation of syntactic
information (POS tags) in our discriminative
model boosts the performance of translation.
In future, we plan to use richer syntactic fea-
ture functions (which the discriminative ap-
proach allows us to incorporate) to evaluate
the approach.

The paper is organized in the following sec-
tions. Section 2 presents the related work. In
section 3, we describe the training of our model.
In section 4, we present the decoding approaches
(both LCS and phrase-based decoder). We de-
scribe the data used in our experiments in section
5. Section 6 consists of the experiments and re-
sults. Finally we conclude the paper in section 7.

2 Related Work

In this section, we present approaches that are di-
rectly related to our approach. In Direct Trans-
lation Model (DTM) proposed for statistical ma-
chine translation by (Papineni et al., 1998; Och
and Ney, 2002), the authors present a discrimi-
native set-up for natural language understanding
(and MT). They use a slightly modified equation
(in comparison to IBM models) as shown in equa-
tion 1. In equation 1, they consider the translation
model from f → e (p(e|f)), instead of the the-
oretically sound (after the application of Bayes’
rule), e → f (p(f |e)) and use grammatical fea-
tures such as the presence of equal number of
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verbs forms etc.

ê = argmax
e

pTM (e|f) ∗ pLM (e) (1)

In their model, they use generic feature func-
tions such as language model, cooccurence fea-
tures such as presence of a lexical relationship in
the lexicon. Their search algorithm limited the use
of complex features.

Direct Translation Model 2 (DTM2) (Itty-
cheriah and Roukos, 2007) expresses the phrase-
based translation task in a unified log-linear prob-
abilistic framework consisting of three compo-
nents:

1. a prior conditional distribution P0

2. a number of feature functions Φi() that cap-
ture the effects of translation and language
model

3. the weights of the features λi that are esti-
mated using MaxEnt training (Berger et al.,
1996) as shown in equation 2.

Pr(e|f) = P0(e, j|f)
Z

exp
∑

i

λiΦi(e, j, f) (2)

In the above equation, j is the skip reordering
factor for the phrase pair captured byΦi() and rep-
resents the jump from the previous source word.
Z represents the per source sentence normaliza-
tion term (Hassan et al., 2009). While a uni-
form prior on the set of futures results in a max-
imum entropy model, choosing other priors out-
put a minimum divergence models. Normalized
phrase count has been used as the prior P0 in the
DTM2 model.
The following decision rule is used to obtain opti-
mal translation.

ê = argmax
e

Pr(e|f)

= argmax
e

M∑

m=1

λmΦm(f, e)
(3)

The DTM2 model differs from other phrase-
based SMT models in that it avoids the redun-
dancy present in other systems by extracting from

a word aligned parallel corpora a set of minimal
phrases such that no two phrases overlap with
each other (Hassan et al., 2009).

The decoding strategy in DTM2 (Ittycheriah
and Roukos, 2007) is similar to a phrase-based de-
coder except that the score of a particular transla-
tion block is obtained from the maximum entropy
model using the set of feature functions. In our
approach, instead of providing the complete scor-
ing function ourselves, we compute the parame-
ters needed by a phrase based decoder, which in
turn uses these parameters appropriately. In com-
parison with the DTM2, we also use minimal non-
overlapping blocks as the entries in the phrase ta-
ble that we generate.

Xiong et al. (2006) present a phrase reordering
model under the ITG constraint using a maximum
entropy framework. They model the reordering
problem as a two-class classification problem, the
classes being straight and inverted. The model is
used to merge the phrases obtained from trans-
lating the segments in a source sentence. The
decoder used is a hierarchical decoder motivated
from the CYK parsing algorithm employing a
beam search algorithm. The maximum entropy
model is presented with features extracted from
the blocks being merged and probabilities are es-
timated using the log-linear equation shown in
(4). The work in addition to lexical features and
collocational features, uses an additional metric
called the information gain ratio (IGR) as a fea-
ture. The authors report an improvement of 4%
BLEU score over the traditional distance based
distortion model upon using the lexical features
alone.

pλ(y|x) =
1

Zλ(x)
exp(

∑

i

λiΦi(x, y)) (4)

3 Training

The training process of our approach has two
steps:

1. training the discriminative models for trans-
lation and reordering.

2. integrating the models into a phrase based
decoder.
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The input to our training step are the word-
alignments between source and target sentences
obtained using GIZA++ (implementation of IBM,
HMM models).

3.1 Training discriminative models
We train two models, one to model the transla-
tion of source blocks, and the other to model the
reordering of source blocks. We call the transla-
tion model a ‘context dependent block translation
model’ for two reasons.

1. It is concerned with the translation of mini-
mal phrasal units called blocks.

2. The context of the source block is used dur-
ing its translation.

The word alignments are used to obtain the set
of possible target blocks, and are added to the tar-
get vocabulary. A target block b is a sequence of n
words that are paired with a sequence ofm source
words (Ittycheriah and Roukos, 2007). In our ap-
proach, we restrict ourselves to target blocks that
are associated with only one source word. How-
ever, this constraint can be easily relaxed.

Similarly, we call the reordering model, a ‘con-
text dependent block distortion model’. For train-
ing, we use the maximum entropy software library
Llama presented in (Haffner, 2006).

3.1.1 Context Dependent Block Translation
Model

In this model, the goal is to predict a target
block given the source word and contextual and
syntactic information. Given a source word and its
lexical context, the model estimates the probabil-
ities of the presence or absence of possible target
blocks (see Figure 1).

The probabilities of the candidate target blocks
are obtained from the maximum entropy model.
The probability pei of a candidate target block ei
is estimated as given in equation 5

pei = P (true|ei, fj , C) (5)

where fj is the source word corresponding to ei
and C is its context.

Using the maximum entropy model, binary
classifiers are trained for every target block in the

context window

source word

word syntactically dependent

SOURCE SENTENCE

target word 1 prob p1

............

target word 2 prob p2

prob pKtarget word K

on source word

Figure 1: Word prediction model

vocabulary. These classifiers predict if a particu-
lar target block should be present given the source
word and its context. This model is similar to the
global lexical selection (GLS) model described in
(Bangalore et al., 2007; Venkatapathy and Banga-
lore, 2009) except that in GLS, the predicted tar-
get blocks are not associated with any particular
source word unlike the case here.

For the set of experiments in this paper, we used
a context of size 6, containing three words to the
left and three words to the right. We also used
the POS tags of words in the context window as
features. In future, we plan to use the words syn-
tactically dependent on a source word as global
context(shown in Figure 1).

3.1.2 Context Dependent Block Distortion
Model

An IBM model 3 like distortion model is
trained to predict the relative position of a source
word in the target given its context. Given a
source word and its context, the model estimates
the probability of particular relative position be-
ing an appropriate position of the source word in
the target (see Figure 2).

context window

source wordSOURCE SENTENCE

0

p0

1

p1

2

p2

w

pw
−1

p−1

−2

p−2

−w

p−w

... ...

word syntactically dependent

on source word

Figure 2: Position prediction model

Using a maximum entropy model similar to
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the one described in the context dependent block
translation model, binary classifiers are trained
for every possible relative position in the target.
These classifiers output a probability distribution
over various relative positions given a source word
and its context.

The word alignments in the training corpus are
used to train the distortion model. While comput-
ing the relative position, the difference in sentence
lengths is also taken into account. Hence, the rela-
tive position of the target block located at position
i corresponding to the source word located at po-
sition j is given in equation 6.

r = round(i ∗ m
n
− j) (6)

where, m is the length of source sentence and n is
the number of target blocks. round is the function
to compute the nearest integer of the argument. If
the source word is not aligned to any target word,
a special symbol ‘INF’ is used to indicate such a
case. In our model, this symbol is also a part of
the target distribution.

The features used to train this model are the
same as those used for the block translation
model. In order to use further lexical information,
we also incorporated information about the target
word for predicting the distribution. The informa-
tion about possible target words is obtained from
the ‘context dependent block translation model’.
The probabilities in this case are measured as
shown in equation 7

pr,ei = P (true|r, ei, fj , C) (7)

3.2 Integration with phrase-based decoder
The discriminative models trained are sentence
specific, i.e. the context of the sentence is used
to make predictions in these models. Hence,
the phrase-based decoder is required to use in-
formation specific to a source sentence. In order
to handle this issue, a different phrase-table and
reordering-table are constructed for every input
sentence. The phrase-table and reordering-table
are constructed using the discriminative models
trained earlier.

In Moses (Koehn et al., 2007), the phrase-
table contains the source phrase, the target phrase
and the various scores associated with the phrase

pair such as phrase translation probability, lexical
weighting, inverse phrase translation probability,
etc.1

In our approach, given a source sentence, the
following steps are followed to construct the
phrase table.

1. Extract source blocks (’words’ in this work)

2. Use the ‘context dependent block translation
model’ to predict the possible target blocks.
The set of possible blocks can be predicted
using two criteria, (1) Probability threshold,
and (2) K-best. Here, we use a threshold
value to prune the set of possible candidates
in the target vocabulary.

3. Use the prediction probabilities to assign
scores to the phrase pairs.

A similar set of steps is used to construct the
reordering-table corresponding to an input sen-
tence in the source language.

4 Decoding

4.1 Decoding with LCS Decoder
The lattice construction and scoring algorithm, as
the name suggests, consists of two steps,

1. Lattice construction

In this step, a lattice representing various
possible target sequences is obtained. In the
approach for global lexical selection (Banga-
lore et al., 2007; Venkatapathy and Banga-
lore, 2009), the input to this step is a bag of
words. The bag of words is used to construct
an initial sequence (a single path lattice). To
this sequence, deletion arcs are added to in-
corporate additional paths (at a cost) that fa-
cilitate deletion of words in the initial se-
quence. This sequence is permuted using a
permutation window in order to construct a
lattice representing possible sequences. The
permutation window is used to control the
search space.

In our experiments, we used a similar process
for sentence construction. Using the con-
text dependent block translation algorithm,

1http://www.statmt.org/moses/?n=FactoredTraining.ScorePhrases
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we obtain a number of translation blocks for
every source word. These blocks are inter-
connected in order to obtain the initial lattice
(see figure 3).

f_(i−1) f_(i) f_(i+1)

t_(i−1,1)

t_(i−1,2)

t_(i−1,3)

t_(i,2)

t_(i,1) t_(i+1,1)

t_(i+1,2)

t_(i+1,3)

.... ...............

SOURCE SENTENCE

INTIAL TARGET LATTICE

Figure 3: Lattice Construction

To control deletions at various source posi-
tions, deletion nodes may be added to the
initial lattice. This lattice is permuted us-
ing a permutation window to construct a lat-
tice representing possible sequences. Hence,
the parameters that dictate lattice construc-
tion are, (1) Threshold for lexical selection,
(2) Using deletion arcs or not, and (3) Per-
mutation window.

2. Scoring

In this step, each of the paths in the lattice
constructed in the earlier step is scored us-
ing a language model (Haffner, 2006), which
is same as the one used in the sentence con-
struction in global lexical selection models.
It is to be noted that we do not use the dis-
criminative reordering model in this decoder,
and only the language model is used to score
various target sequences.

The path with the lowest score is considered
the best possible target sentence for the given
source sentence. Using this decoder, we con-
ducted experiments on the development set by
varying threshold values and the size of the per-
mutation window. The best parameter values ob-
tained using the development set were used for de-
coding the test corpus.

4.2 Decoding with Moses Decoder
In this approach, the phrase-table and the
reordering-table are constructed using the dis-

criminative model for every source sentence (see
section 3.2). These tables are then used by the
state-of-art Moses decoder to obtain correspond-
ing translations.

The various training and decoding parameters
of the discriminative model are computed by ex-
haustively exploring the parameter space, and cor-
respondingly measuring the output quality on the
development set. The best set of parameters were
used for decoding the sentences in the test corpus.
We modified the weights assigned by MOSES to
the translation model, reordering model and lan-
guage model. Experiments were conducted by
performing pruning on the options in the phrase
table and by using the word penalty feature in
MOSES.

We trained a language model of order 5 built on
the entire EUROPARL corpus using the SRILM
package. The method uses improved Kneser-Ney
smoothing algorithm (Chen and Goodman, 1999)
to compute sequence probabilities.

5 Dataset

The experiments were conducted on the Spanish-
English language pair. The latest version of the
Europarl corpus(version-5) was used in this work.
A small set of 200K sentences was selected from
the training set to conduct the experiments. The
test and development sets containing 2525 sen-
tences and 2051 sentences respectively were used,
without making any changes.

Corpus No. of sentences Source Target
Training 200000 59591 36886
Testing 2525 10629 8905

Development 2051 8888 7750
Monolingual 200000 n.a 36886
English (LM)

Table 1: Corpus statistics for Spanish-English cor-
pus.

6 Experiments and Results

The output of our experiments was evaluated us-
ing two metrics, (1) BLEU (Papineni et al., 2002),
and (2) Lexical Accuracy (LexAcc). Lexical ac-
curacy measures the similarity between the un-
ordered bag of words in the reference sentence
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against the unordered bag of words in the hypoth-
esized translation. Lexical accuracy is a measure
of the fidelity of lexical transfer from the source
to the target sentence, independent of the syntax
of the target language (Venkatapathy and Banga-
lore, 2009). We report lexical accuracies to show
the performance of LCS decoding in comparison
with the baseline system.

We first present the results of the state-of-art
phrase-based model (Moses) trained on a paral-
lel corpus. We treat this as our baseline. The re-
ordering feature used is msd-bidirectional, which
allows for all possible reorderings over a speci-
fied distortion limit. The baseline accuracies are
shown in table 2.

Corpus BLEU Lexical Accuracy
Development 0.1734 0.448

Testing 0.1823 0.492

Table 2: Baseline Accuracy

We conduct two types of experiments to test our
approach.

1. Experiments using lexical features (see sec-
tion 6.1), and

2. Experiments using syntactic features (see
section 6.2).

6.1 Experiments using Lexical Features
In this section, we present results of our exper-
iments that use only lexical features. First, we
measure the translation accuracy using LCS de-
coding. On the development set, we explored the
set of decoding parameters (as described in sec-
tion 4.1) to compute the optimal parameter val-
ues. The best lexical accuracy obtained on the de-
velopment set is 0.4321 and the best BLEU score
obtained is 0.0923 at a threshold of 0.17 and a per-
mutation window size of value 3. The accuracies
corresponding to a few other parameter values are
shown in Table 3.

On the test data, we obtained a lexical accu-
racy of 0.4721 and a BLEU score of 0.1023. As
we can observe, the BLEU score obtained using
the LCS decoding technique is low when com-
pared to the BLEU score of the state-of-art sys-
tem. However, the lexical accuracy is comparable

Threshold Perm. Window LexAcc BLEU
0.16 3 0.4274 0.0914
0.17 3 0.4321 0.0923
0.18 3 0.4317 0.0918
0.16 4 0.4297 0.0912
0.17 4 0.4315 0.0915

Table 3: Lexical Accuracies of Lattice-Output us-
ing lexical features alone for various parameter
values

to the lexical accuracy of Moses. This shows that
the discriminative model provides good lexical se-
lection, while the sentence construction technique
does not perform as expected.

Next, we present the results of the Moses based
decoder that uses the discriminative model (see
section 3.2). In our experiments, we did not use
MERT training for tuning the Moses parameters.
Rather, we explore a set of possible parameter val-
ues (i.e. weights of the translation model, reorder-
ing model and the language model) to check the
performance. We show the BLEU scores obtained
on the development set using Moses decoder in
Table 4.

Reordering LM Translation BLEU
weight(d) weight(l) weight(t)

0 0.6 0.3 0.1347
0 0.6 0.6 0.1354

0.3 0.6 0.3 0.1441
0.3 0.6 0.6 0.1468

Table 4: BLEU for different weight values using
lexical features only

On the test set, we obtained a BLEU score of
0.1771. We observe that both the lexical accuracy
and the BLEU scores obtained using the discrim-
inative training model combined with the Moses
decoder are comparable to the state-of-art results.
The summary of the results obtained using three
approaches and lexical feature functions is pre-
sented in Table 5.

6.2 Experiments using Syntactic Features
In this section, we present the effect of incorpo-
rating syntactic features using our model on the
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Approach BLEU LexAcc
State-of-art(MOSES) 0.1823 0.492

LCS decoding 0.1023 0.4721
Moses decoder trained
using a discriminative 0.1771 0.4841

model

Table 5: Translation accuracies using lexical fea-
tures for different approaches

translation accuracies. Table 6 presents the results
of our approach that uses syntactic features at dif-
ferent parameter values. Here, we can observe
that the translation accuracies (both LexAcc and
BLEU) are better than the model that uses only
lexical features.

Reordering LM Translation BLEU
weight(d) weight(l) weight(t)

0 0.6 0.3 0.1661
0 0.6 0.6 0.1724

0.3 0.6 0.3 0.1780
0.3 0.6 0.6 0.1847

Table 6: BLEU for different weight values using
syntactic features

Table 7 shows the comparative performance of
the model using syntactic as well as lexical fea-
tures against the one with lexical features func-
tions only.

Model BLEU LexAcc
Lexical features 0.1771 0.4841

Lexical+Syntactic 0.201 0.5431
features

Table 7: Comparison between translation accura-
cies from models using syntactic and lexical fea-
tures

On the test set, we obtained a BLEU score of
0.20 which is an improvement of 2.3 points over
the model that uses lexical features alone. We also
obtained an increase of 6.1% in lexical accuracy
using this model with syntactic features as com-
pared to the model using lexical features only.

7 Conclusions and Future Work

In this paper, we presented an approach to statisti-
cal machine translation that combines the power
of a discriminative model (for training a model
for Machine Translation), and the standard beam-
search based decoding technique (for the transla-
tion of an input sentence). The key contributions
are:

1. We incorporated a discriminative model in
a phrase-based decoder. We obtained com-
parable results with the state-of-art phrase-
based decoder (see section 6.1). The ad-
vantage in using our approach is that it has
the flexibility to incorporate richer contextual
and linguistic feature functions.

2. We show that the incorporation of syntac-
tic information (POS tags) in our discrimina-
tive model boosted the performance of trans-
lation. The lexical accuracy using our ap-
proach improved by 6.1% when syntactic
features were used in addition to the lexi-
cal features. Similarly, the BLEU score im-
proved by 2.3 points when syntactic features
were used compared to the model that uses
lexical features alone. The accuracies are
likely to improve when richer linguistic fea-
ture functions (that use parse structure) are
incorporated in our approach.

In future, we plan to work on:

1. Experiment with rich syntactic and structural
features (parse tree-based features) using our
approach.

2. Experiment on other language pairs such as
Arabic-English and Hindi-English.

3. Improving LCS decoding algorithm using
syntactic cues in the target (Venkatapathy
and Bangalore, 2007) such as supertags.
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